
IE
EE

 P
ro

of

W
eb

 V
er

sio
n

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

PUF Modeling Attacks on Simulated and Silicon Data
Ulrich Rührmair, Jan Sölter, Frank Sehnke, Xiaolin Xu, Ahmed Mahmoud, Vera Stoyanova, Gideon Dror,

Jürgen Schmidhuber, Wayne Burleson, Fellow, IEEE, and Srinivas Devadas, Fellow, IEEE

Abstract—We discuss numerical modeling attacks on several
proposed strong physical unclonable functions (PUFs). Given
a set of challenge-response pairs (CRPs) of a Strong PUF, the
goal of our attacks is to construct a computer algorithm which
behaves indistinguishably from the original PUF on almost all
CRPs. If successful, this algorithm can subsequently impersonate
the Strong PUF, and can be cloned and distributed arbitrarily.
It breaks the security of any applications that rest on the Strong
PUF’s unpredictability and physical unclonability. Our method
is less relevant for other PUF types such as Weak PUFs. The
Strong PUFs that we could attack successfully include standard
Arbiter PUFs of essentially arbitrary sizes, and XOR Arbiter
PUFs, Lightweight Secure PUFs, and Feed-Forward Arbiter
PUFs up to certain sizes and complexities. We also investigate the
hardness of certain Ring Oscillator PUF architectures in typical
Strong PUF applications. Our attacks are based upon various ma-
chine learning techniques, including a specially tailored variant
of logistic regression and evolution strategies. Our results are
mostly obtained on CRPs from numerical simulations that use
established digital models of the respective PUFs. For a subset of
the considered PUFs—namely standard Arbiter PUFs and XOR
Arbiter PUFs—we also lead proofs of concept on silicon data from
both FPGAs and ASICs. Over four million silicon CRPs are used
in this process. The performance on silicon CRPs is very close to
simulated CRPs, confirming a conjecture from earlier versions
of this work. Our findings lead to new design requirements for
secure electrical Strong PUFs, and will be useful to PUF designers
and attackers alike.

Index Terms—Physical unclonable functions, machine learning,
cryptanalysis, physical cryptography.

Manuscript received February 05, 2013; revised June 16, 2013; accepted
August 08, 2013. Date of publication August 27, 2013. This work was
supported in part by the Physical Cryptography Project of the Technische
Universität München, in part by the Semiconductor Research Corporation
under Task 1836.074, and in part by the U.S. NSF under Grants CNS 0923313
and 0964641.
U. Rührmair, J. Sölter, F. Sehnke, A. Mahmoud, and V. Stoyanova are

with the Technische Universität München, 80333 München, Germany (e-mail:

ruehrmair@in.tum.de).[Please provide current affilia-
tion for all authors]
X. Xu and W. Burleson are with the University of Massachusetts, Amherst,

MA [Please provide postal code]USA.
G. Dror is with the Academic College of Tel-Aviv-Yaffo, Israel, and also with

Yahoo Research, Israel.[Please provide cities and post
codes]
J. Schmidhuber is with the Technische Universität München, Germany, also

with the University of Lugano, Switzerland, also with SUPSI, Switzerland, and

also with IDSIA, Switzerland.[Please provide cities and
post codes for all]
S. Devadas is with the Massachusetts Institute of Technology, Cambridge,

MA [Please provide postal code]USA.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2013.2279798

I. INTRODUCTION

A. Motivation and Background

E LECTRONIC devices are now pervasive in our everyday
life. This makes them an accessible target for adversaries,

leading to a host of security and privacy issues. Classical cryp-
tography offers several measures against these problems, but
they all rest on the concept of a secret binary key: It is assumed
that the devices can contain a piece of information that is, and
remains, unknown to the adversary. Unfortunately, it can be dif-
ficult to uphold this requirement in practice. Physical attacks
such as invasive, semi-invasive, or side-channel attacks, as well
as software attacks like API-attacks and viruses, can lead to
key exposure and full security breaks. The fact that the devices
should be inexpensive, mobile, and cross-linked aggravates the
problem.
The described situation was one motivation that led to the de-

velopment of Physical Unclonable Functions (PUFs). A PUF is
a (partly) disordered physical system that can be challenged
with so-called external stimuli or challenges , upon which it
reacts with corresponding responses termed . Contrary to
standard digital systems, a PUF’s responses shall depend on the
nanoscale structural disorder present in the PUF. This disorder
cannot be cloned or reproduced exactly, not even by its original
manufacturer, and is unique to each PUF. As PUF responses
can be noisy, suitable error correction techniques like fuzzy ex-
tractors [13] may be applied in practice to obtain stable outputs

. Assuming successful error compensation, any PUF can
be regarded as an individual function that maps challenges
to (stable) responses (compare [41]).
Due to its complex and disordered structure, a PUF can avoid

some of the shortcomings associated with digital keys. For ex-
ample, it is usually harder to read out, predict, or derive its re-
sponses than to obtain the values of digital keys stored in non-
volatile memory. This fact has been exploited for various PUF-
based security protocols. Prominent examples include schemes
for identification and authentication [34], [15], key exchange or
digital rights management purposes [16].

B. Modeling Attacks and Different PUF Types

There are several subtypes of PUFs, each with its own ap-
plications and security features. Three established types, which
must explicitly be distinguished in this paper, are Strong PUFs
[34], [15]1 Controlled PUFs [16], and Weak PUFs [18], [20],

1Strong PUFs have sometimes also been referred to as Physical Random
Functions [14].

1556-6013 © 2013 IEEE

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

2 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

also called Physically Obfuscated Keys (POKs) [14].2 For an
exact differentiation, we refer the reader to earlier versions of
this work [41], or a recent survey article by Rührmair, Devadas
and Koushanfar [38]. We stress that the attacks presented in this
paper do not apply to all of these three types in the samemanner,
as detailed below.
In general, modeling attacks on PUFs presume that an ad-

versary Eve has, in one way or the other, collected a subset
of all CRPs of the PUF. She then tries to derive a numerical
model from this data, i.e., a computer algorithm which correctly
predicts the PUF’s responses to arbitrary challenges with high
probability. Machine learning (ML) techniques are a natural and
powerful tool for this task [14], [24], [31], [26], [45]. How the
required CRPs can be collected, and how relevant our modeling
attacks are in practice, very strongly depends on the considered
type of PUF, however.
1) Strong PUFs: Strong PUFs are PUFs with very many pos-

sible challenges and a complex input-output relation [41], [38],
[37]. They are the PUF class for which our modeling attacks
have been designed originally, and to which they are best appli-
cable. The reason is that Strong PUFs usually have no protection
mechanisms that restrict Eve applying challenges or in reading
out their responses [38], [37], [41]. Their responses are usually
not postprocessed on chip in a protected environment [34], [46],
[27], [17], [23], [25]. Most electrical Strong PUFs further op-
erate at frequencies of a few MHz [23]. Therefore even short
physical access periods enable Eve to read-out and collect many
CRPs. Another potential CRP source is simple protocol eaves-
dropping, for example on standard Strong PUF-based identifica-
tion protocols, where the CRPs are sent in the clear [34]. Please
note that both eavesdropping on responses as well as physical
access to the PUF is part of the established, general attackmodel
for PUFs.
Once a predictive model for a Strong PUF has been derived,

the two main security features of a Strong PUF no longer hold:
The PUF is no longer unpredictable for parties that are not in
physical possession of the PUF; and the physical unclonability
of the PUF is overcome by the fact that the digital simulation
algorithm can be cloned and distributed arbitrarily. Any Strong
PUF protocol which is built on these two features is then no
longer secure. This includes any standard, widespread Strong
PUF protocols known to the authors.3

For example, if Eve can use her intermediate physical access
in a PUF-based key exchange protocol [11], [4] to derive a pre-
dictive model of the PUF, she can later predict the key that was

2We would like to stress that the term “Weak PUF” and “Strong PUF” are not
to be understood in any pejorative or judgemental sense. They are not meant to
indicate that one PUF-type would be superior or inferior to another. We merely
follow a terminology that had originally been introduced by Guajardo, Kumar,
Schrijen and Tuyls [18], andwhich has later been developed further by Rührmair
et al. in [42], [37], [41], [38].
3One sole potential exception are a few recent bit commitment protocols for

PUFs that were explicitly designed for the so-called “bad PUF model” or the
“malicious PUF model”. They promise to uphold security even if one or all
used PUFs are not unpredictable (see partly van Dijk and Rührmair [12] and
mainly Damgard and Scafuro [8]). At least some of these protocols are relatively
nonstandard in a number of aspects, however, such as the assumed input/output
lengths of the used PUFs. Asides from these two special protocols, all other
practically relevant, widespread Strong PUF schemes straightforwardly break
down if the main security feature of the Strong PUF is violated by a modeling
attack, namely their unpredictability.

exchanged between the honest parties. A similar effect occurs
in 1-out-of-2 oblivious transfer (OT) protocols [36], [4]: If the
OT-receiver can derive a numerical model of the PUF before
he physically transfers the PUF to the OT-sender, he can later
break the security of the sender, and learn both transferred bits
and . Also in the CRP-based, standard identification proto-

cols for Strong PUFs [33], [34], a numerical model can be used
to impersonate the original PUF.
Concerning applications where the form factor of the PUF

may play a role, such as smartcards, we stress that the very
simple additive simulation models derived in this paper can be
implemented in similar environments as the original PUFs, and
with a relatively small number of gates. An active fraudster can
come so close to the original form factor in a newly setup, mali-
cious smartcard hardware that the difference is very difficult to
notice in practice.
2) Controlled PUFS: Controlled PUFs are a second PUF-

type, which consists of an underlying Strong PUF with a sur-
rounding control logic [41], [38]. The challenge-response inter-
face of the Strong PUF is not directly accessible, but is protected
by the logic. Any challenges applied to the Controlled PUF are
preprocessed by the logic before they are input to the Strong
PUF, and any responses of the Strong PUF are postprocessed by
the logic before they are being output by the Controlled PUF.
Both the pre- and postprocessing step can add significantly to
the security of a Controlled PUF [16].
For any adversary that is restricted to noninvasive CRP mea-

surement, Controlled PUFs successfully disable modeling at-
tacks if the control logic uses a secure one-way hash over the
outputs of the underlying Strong PUF.We note that this requires
internal error correction of the Strong PUF outputs inside the
Controlled PUF, since they are inherently noisy [16]. Further-
more, it introduces a new, additional presumption, namely the
security of the applied one-way hash function.
Successful application of our techniques to a Controlled PUF

only becomes possible if Eve can probe the internal, digital re-
sponse signals of the underlying Strong PUF on their way to
the control logic. Even though this is a significant assumption,
probing digital signals is still easier than measuring continuous
analog parameters within the underlying Strong PUF, for ex-
ample determining its delay values. Note again that physical ac-
cess to the PUF is part of the natural attack model on PUFs, as
mentioned above. If a Controlled PUF has been modeled, the
same effects for protocols resting on their unpredictability and
physical unclonability apply that have been described in the last
Section I-B1.
3) Weak PUFs: Weak PUFs (or POKs) are PUFs with few,

fixed challenges, in the extreme case with just one challenge
[41], [38]. It is usually assumed that their response(s) remain
inside the PUF-carrying hardware, for example for the deriva-
tion of a secret key, and are not easily accessible for external
parties. Weak PUFs are the PUF class that is the least suscep-
tible to the presented modeling attacks.
We stress that our attacks only apply to them under relatively

rare and special circumstances: namely if a Strong PUF, em-
bedded in some hardware system and with a not publicly acces-
sible CRP interface, is used to implement the Weak PUF. This
method has been suggested in [14], [46]. Thereby only a few

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

RÜHRMAIR et al.: PUF MODELING ATTACKS ON SIMULATED AND SILICON DATA 3

(of the very many possible) challenges of the Strong PUF are
used for internal key derivation. Our attacks make sense in this
context only in the special case that the Strong PUF challenges
that are used in the key derivation process are not yet fixed

in the hardware at the time of fabrication, but are selected later
on. For one reason or another, the adversary may learn about
these challenges at a point in time that lies after his point of
physical access to the PUF. In this case, machine learning and
modeling of the Strong PUF can help the adversary to derive
the key, even though the points in time where he has access to
the PUF and where he learns the challenges strictly differ. In
order to make our ML methods applicable in this case, one must
assume that the adversary was able to collect many CRPs of
the Strong PUF, for example by physically probing the internal
digital response signals of the Strong PUF to randomly injected
challenges, or by malware that abuses internal access to the un-
derlying Strong PUF’s interface. We comment that the latter
scenarios obviously represent very strong attack models. Under
comparable circumstances also many standard Weak PUFs and
other secret key based architectures break down.
In any other cases than the above, our modeling attacks will

not be relevant for Weak PUFs. This means that they are not
applicable to the majority of current Weak PUF implementa-
tions, including the Coating PUF [47], SRAM PUF [18], But-
terfly PUF [22], and similar architectures.
We conclude by the remark that this should not lead to the

impression that Weak PUFs are necessarily more secure than
other PUFs. Other attack strategies can be applied to them, in-
cluding invasive, side-channel and virus attacks, but they are not
the topic of this paper. For example, probing the output of the
SRAM cell prior to storing the value in a register can break the
security of the cryptographic protocol that uses these outputs as
a key. Also physical cloning strategies for certain Weak PUFs
have been reported recently [19]. Finally, we comment that at-
tacking a Controlled PUF via collecting CRPs from the under-
lying Strong PUF requires substantially more signal probing
than breaking a Weak PUF that possesses just one challenge.

C. Related Work

This article is an extended journal version of Rührmair et al.
[41] from CCS’10. Early work on PUF modeling attacks, such
as [17], [24], [31], [26], described successful attacks on stan-
dard Arbiter PUFs and on Feed-Forward Arbiter PUFs with one
loop. But these approaches did not generalize to Feed-Forward
Arbiter PUFs with more than two loops. The XOR Arbiter PUF,
Lightweight PUF, Feed-Forward Arbiter PUF with more than
two Feed-Forward Loops, and RingOscillator PUF had not been
cryptanalyzed until the first version of this work [41]. Further,
no scalability analyses of the required CRPs and computation
times had been performed in any earlier works. In comparison
to the first version of this article [41], the main novelty is that
results on a very large database of silicon CRPs from ASICs and
FPGAs have been added. The new result settles an open ques-
tion from the first version of this work [41], showing that our
findings on numerically simulated CRPs carry over with very
little performance loss to the silicon case.
Since the publication of the earlier version of this article [41],

some works have addressed the problem of the ML-suscepti-

bility of Strong PUFs. For example, Majzoobi et al. [30] de-
scribe an approach to improve the resilience of PUFs against
modeling attacks in identification protocols by certain hardware
and protocol measures, assuming a Controlled PUF environ-
ment. Under the assumptions that the internal digital signals can
be probed, however, similar attacks apply to this construction
as described in this paper (compare Section I-B). Furthermore,
Yu et al. [49] have described the use of PUFs for internal key
derivation in the context of machine learning. Again, this paper
is besides the focus of this work, which concentrates on Strong
PUFs (compare Section I-B).

D. Organization of the Paper

The paper is organized as follows. We describe the method-
ology of our ML experiments in Section II. In Sections III to
VII, we present our ML results for various Strong PUF candi-
dates on simulated, noise-free CRP data. These sections deal
with Arbiter PUFs, XOR Arbiter PUFs, Lightweight Arbiter
PUFs, Feed-Forward Arbiter PUFs and Ring Oscillator PUFs,
in sequence. Section VIII deals with the effect of randomly in-
jected noise in the simulated CRP data. Section IX carries our a
very detailed proof of concept for silicon data from FPGA and
ASICs. We conclude with a summary and discussion of our re-
sults in Section X.

II. METHODOLOGY SECTION

A. Employed Machine Learning Methods

We evaluated various machine techniques prior to our exper-
iments, including Support Vector Machines (SVMs), Logistic
Regression (LR), Evolution Strategies (ES), and briefly also
Neural Nets and Sequence Learning. The approaches in the fol-
lowing two sections performed best and are applied throughout
the paper.
1) Logistic Regression: Logistic Regression (LR) is a well-

investigated supervisedmachine learning framework, which has
been described, for example, in [2]. In its application to PUFs
with single-bit outputs, each challenge is as-
signed a probability that it generates a output

(for technical reasons, one makes the convention that
instead of). The vector thereby encodes

the relevant internal parameters, for example the particular run-
time delays, of the individual PUF. The probability is given by
the logistic sigmoid acting on a function parametrized by
the vector as . Thereby
determines through a decision boundary of equal output
probabilities. For a given training set of CRPs the boundary
is positioned by choosing the parameter vector in such a way
that the likelihood of observing this set is maximal, respectively
the negative log-likelihood is minimal:

(1)

As there is no analytical solution to determine the optimal pa-
rameter vector , it has to be optimized iteratively, e.g., using
the gradient information

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

4 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

(2)

From the different optimization methods which we tested
in our ML experiments (standard gradient descent, iterative
reweighted least squares, RProp [2], [35]), RProp gradient de-
scent performed best. Logistic regression has the asset that the
examined problems need not be (approximately) linearly sepa-
rable in feature space, as is required for successful application
of SVMs, but merely differentiable. As a supervised method,
it makes more efficient use of the CRP information than rein-
forcement learning or evolutionary methods [2]. Furthermore,
LR is to the knowledge of the authors the only method that
can be applied directly to the model of an Arb-PUF and XOR
Arb-PUF. Other methods like SVM and Neural Networks build
their own intrinsic models.
In our ML experiments, we used an implementation of LR

with RProp programmed in our group. The iteration is continued
until we reach a point of convergence, i.e., until the averaged
prediction rate of two consecutive blocks of five consecutive
iterations does not increase anymore for the first time. If the
reached performance after convergence on the training set is
not sufficient, the process is started anew. After convergence
to a good solution on the training set, the prediction error is
evaluated on the test set.
2) Evolution Strategies: Evolution Strategies (ES) [1], [44]

belong to anML subfield known as population-based heuristics.
They are inspired by the evolutionary adaptation of a population
of individuals to certain environmental conditions. In our case,
one individual in the population is given by a concrete instanti-
ation of the runtime delays in a PUF, i.e., by a concrete instan-
tiation of the vector appearing in Eqns. (1) and (2). The en-
vironmental fitness of the individual is determined by how well
it (re-)produces the correct CRPs of the target PUF on a fixed
training set of CRPs. ES runs through several evolutionary cy-
cles or so-called generations. With a growing number of genera-
tions, the challenge-response behavior of the best individuals in
the population better and better approximates the target PUF. ES
is a randomized method that neither requires an (approximately)
linearly separable problem (like Support Vector Machines), nor
a differentiable model (such as LR with gradient descent); a
merely parameterizable model suffices. Since all known elec-
trical PUFs are easily parameterizable, ES is a very well-suited
attack method.
We employed an inhouse implementation of ES that is avail-

able from our machine learning library PyBrain [43]. The meta-
parameters in all applications of ES throughout this paper are
(6,36)-selection and a global mutation operator with .
We furthermore used a technique called Lazy Evaluation (LE).
LE means that not all CRPs of the training set are used to eval-
uate an individual’s environmental fitness; instead, only a ran-
domly chosen subset is used for evaluation, that changes in
every generation. In this paper, we always used subsets of size
2,000 CRPs.

B. Employed Computational Resources

We used three hardware systems to carry out our exper-
iments: A standalone, consumer INTEL Quadcore Q9300,
and a comparable consumer AMD Quadcore, both worth less
than 1,000 Euros. Thirdly, a 30-node cluster of AMD Opteron
Quadcores, which represents a worth of around 30,000 Euros.
To ensure ease of comparison, all computation times given by
us in this paper are calculated for one core of one processor of
the corresponding hardware. If cores are used in parallel, the
computation times can be reduced roughly by a factor of ,
since our ML algorithms parallelize straightforwardly.

C. PUF Descriptions and Models

1) Arbiter PUFs: Arbiter PUFs (Arb-PUFs) were first intro-
duced in [17], [23], [46]. It has become standard to describe the
functionality of Arb-PUFs via an additive linear delay model
[24], [27], [26]. The overall delays of the signals are modeled
as the sum of the delays in the stages. In this model, one can
express the final delay difference between the upper and the
lower path in a -bit Arb-PUF as , where and are
of dimension . The parameter vector encodes the delays
for the subcomponents in the Arb-PUF stages, whereas the fea-
ture vector is solely a function of the applied bit challenge
[24], [27], [26].
The output of an Arb-PUF is then determined by the sign of

the final delay difference . We make the technical convention
of saying that when the Arb-PUF output is actually 0,
and when the Arb-PUF output is 1:

(3)

Equation (3) shows that the vector via determines a
separating hyperplane in the space of all feature vectors . Any
challenges that have their feature vector located on the one
side of that plane give response , those with feature vec-
tors on the other side . Determination of this hyperplane
allows prediction of the PUF.
2) XOR Arbiter PUFs: One possibility to strengthen the re-

silience of arbiter architectures against machine learning, which
has been suggested in [46], is to employ individual Arb-PUFs
in parallel, each with stages (i.e., each with bitlength). The
same challenge is applied to all of them, and their individual
outputs are XORed in order to produce a global response

.We denote such an architecture as -XORArb-PUF (with
the 1-XOR Arbiter PUF being identical to the standard Arbiter
PUF).
A formal model for XOR Arb-PUFs can be derived as fol-

lows. Making the convention as done earlier, it
holds that . This leads with equation (3) to a
parametric model of an -XOR Arb-PUF, where and de-
note the parameter and feature vector, respectively, for the -th
Arb PUF:

(4)

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

RÜHRMAIR et al.: PUF MODELING ATTACKS ON SIMULATED AND SILICON DATA 5

(5)

While (4) gives a nonlinear decision boundary with pa-
rameters, (5) defines a linear decision boundary by a separating
hyperplane which is of dimension .
3) Lightweight Secure PUFs: Another type of PUF, which

we term Lightweight Secure PUF or Lightweight PUF for short,
has been introduced in [27]. At its heart are individual stan-
dard Arb-PUFs arranged in parallel, each with stages (i.e.,
with bitlength), which produce individual outputs .
These individual outputs are XORed to produce a multibit re-
sponse of the Lightweight PUF. Another difference
to the XOR Arb-PUFs lies in the inputs which
are applied to the individual Arb-PUFs. Contrary to XOR
Arb-PUFs, it does not hold that , but
a more complicated input mapping that derives the individual
inputs from the global input is applied. We refer the reader
to [27] for further details.
In order to predict the whole output of the Lightweight PUF,

one can apply similar models and ML techniques as in the last
section to predict its single output bits . While the probability
to predict the full output of course decreases exponentially in
the misclassification rate of a single bit, the stability of the full
output of the Lightweight PUF also decreases exponentially in
the same parameters. It therefore seems fair to attack it in the
described manner; in any case, our results challenge the bit se-
curity of the Lightweight PUF.
4) Feed Forward Arbiter PUFs: Feed Forward Arbiter PUFs

(FF Arb-PUFs) were introduced in [17], [23], [24] and further
discussed in [26]. Some of their multiplexers are not switched
in dependence of an external challenge bit, but as a function of
the delay differences accumulated in earlier parts of the circuit.
Additional arbiter components evaluate these delay differences,
and their output bit is fed into said multiplexers in a “feed-for-
ward loop” (FF-loop). We note that an FF Arb-PUF with -bit
challenges (i.e., with bitlength) and loops has

multiplexers or stages.
The described dependency makes natural architecture models

of FF Arb-PUFs no longer differentiable. Consequently, FF
Arb-PUFs cannot be attacked generically with ML methods
that require linearly separable or differentiable models (like
SVMs or LR), even though such models can be found in special
cases, for example for small numbers of nonoverlapping loops.
The number of loops as well as the starting and end point of

the FF-loops are variable design parameters, and a host of dif-
ferent architectures for an FF Arb-PUF with a moderate or even
large number of loops are possible. We conducted first exper-
iments with equally distributed loops that do not overlap (this
is the original design suggested in [23]), finding that it was rel-
atively simple to learn. The architecture we eventually investi-
gated in this paper was more resilient to modeling. It consists
of loops that are distributed at equal distances over the struc-
ture, and which just overlap each other: If the starting point of
loop lies in between stages and , then the previous

loop has its end point in the immediately following stage
. This seemed a natural and straightforward architectural

choice; future experiments will have to determine whether this
is indeed the optimal (i.e., most secure) architecture.
5) Ring Oscillator PUFs: Ring Oscillator PUFs (RO-PUFs)

were discussed in [46], though oscillating loops were proposed
in the original silicon PUF paper [15]. While [46] describes the
use of Ring Oscillator PUFs in the context of Controlled PUFs
and limited-count authentication, it is worth analyzing them as
candidate Strong PUFs. A RO-PUF consists of identically
designed ring oscillators, each of which has its own, unique
frequency caused by manufacturing variations. The input of a
RO-PUF consists of a tuple , which selects two of the
oscillators. Their frequencies are compared, and the output of
the RO-PUF is “0” if the former oscillates faster than the latter,
and “1” else. A ring oscillator can be modeled in a straightfor-
ward fashion by a tuple of frequencies . Its output
on input is “0” if , and “1” else.

D. Numeric CRP Generation, Prediction Error, and Number
of CRPs

Given a PUF-architecture that should be examined, the chal-
lenge-response pairs (CRPs) that we used in our ML experi-
ments were generated in the following fashion: (i) The delay
values for this PUF architecture were chosen pseudo-randomly
according to a standard normal distribution.We sometimes refer
to this as choosing a certain PUF instance in the paper. (ii) If a
response of this PUF instance to a given challenge is needed,
the above delays of the two electrical signal paths are simply
added up and compared. This methodology follows the well-es-
tablished linear additive delay model for PUFs [9], [24], [23],
[17], [31], [26]. In case of the RO PUF, the frequencies were
simply chosen at random according to a normal distribution.
We use the following definitions throughout the paper: The

prediction error is the ratio of incorrect responses of the trained
ML algorithm when evaluated on the test set. For all appli-
cations of LR, the test set each time consisted of 10,000 ran-
domly chosen CRPs. For all applications of ES (i.e., for the
Feed-Forward Arbiter PUF), the test set each time consisted
of 8,000 randomly chosen CRPs. The prediction rate is .

(or simply “CRPs”) denotes the number of CRPs em-
ployed by the attacker in his respective attack, for example in
order to achieve a certain prediction rate. This nomenclature
holds throughout the whole paper. Nevertheless, one subtle dif-
ference should be made explicit: In all applications of LR (i.e.,
in Sections III to V), is equal to the size of the training set
of the ML algorithm, as one would usually expect. In the appli-
cations of ES (i.e., in Section VI), however, the situation is more
involved. The attacker needs a test set himself in order to deter-
mine which of his many random runs was the best. The value

given in the tables and formulas of Section VI hence re-
flects the sum of the sizes of the training set and the test set
employed by the attacker.

E. FPGA CRP Collection

To obtain CRP data from FPGAs, ten independent instances
of Arb-PUFs have been implemented on Spartan-6 FPGAs. The
Arb-PUFs were composed of 64 pairs of multiplexers (MUXs)

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

6 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

and aD flip-flop based arbiter, andwere implemented in Verilog.
In order to balance FPGA routing asymmetries, which would
otherwise dominate the effect of manufacturing variations, a
lookup table (LUT) based Programmable Delay Line (PDL) has
been implemented, as suggested by Majzoobi et al. [28], [29].
We collected 200,000 CRPs from each of our ten FPGA Arb-

PUFs instances, resulting in two million CRPs altogether. For
each CRP, majority voting over five repetitive measurements of
the response to the same challenge was performed in order to
determine the final response. For example, if the five measure-
ments resulted in three “0”s and two “1”s, the final response was
set to “0”. The challenges were generated by a 64-bit pseudo-
random number generator (PRNG), which was based on a max-
imal-length linear feedback shift register (LFSR). The chosen
LFSR polynomial generated the maximal-length sequence ac-
cording to the formula

(6)

where denotes the corresponding 1-bit output from the th
register. This PRNG is cryptographically weak, but it suffices
for our purpose of CRP collection, and operates simply and
quickly.

F. ASIC CRP Collection

To collect CRPs from ASICs, we built Arb-PUF circuits with
45 nm SOI CMOS ASICs. Our Arb-PUF circuits are composed
of 64 delay elements and an arbiter circuit element. Each delay
element consists of two multiplexers with their inputs con-
nected, leading to 64 pairs of MUXs altogether. The challenge
vectors are the select inputs to the MUX pairs, which determine
the paths taken by the top and bottom signal, respectively. This
leads to 64-bit challenges in our implementation. A SR-latch is
used as the arbiter to determine which signal arrived first.
The challenges that we applied to our ASIC Arb-PUFs were

generated pseudo-randomly by the same LFSR as in the FPGA
case (see Section II-E). To minimize the number of signal IOs
on the ASIC PUF test chips, this LFSR was implemented on
chip. The LSFR circuit is provided with a “SET” signal and a
fixed initial seed, so that it can be reset to a known state when
necessary.
40 unpackaged chips of 45 nm SOI CMOS technology were

taped out for postsilicon measurement. Each chip has two sym-
metrically placed Arb-PUFs, resulting in 80 PUF instances, 10
of which were used for data collection. To capture the CRPs, we
set up a postsilicon validation lab. A microscope station is uti-
lized to mount a 2-pin DC probe and an 8-pin AC probe on the
die. Tektronix AFG3252 and Agilent 8251A systems were used
to generate “CLK”, “SET” and other signals. A PicoScope 5000
with 1 GS/s sampling rate is used to capture the response bits.
In order to minimize measurement errors, the majority response
value of five repetitive measurements was selected as the rep-
resentative, just as in the case of FPGAs. We captured 200,000
CRPs from each of the ten used PUF instances, resulting in a
total of two million CRPs collected from ASICs.

G. PUF Noise and Our Evaluation Methodology

In practice, PUFs may be noisy; but the CRP simulation
models used in this paper originally do not incorporate noise.
We therefore investigate the ML hardness of the considered
Strong PUFs in three different manners.
(1): First, we evaluate the purely “logic” security of PUF de-

signs. Noise-free CRPs from simulations by the additive linear
delay model are used in this process. The resulting ML rates
indicate the intrinsic security of the considered design. This se-
curity measure has several advantages: Firstly, it is relatively
simple to obtain, but still very accurate (see, e.g., Table XI).
Secondly, it is independent of any specific PUF implementation
and its noise level, as well as of any particular numeric error
correction mechanism. Recall that both might change for any
new implementation, applications or protocols. Furthermore,
the evaluated “logic” security represents an upper limit on a
PUF’s ML-resilience, at the least in any applications where per-
fect error correction or fuzzy extractors are utilized to obtain
stable responses, such as PUF-based key exchange [11], [4]
and oblivious transfer [36], [4] protocols. Finally, the above ap-
proach allows a close evaluation of the behavior of the predic-
tion error as a function of the used number of CRPs, the run-
ning times of the ML algorithms, the PUF input sizes, and other
architectural PUF parameters. Comparably detailed ML exper-
iments on silicon CRPs would require a practically infeasible
implementation effort.
One natural side effect of this method is that the obtained pre-

diction errors for the “logic” security of the PUF can lie beyond
the stability of a given silicon implementation. This may seem
paradoxical at first glance, but is a natural side effect of our ap-
proach.
(2): Secondly, we evaluate the performance ofML algorithms

on artificially noisy data of the PUF. We do so in a proof of
concept for a selected number of architectures and ML methods
(see Section VIII). Thereby random noise is injected into the
digitally simulated CRP data by inverting a certain percentage
of all (single-bit) PUF outputs. The outputs to be flipped are
chosen uniformly at random.
This approach gives a general indication of the error-toler-

ance of the ML algorithms. The uniform choice of flipped re-
sponses is no optimal noise model from a circuit perspective.
But the approach realistically describes situations in which the
attacker is limited to eavesdropping a noisy channel for col-
lecting his PUF-CRPs. This situation practically occurs in PUF
protocol eavesdropping, or if malware transfers PUF CRPs to
the adversary. It also accurately models situations where noisy
and error-prone digital probing is used to collect the PUF-CRPs
(compare Section I-B).
In order to stay close to this attack model, the prediction error

is evaluated on a set of noise-free CRPs. This allows us to better
isolate and quantify the effect that noise has on the prediction
quality. Similar to above, this has the natural consequence that
the achieved prediction error can be smaller than the injected
noise level.
(3): Finally, we evaluate the feasibility of our attacks on real,

silicon systems, again in selected proof of concept experiments
(see Section IX). We assume that the adversary has got physical

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

RÜHRMAIR et al.: PUF MODELING ATTACKS ON SIMULATED AND SILICON DATA 7

access to the Strong PUF and its public CRP interface, as it is
common in the established PUF attack model. He can thus re-
peat CRP measurements at will in order to gain output stability,
or put the PUF to chosen ambient conditions that ensure partic-
ular reliability.
We carried out our proof of concept attacks on Arbiter PUFs

and XOR Arbiter PUFs, both on FPGAs and ASICs CRPs,
keeping the PUF at the same room temperature and using ma-
jority voting over several measurements (compare Sections II-E
and II-F). Again, this allowed us to derive extremely accurate
models, whose predication rate (for these fixed ambient con-
ditions) is better than the general stability of the PUF over the
entire temperature range of its potential use. The occurrence
of this phenomenon in real silicon systems finally confirms its
nonparadoxical nature.
The results we obtained throughout this paper in steps (1),

(2) and (3) are very close to each other. Among other things,
our work therefore establishes the high suitability of the “logic”
hardness of a PUF as a measure for the PUF’s general security,
at the least for our considered class of delay-based PUFs.
Closely related to the above discussion is the question when

a modeling attack on a PUF should be called successful in prac-
tice. Given our above discussion, the following criteria appear
suggestive: If the security of a concrete PUF implementation is
considered as in step (3), the attack should be called successful
if the achieved prediction rate is better than the stability of this
PUF within the temperature, voltage and aging variations envis-
aged during its use. Dependent on the exact attack model, the
CRPs for the attack thereby may be measured under ambient
conditions controlled by the adversary. For example, measures
such as repeated measurements and majority voting may be al-
lowed to stabilize the output.
If the security of an abstract PUF design is evaluated, as in

steps (1) and (2), the attack can be called successful if it signifi-
cantly exceeds the realistic stability levels of currently existing
implementations, even though this criterion is somewhat vague.
Another abstract criterion, which is sufficient but not necessary,
is the growth rate: If the preduction error is related linearly or
low-degree polynomially to the PUF’s challenge length, its ar-
chitectural parameters and the number of CRPs used in the ML
experiment, an abstract PUF design should no longer be called
secure.

III. ARBITER PUFS

We now start the results part of the paper by presenting our
findings for standard Arbiter PUFs on simulated, noise-free
data.

A. Machine Learning Results

To determine the separating hyperplane , we ap-
plied SVMs, LR and ES. LR achieved the best results, which
are shown in Table I. We chose three different prediction rates
as targets: 95% is roughly the environmental stability of a 64-bit
Arbiter PUF when exposed to a temperature variation of 45C

TABLE I
LR ON ARBITER PUFS WITH 64 AND 128 STAGES (I.E., WITH BITLENGTH 64

AND 128), FOR NOISE-FREE, SIMULATED CRPS

Fig. 1. Double logarithmic plot of misclassification rate on the ratio of
training CRPs and .

and voltage variation of %4. The values 99% and 99.9%,
respectively, represent benchmarks for optimized ML results.
All figures in Table I were obtained by averaging over 5 dif-
ferent training sets. Accuracies were estimated using test sets of
10,000 CRPs.

B. Scalability

We also executed scalability experiments with LR, which are
displayed in Figs. 1 and 2. They show that the relevant pa-
rameters—the required number of CRPs in the training set and
the computational complexity, i.e., the number of basic oper-
ations—grow linearly or low-degree polynomially in the mis-
classification rate and the length of the Arb PUF. Theoretical
considerations (dimension of the feature space, Vapnik-Chervo-
nenkis dimension [3]) suggest that theminimal number of CRPs

that is necessary to model a -stage arbiter with a mis-
classification rate of should obey the relation

(7)

This was confirmed by our experimental results.
In practical PUF applications, it is essential to know the con-

crete number of CRPs that may become known before the PUF-
security breaks down. Assuming an approximate linear func-
tional dependency in the double logarithmic plot of
Fig. 1 with a slope of , we obtained the following em-
pirical formula (8). It gives the approximate number of CRPs

4The exact figures reported in [24] are: 4.57%CRP variation for a temperature
variation of 45C, and 2.16% for a voltage variation of %.

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

8 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Fig. 2. Number of iterations of the LR algorithm until “convergence” occurs
(see Section II), plotted in dependence of the training set size .

that is required to learn a -stage arbiter PUF with error
rate :

(8)

Our experiments also showed that the training time of the ML
algorithms, measured in terms of the number of basic operations

, grows slowly. It is determined by the following two fac-
tors: (i) The evaluation of the current model’s likelihood (1) and
its gradient (2), and (ii) the number of iterations of the optimiza-
tion procedure before convergence occurs (see Section II-A1).
The former is a sum over a function of the feature vectors for
all , and therefore has complexity . On the
basis of the data shown in Fig. 2, we may further estimate that
the numbers of iterations increases proportional to the logarithm
of the number of CRPs . Together, this yields an overall
complexity of

(9)

IV. XOR ARBITER PUFS

We continue by examining XOR Arbiter PUFs on simulated,
noise-free CRPs.

A. Machine Learning Results

In the application of SVMs and ES to XOR Arb-PUFs, we
were able to break small instances, for example XORArb-PUFs
with 2 or 3 XORs and 64 stages. LR significantly outperformed
the other twomethods. The key observation is that instead of de-
termining the linear decision boundary (5), one can also specify
the nonlinear boundary (4). This is done by setting the LR de-
cision boundary . The results are displayed in
Table II.

B. Scalability

Figs. 3 and 4 display the results of our scaling experiments
with LR. Again, the smallest number of CRPs in the training
set needed to achieve predictions with a misclassifica-
tion rate scales linearly with the number of parameters of the

TABLE II
LR ON XOR ARBITER PUFS FOR NOISE-FREE, SIMULATED CRPS. TRAINING

TIMES ARE AVERAGED OVER DIFFERENT PUF-INSTANCES

Fig. 3. Double logarithmic plot of misclassification rate on the ratio of
training CRPs and problem size .

Fig. 4. Average rate of success of the LR algorithm plotted in dependence of
the ratio [see (11)] to .

problem (the product of the number of stages and the number
of XORed Arb-PUFs):

(10)

But, in contrast to standard Arb-PUFs, optimizing the nonlinear
decision boundary (4) on the training set now is a nonconvex
problem, so that the LR algorithm is not guaranteed to find (an
attractor of) the global optimum in its first trial. It needs to be
iteratively restarted times. thereby can be expected
to not only depend on and , but also on the size of the
employed training set.
As is argued in greater detail in [45], the success rate

of finding (an attractor of) the global optimum is de-
termined by the ratio of dimensions of gradient information

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

RÜHRMAIR et al.: PUF MODELING ATTACKS ON SIMULATED AND SILICON DATA 9

(as the gradient is a linear combination of the feature
vector) and the dimension in which the problem is linear
separable. The dimension is the number of independent di-
mensions of .
As the tensor product of several vectors consists of all pos-

sible products between their vector components, the indepen-
dent dimensions are given by the number of different products
of the form for
(where we say that for all). For XOR
Arb-PUFs, we furthermore know that the same challenge is ap-
plied to all internal Arbiter PUFs, which tells us that

for all and .
Since a repetition of one component does not affect the product
regardless of its value (recall that),
the number of the above products can be obtained by counting
the unrepeated components. The number of different products
of the above form is therefore given as the number of -tuples
without repetition, plus the number of -tuples without
repetition (corresponding to all -tuples with 1 repetition), plus
the number of -tuples without repetition (corresponding
to all -tuples with 2 repetitions), etc.
Writing this down more formally, is given by

(11)

The approximation applies when is considerably larger than ,
which holds for the considered PUFs for stability reasons. Fol-
lowing [45], this seems to lead to an expected number of restarts

to obtain a valid decision boundary on the training set
(that is, a parameter set that separates the training set), of

(12)

Furthermore, each trial has the complexity

(13)

V. LIGHTWEIGHT SECURE PUFS

This section investigates the ML-resilience of LW PUFs on
simulated, noise-free CRPs.

A. Machine Learning Results

In order to test the influence of the specific input map-
ping of the Lightweight PUF on its machine-learnability (see
Section II-C), we examined architectures with the following
parameters: variable , and arbitrary . We
focused on LR right from the start, since this method was best
in class for XOR Arb-PUFs, and obtained the results shown in
Table III. The specific design of the LW PUF leads to signif-
icantly increased training times and CRP requirements. Still,
we were able to predict single output bits for LW PUFs with up
to 5 XORs with probabilities of 99%, both for bit lengths 64
and 128 bits.

TABLE III
LR ON LIGHTWEIGHT PUFS FOR NOISE-FREE, SIMULATED CRPS. PREDICTION
RATE REFERS TO SINGLE OUTPUT BITS. TRAINING TIMES WERE AVERAGED

OVER DIFFERENT PUF INSTANCES

B. Scalability

Some theoretical consideration [45] shows the underlying
ML problem for the Lightweight PUF and the XOR Arb PUF
are similar with respect to the required CRPs, but differ quan-
titatively in the resulting runtimes. The asymptotic formula
on given for the XOR Arb PUF (10) analogously also
holds for the Lightweight PUF. But due to the influence of the
special challenge mapping of the Lightweight PUF, the number

has a growth rate that is different from (12). It seems to
lie between) and the related expression
[45]. While these two formulas differ by factor of , we note
that in our case , and that is comparatively small for
stability reasons. Again, all these considerations on
and hold for the prediction of single output bits of the
Lightweight PUF.
These points were at least qualitatively confirmed by our scal-

ability experiments. We observed agreement with the above dis-
cussion in that with the same ratio the LR algorithm
will have a longer runtime for the Lightweight PUF than for
the XOR Arb-PUF. For example, while with a training set size
of 12,000 for the 64-bit 4-XOR Arb-PUF on average about 5
trials were sufficient, for the corresponding Lightweight PUF
100 trials were necessary.

VI. FEED FORWARD ARBITER PUFS

We consider the case of FF Arb-PUFs on simulated, noise-
free CRPs in this section.

A. Machine Learning Results

Recall from Section II-C4 that FF Arb-PUFs with -bit chal-
lenges (i.e., with bitlength) and loops have

multiplexers or stages. We experimented with SVMs
and LR on these PUFs, using different models and input repre-
sentations, but could only break special cases with small num-
bers of nonoverlapping FF loops, such as . This is in
agreement with earlier results reported in [26].
The application of ES finally allowed us to tackle much

more complex FF-architectures with up to 8 FF-loops. In the
architectures examined by us, all loops have equal length, and
are distributed regularly over the PUF, with overlapping start-
and endpoints of successive loops, as described in Section II-C.
Table IV shows the results we obtained. The given prediction
rates are the best of 40 trials on one randomly chosen PUF-in-
stance of the respective length. The given CRP numbers are the
sum of the training set and the test set employed by the attacker;
a fraction of 5/6 was used as the training set, 1/6 as the test

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

10 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

TABLE IV
ES ON FEED-FORWARD ARBITER PUFS FOR NOISE-FREE, SIMULATED CRPS.
PREDICTION RATES ARE FOR THE BEST OF A TOTAL OF 40 TRIALS ON A
SINGLE, RANDOMLY CHOSEN PUF INSTANCE. TRAINING TIMES ARE FOR A

SINGLE TRIAL. WE APPLIED LAZY EVALUATION WITH 2,000 CRPS

Fig. 5. Results of 10 trials per data point with ES for different lengths of FF
Arbiter PUFs and the hyperbola fit.

set (see Section II-D). We note for comparison that in-silicon
implementations of 64-bit FF Arb-PUFs with 7 FF-loops are
known to have an environmental stability of 90.16% [24].

B. Scalability

We started by empirically investigating the CRP growth as
a function of the number of challenge bits, examining architec-
tures of varying bitlength that all have 6 FF-loops. The loops are
distributed as described in Section II-C. The corresponding re-
sults are shown in Fig. 5. Every data point corresponds to the av-
eraged prediction error of 10 trials on the same, random PUF-in-
stance.
Secondly, we investigated the CRP requirements as a function

of a growing number of FF-loops, examining architectures with
64 bits. The corresponding results are depicted in Fig. 6. Again,
each data point shows the averaged prediction error of 10 trials
on the same, random PUF instance.
In contrast to the Sections IV-B and V-B, it is nowmuch more

difficult to derive reliable scalability formulas from this data.
The reasons are threefold. First, the structure of ES provides less
theoretical footing for formal derivations. Second, the random
nature of ES produces a very large variance in the data points,
making also clean empirical derivations more difficult. Third,
we observed an interesting effect when comparing the perfor-
mance of ES vs. SVM/LR on theArb PUF:While the supervised
MLmethods SVM and LR showed a linear relationship between
the prediction error and the required CRPs even for very small
, ES proved more CRP hungry in these extreme regions for ,

Fig. 6. Results of 10 trials per data point with ES for different numbers of
FF-loops and the hyperbola fit.

Fig. 7. Graphical illustration of the effect of error on LR in the training set,

with chosen data points from Tables VI and VII.[Please cite Fig 7
in order in the text]

clearly showing a superlinear growth. The same effect can be
expected for FF architectures, meaning that one consistent for-
mula for extreme values of may be difficult to obtain.
It still seems somewhat suggestive from the data points in

Figs. 5 and 6 to conclude that the growth in CRPs is about linear,
and that the computation time grows polynomially. For the rea-
sons given above, however, we would like to remain conserva-
tive, and present the upcoming empirical formulas only in the
status of a conjecture.
The data gathered in our experiments is best explained by

assuming a qualitative relation of the form

(14)

for some constant , where is the number of stages
in the PUF. Concrete estimation from our data points leads to
an approximate formula of the form

(15)

The computation time required by ES is determined by the fol-
lowing factors: (i) The computation of the vector product ,
which grows linearly with . (ii) The evolution applied to this
product, which is negligible compared to the other steps. (iii)
The number of iterations or “generations” in ES until a small

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

RÜHRMAIR et al.: PUF MODELING ATTACKS ON SIMULATED AND SILICON DATA 11

misclassification rate is achieved. We conjecture that this grows
linearly with the number of multiplexers . (iv) The number of
CRPs that are used to evaluate the individuals per iteration. If
(15) is valid, then is on the order of .
Assuming the correctness of the conjectures made in this

derivation, this would lead to a polynomial growth of the com-
putation time in terms of the relevant parameters and . It
could then be conjectured that the number of basic computa-
tional operations obeys

(16)

for some constant .

VII. RING OSCILLATOR PUFS

Ring Oscillator PUFs (RO PUFs) to some extent constitute an
exception within this paper. They are a relatively versatile PUF
structure, and have been suggested for uses in various contexts
and also under different specific designs. The majority of these
suggestions applies them the context of Weak PUFs or Con-
trolled PUFs, i.e., in applications where their CRP interface is
not publicly accessible for external parties. One typical example
would be their use within pseudorandom digital number genera-
tors which employ the RO-responses as a secret seed. We stress
once more that our modeling attacks apply in such application
contexts either not at all, or only under very rare and restricted
circumstances; compare again our discussion in Section I-B.
Still, in order to complete our picture on delay-based PUFs,

it seems worthwhile to clarify the security of the RO PUF if it
is used as Strong PUF, i.e., if its CRP interface can be accessed
without restrictions, or if its CRP are sent in the clear in proto-
cols and can be eavesdropped. The specific type of ring oscil-
lator PUFwe analyze is taken from [46]: It employs ring oscil-
lators overall. Two of them are selected by a challenge, and their
frequencies are compared in order to produce a single output bit.
This structure leads to possible challenges.
There are several strategies to attack this particular type of

RO-PUF if it is used as a Strong PUF. A first, straightforward at-
tempt would be a simple collection or read out of all its (quadrat-
ically many) CRPs.
A more interesting case is if Eve can choose the CRPs adap-

tively. This case occurs if the CRP interface is public and she
has physical access to it. She can then improve her attack, em-
ploying a standard sorting algorithm to obtain the RO-PUF’s
frequencies in ascending order. This strategy sub-
sequently allows her to predict the outputs without knowing the
exact frequencies themselves. The time and CRP complexi-
ties of the respective sorting algorithms are well known [32]; for
example, there are several algorithms with average- and even
worst-case CRP complexity of . Their
running times are also low-degree polynomial.
Perhaps the most advanced case is when Eve cannot adap-

tively choose the CRPs, but is restricted to eavesdropped CRPs,
which were chosen randomly by other parties. We carried out
experiments for this case, in which we applied Quick Sort (QS)
to randomly drawn CRPs. The results are shown in Table V. The
estimated required number of CRPs is given by

TABLE V
QUICK SORT APPLIED TO THE RING OSCILLATOR PUF. THE GIVEN CRPS

ARE AVERAGED OVER 40 TRIALS

TABLE VI
LR ON 128-BIT, 4-XOR ARB PUFS WITH DIFFERENT LEVELS OF NOISE
IN THE TRAINING SET AND NOISE-FREE TEST SETS. WE SHOW THE BEST
AND AVERAGE PREDICTION RATES OF 40 RANDOMLY CHOSEN INSTANCES,
THE PERCENTAGE OF SUCCESSFUL TRIALS OVER THESE INSTANCES, AND
THE PERCENTAGE OF INSTANCES THAT CONVERGED TO A SUFFICIENT

OPTIMUM IN AT LEAST ONE TRIAL

(17)

and the training times are low-degree polynomial. Among other
things, (17) quantifies for how many runs RO-PUFs can be used
in identification protocols à la Pappu et al. [33], [34], even under
the assumption that the adversary is limited to CRP eavesdrop-
ping and never can access the PUF physically.

VIII. RESULTS ON ERROR-INFLICTED CRPS

Having examined the performance of ML algorithms on sim-
ulated, noise-free CRPs over the last sections, we now investi-
gate the effect of noise and errors in the CRPs. For various noise
levels, we choose an fraction of all CRPs uniformly at random,
and flip their single-bit responses. We then run the ML algo-
rithm on the noise-inflicted data, and evaluate its performance
on a noise-free training set. This allows us to precisely pinpoint
the effect of the erroneous CRPs. For a further discussion on our
methodology, please see Section II-G. Our findings were that
our ML algorithms are very robust with respect to the examined
error levels. This again confirms the relevance and validity of
the purely “logic” ML hardness as a measure for PUF security;
compare again our discussion in Section II-G.

A. LR on XOR Arbiter PUFs With Error-Inflicted CRPs

We started by investigating LR on XOR Arbiter PUFs. The
results are displayed in Tables VI and VII for various noise
levels. They show that LR can cope very well with errors, pro-
vided that around three to four times more CRPs are used. The
required convergence times on error inflicted training sets did
not change substantially compared to error free training sets of
the same sizes.

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

12 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

TABLE VII
LR ON 128-BIT, 5-XOR ARB PUFS WITH DIFFERENT AMOUNTS OF ERROR

IN THE TRAINING SET. REST AS IN THE CAPTION OF TABLE VI

Fig. 8. Graphical illustration of the tolerance of ES to errors. We show the best
result of 40 independent trials on one randomly chosen PUF instance for varying
error levels in the training set. The results hardly differ.

TABLE VIII
ES ON 64-BIT, 6 FF ARB PUFS WITH DIFFERENT LEVELS OF NOISE IN

THE TRAINING SET AND NOISE-FREE TEST SETS. WE SHOW THE BEST AND
AVERAGE PREDICTION RATES FROM OVER 40 INDEPENDENT TRIALS ON A
SINGLE, RANDOMLY CHOSEN PUF INSTANCE, AND THE PERCENTAGE OF

SUCCESSFUL TRIALS THAT CONVERGED TO 90% OR BETTER

B. ES on Feed-Forward Arbiter PUFs With Error-Inflicted
CRPs

In the same manner as above, we investigated the perfor-
mance of ES on FF Arb PUFs when it is run with error-inflicted
CRPs. The results are shown in Table VIII and Fig. 8. ES pos-
sesses an extremely high tolerance against the inflicted errors;
its performance is hardly changed at all.

IX. RESULTS ON SILICON CRPS

So far, all of our results were achieved on numerically simu-
lated CRPs. In any simulations of the Arbiter PUF variants, the
additive linear delay model has been used (see Section II-C).
Based on earlier experiments with silicon implementations [24],
[9], it had been conjectured in the first version of this work that
this model is accurate enough that our attacks transfer well to
the silicon case [41].
We are now able to conduct a detailed validation of this con-

jecture, both for ASIC and FPGA implementations, in this sec-
tion. The two architectures we chose to investigate were Ar-
biter PUFs and XOR Arbiter PUFs. They are the two most rele-
vant designs in our context: For RO PUFs, the analytical model,
which simply assigns one frequency to each oscillator, is very
close to reality. FF Arb PUFs and Lightweight PUFs are also
delay-based, therefore it can be assumed that our results on

TABLE IX
LR ON ARB PUFS OF BITLENGTH 64 FOR FPGA AND ASIC DATA,
COLLECTED UNDER STABLE TEMPERATURE AND MAJORITY VOTING

(XOR) Arb PUFs transfer well to their case. In our analysis, we
used overall more than four million silicon CRPs from FPGAs
and ASICs (see Sections II-F and II-E).
For standard Arbiter PUFs, the CRP-stability of the used

FPGA systems (again under majority voting) was at 95.13%
under an artificially injected % voltage variation. For
ASICs, this number was 96.82%. These figures also give us an
indication of the projected stability of the two systems under
varying temperature and aging, even though we did not execute
detailed studies on the latter two. Interestingly, our obtained
ML prediction rates exceeded these noise levels. The reason
is that we assumed realistically in our measurements that an
attacker with physical access could collect the CRPs at one
single, relatively stable temperature level, and could apply ma-
jority voting to stabilize the responses (compare Section II-G).
Overall, the findings detailed in the next subsections con-

firm that there is little performance loss of our method for sil-
icon CRPs. This establishes the good applicability of the linear
additive delay model in any future security analyses of delay-
based PUFs, and again confirms our paradigm that the perfor-
mance on noise-free, simulated CRPs is a very good indicator
for a delay-based PUF’s security. It turned out in this context
that FPGA-CRPs were slightly harder to learn than the ASIC
data. Two conceivable causes could be the slightly higher noise
levels of FPGAs (see above), and the insertion of PDLs (Pro-
grammable Delay Lines) on FPGAs, which makes the MUX
structures more complicated.

A. Results on Silicon Arbiter PUFs

As described in detail in Sections II-E and II-f, we used ten
PUF-instances on FPGAs and ten on ASICs, and collected
200,000 CRPs of each of them, applying majority voting on
five responses for each challenge. Table IX gives the results of
our LR algorithm on the FPGA and ASIC data, respectively.
They are very close to the earlier findings for synthetic CRPs
(see Section III and Table I). Only for very small prediction
errors slightly below 1%, the known small deviations from
the linear additive delay model, possible measurement errors,
and instabilities come into play and have a notable effect. This
makes it more difficult to achieve extremely low prediction
rates significantly below 1%; a strongly increasing amount of
CRP data is required for such low rates. Anyway, in practice a
prediction error of 1% or below is already sufficient to break
the system; compare the stability levels mentioned above.
1) Scalability: Similar to Section III-B, we conducted

scaling experiments on FPGA and ASIC data. We investigated
the relationship between the number of CRPs and prediction
rates, as well as the overall running time of our algorithm.
Fig. 9 depicts the results of our scaling experiments on the

required number of CRPs for FPGA and ASIC data. The figure

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

RÜHRMAIR et al.: PUF MODELING ATTACKS ON SIMULATED AND SILICON DATA 13

Fig. 9. Performance of LR on FPGA and ASIC Arbiter PUFs for small predic-
tion errors. Each data point represents a single PUF instance.

shows that the linear relation of Section III-B between the
number of CRPs and the prediction rate holds very well for a
prediction error of above 1%. In this regime, it is described by
exactly the same formula as in Section III-B:

(18)

Below around 1%, a saturation effect occurs, however.
Reducing the prediction error further is still possible, but in-
creasingly requires more than a linear number of CRPs. In this
regime, the limits of the additive linear delay model begin to
show. Possible measurement errors and instabilities contribute
to this phenomenon, too.
Interestingly, this effect concerns FPGAs and ASICs in ex-

actly the same fashion. Among other things, this confirms that
Majzoobi et al.’s method of balancing the routing asymmetries
of FPGAs via lookup tables [28], [29] works very well (see
Section II-E).
The second aspect we investigated is the scaling of the overall

runtime of our algorithm. It is given in Fig. 10. Our results
can be seen as confirmation that the basic relationship given in
Section IV-B still holds, and that the runtime scales as

(19)

Still, some differences between the silicon and simulated
CRPs regarding are observable; noise and deviations from the
perfect linear additive delay model have a stronger effect in the
XOR case than in the case of single Arb-PUFs, and increase
the training times.

B. Results on Silicon XOR Arbiter PUFs

We also investigated the case of XORArbiter PUFs for FPGA
and ASIC data. Our results are summarized in Table X. Again,
they are relatively close to our earlier findings of Section IV-A.
However, the small deviations from the linear additive delay
model now certainly have a stronger effect, since we consider
the XOR of several single Arbiter PUFs. We were not able to
learn 6-XOR Arb PUFs anymore with the collected amount of

Fig. 10. Necessary trials for LR on FPGA and ASIC Arbiter PUFs.

TABLE X
LR ON XOR ARB PUFS OF BITLENGTH 64 FOR FPGA AND ASIC DATA
(COLLECTED UNDER STABLE TEMPERATURE AND MAJORITY VOTING).
TRAINING TIMES ARE AVERAGED OVER DIFFERENT PUF-INSTANCES

data. Extrapolating from our previous experience, we believe
that about 700,000 CRPs would be necessary to this end.
1) Scalability: We also conducted detailed scalability ex-

periments, following the methodology of Section IV-B. The
required number of CRPs vs. the achieved prediction error
is shown in Fig. 11. It shows that for XOR Arb PUFs, the
saturation effect is similar to single Arbiter PUFs. The only
difference is that it already starts at slightly lower prediction
rates, and slowly increases with the number of XORs. Still, the
saturation is so mild that also prediction errors below 1% can
be achieved, provided that a sufficient amount of CRPs is used.
Over 1%, the basic relationship

(20)

appears to hold well, as discussed already in Section IV-B.
In terms of computation times, our findings are summarized

in Fig. 12. It corresponds to Fig. 4 in Section IV-B, which used
simulated CRPs. Again, our results at least qualitatively confirm
the scaling behavior we earlier observed on simulated data. Also
for FPGA andASIC data, the expected number of restarts
to obtain a valid decision boundary on the training set (that is, a
parameter set that separates the training set), is given approx-
imately by

(21)

Furthermore, each trial again has the approximate complexity

(22)

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

14 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

TABLE XI
SOME OF OUR MAIN RESULTS FOR SIMULATED, NOISE-FREE CRPS AND FOR SILICON CRPS FROM FPGAS AND ASICS. THE PREDICTION RATES AND TRAINING
TIMES ARE AVERAGED OVER SEVERAL INSTANCES. ALL PRESENTED TRAINING TIMES ARE CALCULATED AS IF THE ML EXPERIMENT WAS RUN ON ONLY ONE

SINGLE CORE OF ONE SINGLE PROCESSOR. USING CORES WILL APPROXIMATELY REDUCE THEM BY

Fig. 11. Performance of LR on XOR Arbiter PUFs for FPGA and ASIC data
for small prediction errors.

Fig. 12. Average rate of success of the LR algorithm on XOR Arbiter PUFs
for FPGA and ASIC data, plotted in dependence of the ratio [see (11)] to

.

X. SUMMARY

A. Summary

We investigated the resilience of several electrical Strong
PUF designs against modeling attacks. To that end, we applied
various machine learning techniques to challenge-response sets
from two sources: (i) Pseudorandom numeric simulations which
used an additive delay model, with and without artificially in-
jected errors; and (ii) Silicon CRP data from FPGAs and ASICs.
The examined Strong PUFs included standard Arbiter PUFs,

XOR Arbiter PUFs, Lightweight Secure PUFs, and Feed-For-
ward Arbiter PUFs. We also investigated the hardness of cer-
tain Ring Oscillator (RO) PUF architectures [46] if used in typ-
ical Strong PUF scenarios, i.e., under the presumption that their
CRP-interface is publicly accessible. If nothing else, this gives
us an indication for how many runs these PUFs can be used se-
curely within (limited count) identification protocols à la Pappu
et al. [33], [34]. Some of our main results are summarized in
Table XI.
We found that all examined Strong PUF candidates under

a certain size and architectural complexity could be machine
learned with prediction rates above 99%. These rates sometimes
are above the practical silicon stability of the examined PUFs.
As explained in detail Section II-G, this is not paradoxical, but
a natural consequence of our evaluation methodology. For ex-
ample, in silicon attacks an adversary can put the PUFs to stable
ambient conditions and apply majority voting to get extremely
stable CRP sets.
The attacks required a number of CRPs that grows only lin-

early or log-linearly in the internal parameters of the PUFs, such
as their number of stages, XORs, feed-forward loops, or ring os-
cillators. Apart from XOR Arbiter PUFs and Lightweight PUFs
(whose training times grew quasi-exponentially in their number
of XORs for large bitlengths and small to medium number of
XORs), the training times of the applied machine learning al-
gorithms are low-degree polynomial, too.
We also executed a very detailed proof of concept for sil-

icon CRPs for the twomost well-studied and commercially most
relevant [9], [10] electrical Strong PUF designs, Arbiter PUFs
and XOR Arbiter PUFs. In this process, more than four million
CRPs collected from ASICs and FPGAs were used. The simi-
larity of our results on simulated and silicon data settles a con-
jecture that had been posed in earlier versions of this work [41].
It shows that the linear delay model is close to practice, and es-
tablishes its use in future security analyses of any Arbiter PUF
variants.
Our findings prohibit the use of the modeled architectures up

to a certain size and complexity in typical Strong PUF proto-
cols whose security rests on the unpredictability or physical un-
clonability of the Strong PUF, and where the adversary can col-
lect many CRPs via access to the Strong PUF’s interface or by
eavesdropping protocols. Under the assumption that digital sig-
nals can be probed, our results also affect the applicability of the
examined Strong PUFs as building blocks in Controlled PUFs,

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

RÜHRMAIR et al.: PUF MODELING ATTACKS ON SIMULATED AND SILICON DATA 15

again up to a certain size and complexity. The security of Weak
PUFs is not strongly affected by our methods. As discussed in
detail in Section I-B, our attacks apply to this PUF type only
under the rare circumstance that a Strong PUF is employed in-
side a hardware system as the Weak PUF, using only few of
the many possible challenges of this Strong PUF. Most typical
Weak PUFs, such as the SRAM PUF [18], Butterfly PUF [22]
or Coating PUF [47], remain unaffected by our attacks.

B. Discussion

Two straightforward, but biased interpretations of our results
would be the following: (i) All Strong PUFs are insecure. (ii)
The long-term security of electrical Strong PUFs can be restored
trivially, for example by increasing the PUF’s size. Both views
are simplistic, and the truth is more involved.
Starting with (i), our current attacks are indeed sufficient to

break several delay-based PUF implementations. But there are a
number of ways how PUF designers can fight back in future de-
signs. First, increasing the bitlength in an XOR Arbiter PUF
or Lightweight Secure PUF with XORs increases the effort
of the presented attacks methods as a polynomial function of
with exponent (in approximation for large and small or

medium). At the same time, it does not worsen the PUF’s sta-
bility [9]. For now, one could therefore disable attacks through
choosing a strongly increased value of and a value of that
corresponds to the stability limit of such a construction. For ex-
ample, an XOR Arbiter PUF with 8 XORs and bitlength of 512
is implementable by standard fabrication processes [9], but is
currently beyond the reach of our attacks. Similar considera-
tions hold for Lightweight PUFs of these sizes. Secondly, new
design elements may raise the attacker’s complexity further, for
example adding nonlinearity (such as AND and OR gates that
correspond to MAX and MIN operators [24]). Combinations of
Feed-Forward and XOR architectures could be hard to machine
learn too, partly because they seem susceptible only to different
and mutually-exclusive ML techniques.
Moving away from delay-based PUFs, the exploitation of the

dynamic characteristics of current and voltage seems promising,
for example in analog circuits [7]. Also special PUFs with a
very high information content (so-called SHIC PUFs [39], [40],
[21]) could be an option, but only in such applications where
their slow read-out speed and their comparatively large area
consumption are no too strong drawbacks. Their promise is that
they are naturally immune against modeling attacks, since all of
their CRPs are information-theoretically independent. Finally,
optical Strong PUFs, for example systems based on light scat-
tering and interference phenomena [34], show strong potential
in creating high input-output complexity.
Regarding view (ii), PUFs are different from classical cryp-

toschemes like RSA in the sense that increasing their size often
likewise decreases their input-output stability. For example,
raising the number of XORs in an XOR Arbiter PUF and
Lightweight PUF has an exponentially strong effect both on
the attacker’s complexity and on the instability of the PUF. We
are yet unable to find parameters that increase the attacker’s
effort exponentially while affecting the PUF’s stability merely
polynomially. Nevertheless, one practically viable possibility is
to increase the bitlength of XOR Arbiter PUFs and Lightweight

PUFs, as discussed above. Future work will have to show
whether the described large polynomial growth of the latter
method can persist in the long term, or whether its high degree
can be diminished by further analysis.

C. Future Work

The upcoming years will presumably witness strong competi-
tion between codemakers and codebreakers in the area of Strong
PUFs. Similar to the design of classical cryptoprimitives, for ex-
ample stream ciphers, this process can be expected to converge
at some point to solutions that are resilient against the known at-
tacks. Some first attempts into this direction have already been
made in [49], [30], [5], [6], but we did not analyze their viability
in detail in this work.
For PUF designers, it may be interesting to investigate some

of the concepts that we mentioned above. For PUF breakers, a
worthwhile starting point is to improve the attacks presented
in this paper through optimized implementations and new ML
methods. A performance comparison between our results and
earlier approaches that used SVMs and comparable techniques
[24], [31], illustrates the strong effect of the choice of the
right ML-algorithm (see Section I-C). Another, qualitatively
new path is to combine modeling attacks with information
obtained from direct physical PUF measurements or from side
channels. For example, applying the same challenge multiple
times gives an indication of the noise level of a response bit.
It enables conclusions about the absolute value of the final
runtime difference in the PUF. Such side channel information
can conceivably improve the success and convergence rates of
ML methods, though we have not exploited this in this paper.

REFERENCES
[1] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution

Strategies, Evolutionary Programming, Genetic Algorithms. New
York, NY, USA: Oxford Univ. Press, 1996.

[2] C. M. Bishop et al., Pattern Recognition and Machine Learning.
New York, NY, USA: Springer, 2006.

[3] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Learn-
ability and the Vapnik-Chervonenkis dimension,” J. ACM, vol. 36, no.
4, pp. 929–865, 1989.

[4] C. Brzuska, M. Fischlin, H. Schröder, and S. Katzenbeisser, “Phys-
ical unclonable functions in the universal composition framework,” in
Proc. CRYPTO 2011.

[5] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, and U. Rührmair, “The
bistable ring PUF: A new architecture for strong physical unclonable
functions,” in Proc. HOST 2011.

[6] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, andU. Rührmair, “Char-
acterization of the bistable ring PUF,” in Proc. DATE 2012.

[7] G. Csaba, X. Ju, Z. Ma, Q. Chen, W. Porod, J. Schmidhuber, U.
Schlichtmann, P. Lugli, and U. Rührmair, “Application of mismatched
cellular nonlinear networks for physical cryptography,” in Proc. IEEE
CNNA, 2010.

[8] I. Damgard and A. Scafuro:, “Unconditionally secure and universally
composable commitments from physical assumptions,” in Proc. Cryp-
tology ePrint Archive 2013, 2013, vol. 108.

[9] S. Devadas, “Physical unclonable functions and secure processors,” in
Proc. CHES 2009, Invited Talk.

[10] S. Devadas et al., “Design and implementation of PUF-based ‘Unclon-
able’ RFID ICs for anti-counterfeiting and security applications,” in
Proc. IEEE Int. Conf. on RFID, 2008.

[11] M. van Dijk, “System and Method of Reliable Forward Secret Key
Sharing With Physical Random Functions,” U.S. Patent 7,653,197,
Oct. 2004.

[12] M. van Dijk and U. Rührmair:, Physical unclonable functions in cryp-
tographic protocols: Security proofs and impossibility results, Cryp-
tology ePrint Archive, 2012:228, 2012.

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

16 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

[13] Y. Dodis, R. Ostrovsky, L. Reyzin, L. , and A. Smith:, “Fuzzy ex-
tractors: How to generate strong keys from biometrics and other noisy
data,” SIAM J. Comput., vol. 38, no. 1, pp. 97–139, 2008.

[14] B. L. P. Gassend, “Physical Random Functions,” M.Sc. Thesis, MIT,
Cambridge, MA, USA, 2003.

[15] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proc. ACM CCS, 2002.

[16] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Controlled phys-
ical random functions,” in Proc. ACSAC 2002.

[17] B. Gassend, D. Lim, D. Clarke, M. Van Dijk, and S. Devadas, “Iden-
tification and authentication of integrated circuits,” Concurrency and
Computation: Practice & Experience, vol. 16, no. 11, pp. 1077–1098,
2004.

[18] J. Guajardo, S. Kumar, G. J. Schrijen, and P. Tuyls, “FPGA intrinsic
PUFs and their use for IP protection,” in Proc. CHES 2007.

[19] C. Helfmeier, C. Boit, D. Nedospasov, and J. P. Seifert, “Cloning phys-
ically unclonable functions,” in Proc. HOST, 2013.

[20] D. E. Holcomb, W. P. Burleson, and K. Fu, “Initial sram state as a
fingerprint and source of true random numbers for RFID tags,” in Proc.
Conf. RFID Security, 2007.

[21] C. Jaeger, M. Algasinger, U. Rührmair, G. Csaba, and M. Stutzmann,
“Random p-n-junctions for physical cryptography,” Appl. Phys. Lett.,
vol. 96, p. 172103, 2010.

[22] S. S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen, and P. Tuyls, “Ex-
tended abstract: The butterfly PUF protecting IP on every FPGA,” in
Proc. HOST, 2008.

[23] J.W. Lee, D. Lim, B. Gassend, G. E. Suh,M. VanDijk, and S. Devadas,
“A technique to build a secret key in integrated circuits for identifi-
cation and authentication applications,” in Proc. IEEE VLSI Circuits
Symp., 2004.

[24] D. Lim, “Extracting Secret Keys from Integrated Circuits,” M.Sc.
thesis, MIT, Cambridge, MA, USA, 2004.

[25] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. Van Dijk, and S. De-
vadas, “Extracting secret keys from integrated circuits,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 10, pp. 1200–1205,
Oct. 2005.

[26] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Testing techniques
for hardware security,” in Proc. Int. Test Conf. (ITC), 2008.

[27] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure
PUFs,” in Proc. IEEE/ACM Int. Conf. Computer-Aided Design, 2008.

[28] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques for de-
sign and implementation of secure reconfigurable PUFs,” ACM Trans.

Reconfig. Technol. Syst., vol. 2, no. 1, 2009[Please provide
page range].

[29] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA PUF using pro-
grammable delay lines,” in Proc. IEEE Workshop Information Foren-
sics and Security (WIFS), 2010.

[30] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. De-
vadas, “Slender PUF protocol: A lightweight, robust, and secure au-
thentication by substring matching,” in Proc. IEEE S&P Workshops,
2012.

[31] E. Öztürk, G. Hammouri, and B. Sunar, “Towards robust low cost au-
thentication for pervasive devices,” in Proc. IEEE PerCom, 2008.

[32] C. H. Papadimitriou, Computational Complexity. Hoboken, NJ,
USA: Wiley, 2003.

[33] R. Pappu, “Physical One-Way Functions,” Ph.D. thesis, MIT, Cam-
bridge, MA, USA, 2001.

[34] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way
functions,” Science, vol. 297, no. 5589, p. 2026, 2002.

[35] M. Riedmiller and H. Braun, “A direct adaptive method for faster back-
propagation learning: The RPROP algorithm,” in Proc. IEEE Int. Conf.
Neural Networks, 1993.

[36] U. Rührmair, “Oblivious transfer based on physical unclonable func-
tions (extended abstract),” in Proc. TRUST 2010, 2010, vol. 6101,
LNCS, Springer.

[37] U. Rührmair, H. Busch, and S. Katzenbeisser, , A.-R. Sadeghi and P.
Tuyls, Eds., “Strong PUFs:Models, constructions and security proofs,”
in Towards Hardware Intrinsic Security: Foundation and Practice.
New York, NY, USA: Springer, 2010.

[38] U. Rührmair, S. Devadas, and F. Koushanfar, “Security based on phys-
ical unclonability and disorder,” in Introduction to Hardware Security
and Trust, M. Tehranipoor and C. Wang, Eds. New York, NY, USA:
Springer, 2011.

[39] U. Rührmair, C. Jaeger, M. Bator, M. Stutzmann, P. Lugli, and G.
Csaba, “Applications of high-capacity crossbar memories in cryptog-
raphy,” IEEE Trans. Nanotechnol., vol. 10, no. 3, pp. 489–498, May
2011.

[40] U. Rührmair, C. Jaeger, C. Hilgers, M. Algasinger, G. Csaba, and
M. Stutzmann, “Security applications of diodes with unique cur-
rent-voltage characteristics,” Financial Cryptography and Data
Security (FC), 2010.

[41] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmid-
huber, “Modeling attacks on physical unclonable functions,” in Proc.
ACM CCS, 2010.

[42] U. Rührmair, J. Sölter, and F. Sehnke, “On the Foundations of Physical
Unclonable Functions,” Cryptology ePrint Archive, vol. 2009, p. 277,
2009.

[43] T. Schaul, J. Bayer, D.Wierstra, Y. Sun,M. Felder, F. Sehnke, T. Rück-
stieß, and J. Schmidhuber, “PyBrain,” J. Mach. Learning Res., vol. 1,
pp. 999–1000, 2010.

[44] H. P. P. Schwefel, Evolution and Optimum Seeking: The Sixth Gener-
ation. Hoboken, NJ, USA: Wiley, 1993.

[45] J. Sölter, “Cryptanalysis of Electrical PUFs via Machine Learning
Algorithms,” M.Sc. thesis, Technische Universität München, ,

2009[Please provide city].
[46] G. E. Suh and S. Devadas, Physical unclonable functions for device

authentication and secret key generation, DAC, 2007.
[47] P. Tuyls, G. J. Schrijen, B. Škorić, J. van Geloven, N. Verhaegh, and R.

Wolters, Read-proof hardware from protective coatings, CHES, 2006.
[48] P. Tuyls and B. Skoric, “Strong Authenticationwith PUFs,” in Security,

Privacy and Trust in Modern Data Management, M. Petkovic and W.
Jonker, Eds. New York, NY, USA: Springer, 2007.

[49] M.-D. Yu, D. M’Raïhi, R. Sowell, and S. Devadas, “Lightweight and
secure PUF key storage using limits of machine learning,” in Proc.

CHES, 2011[Please provide page range or
location of conference for Refs 4-10,
15, 16, 18-20, 22, 23, 26, 27, 29, 30, 31,
35, 41, and 49].

Ulrich Rührmair photograph and biography not available at the time of publi-
cation.

Jan Sölter photograph and biography not available at the time of publication.

Frank Sehnke photograph and biography not available at the time of publica-
tion.

Xiaolin Xu photograph and biography not available at the time of publication.

Ahmed Mahmoud photograph and biography not available at the time of pub-
lication.

Vera Stoyanova photograph and biography not available at the time of publi-
cation.

Gideon Dror photograph and biography not available at the time of publication.

Jürgen Schmidhuber photograph and biography not available at the time of
publication.

IE
EE

 P
ro

of

W
eb

 V
er

sio
n

RÜHRMAIR et al.: PUF MODELING ATTACKS ON SIMULATED AND SILICON DATA 17

Wayne Burleson (M’84–SM’01–F’11), photograph and biography not avail-
able at the time of publication.

Srinivas Devadas (S’87–M’88–SM’96–F’98), photograph and biography not
available at the time of publication.

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

PUF Modeling Attacks on Simulated and Silicon Data
Ulrich Rührmair, Jan Sölter, Frank Sehnke, Xiaolin Xu, Ahmed Mahmoud, Vera Stoyanova, Gideon Dror,

Jürgen Schmidhuber, Wayne Burleson, Fellow, IEEE, and Srinivas Devadas, Fellow, IEEE

Abstract—We discuss numerical modeling attacks on several
proposed strong physical unclonable functions (PUFs). Given
a set of challenge-response pairs (CRPs) of a Strong PUF, the
goal of our attacks is to construct a computer algorithm which
behaves indistinguishably from the original PUF on almost all
CRPs. If successful, this algorithm can subsequently impersonate
the Strong PUF, and can be cloned and distributed arbitrarily.
It breaks the security of any applications that rest on the Strong
PUF’s unpredictability and physical unclonability. Our method
is less relevant for other PUF types such as Weak PUFs. The
Strong PUFs that we could attack successfully include standard
Arbiter PUFs of essentially arbitrary sizes, and XOR Arbiter
PUFs, Lightweight Secure PUFs, and Feed-Forward Arbiter
PUFs up to certain sizes and complexities. We also investigate the
hardness of certain Ring Oscillator PUF architectures in typical
Strong PUF applications. Our attacks are based upon various ma-
chine learning techniques, including a specially tailored variant
of logistic regression and evolution strategies. Our results are
mostly obtained on CRPs from numerical simulations that use
established digital models of the respective PUFs. For a subset of
the considered PUFs—namely standard Arbiter PUFs and XOR
Arbiter PUFs—we also lead proofs of concept on silicon data from
both FPGAs and ASICs. Over four million silicon CRPs are used
in this process. The performance on silicon CRPs is very close to
simulated CRPs, confirming a conjecture from earlier versions
of this work. Our findings lead to new design requirements for
secure electrical Strong PUFs, and will be useful to PUF designers
and attackers alike.

Index Terms—Physical unclonable functions, machine learning,
cryptanalysis, physical cryptography.

Manuscript received February 05, 2013; revised June 16, 2013; accepted
August 08, 2013. Date of publication August 27, 2013. This work was
supported in part by the Physical Cryptography Project of the Technische
Universität München, in part by the Semiconductor Research Corporation
under Task 1836.074, and in part by the U.S. NSF under Grants CNS 0923313
and 0964641.
U. Rührmair, J. Sölter, F. Sehnke, A. Mahmoud, and V. Stoyanova are

with the Technische Universität München, 80333 München, Germany (e-mail:

ruehrmair@in.tum.de).[Please provide current affilia-
tion for all authors]
X. Xu and W. Burleson are with the University of Massachusetts, Amherst,

MA [Please provide postal code]USA.
G. Dror is with the Academic College of Tel-Aviv-Yaffo, Israel, and also with

Yahoo Research, Israel.[Please provide cities and post
codes]
J. Schmidhuber is with the Technische Universität München, Germany, also

with the University of Lugano, Switzerland, also with SUPSI, Switzerland, and

also with IDSIA, Switzerland.[Please provide cities and
post codes for all]
S. Devadas is with the Massachusetts Institute of Technology, Cambridge,

MA [Please provide postal code]USA.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2013.2279798

I. INTRODUCTION

A. Motivation and Background

E LECTRONIC devices are now pervasive in our everyday
life. This makes them an accessible target for adversaries,

leading to a host of security and privacy issues. Classical cryp-
tography offers several measures against these problems, but
they all rest on the concept of a secret binary key: It is assumed
that the devices can contain a piece of information that is, and
remains, unknown to the adversary. Unfortunately, it can be dif-
ficult to uphold this requirement in practice. Physical attacks
such as invasive, semi-invasive, or side-channel attacks, as well
as software attacks like API-attacks and viruses, can lead to
key exposure and full security breaks. The fact that the devices
should be inexpensive, mobile, and cross-linked aggravates the
problem.
The described situation was one motivation that led to the de-

velopment of Physical Unclonable Functions (PUFs). A PUF is
a (partly) disordered physical system that can be challenged
with so-called external stimuli or challenges , upon which it
reacts with corresponding responses termed . Contrary to
standard digital systems, a PUF’s responses shall depend on the
nanoscale structural disorder present in the PUF. This disorder
cannot be cloned or reproduced exactly, not even by its original
manufacturer, and is unique to each PUF. As PUF responses
can be noisy, suitable error correction techniques like fuzzy ex-
tractors [13] may be applied in practice to obtain stable outputs

. Assuming successful error compensation, any PUF can
be regarded as an individual function that maps challenges
to (stable) responses (compare [41]).
Due to its complex and disordered structure, a PUF can avoid

some of the shortcomings associated with digital keys. For ex-
ample, it is usually harder to read out, predict, or derive its re-
sponses than to obtain the values of digital keys stored in non-
volatile memory. This fact has been exploited for various PUF-
based security protocols. Prominent examples include schemes
for identification and authentication [34], [15], key exchange or
digital rights management purposes [16].

B. Modeling Attacks and Different PUF Types

There are several subtypes of PUFs, each with its own ap-
plications and security features. Three established types, which
must explicitly be distinguished in this paper, are Strong PUFs
[34], [15]1 Controlled PUFs [16], and Weak PUFs [18], [20],

1Strong PUFs have sometimes also been referred to as Physical Random
Functions [14].

1556-6013 © 2013 IEEE

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

2 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

also called Physically Obfuscated Keys (POKs) [14].2 For an
exact differentiation, we refer the reader to earlier versions of
this work [41], or a recent survey article by Rührmair, Devadas
and Koushanfar [38]. We stress that the attacks presented in this
paper do not apply to all of these three types in the samemanner,
as detailed below.
In general, modeling attacks on PUFs presume that an ad-

versary Eve has, in one way or the other, collected a subset
of all CRPs of the PUF. She then tries to derive a numerical
model from this data, i.e., a computer algorithm which correctly
predicts the PUF’s responses to arbitrary challenges with high
probability. Machine learning (ML) techniques are a natural and
powerful tool for this task [14], [24], [31], [26], [45]. How the
required CRPs can be collected, and how relevant our modeling
attacks are in practice, very strongly depends on the considered
type of PUF, however.
1) Strong PUFs: Strong PUFs are PUFswith very many pos-

sible challenges and a complex input-output relation [41], [38],
[37]. They are the PUF class for which our modeling attacks
have been designed originally, and to which they are best appli-
cable. The reason is that Strong PUFs usually have no protection
mechanisms that restrict Eve applying challenges or in reading
out their responses [38], [37], [41]. Their responses are usually
not postprocessed on chip in a protected environment [34], [46],
[27], [17], [23], [25]. Most electrical Strong PUFs further op-
erate at frequencies of a few MHz [23]. Therefore even short
physical access periods enable Eve to read-out and collect many
CRPs. Another potential CRP source is simple protocol eaves-
dropping, for example on standard Strong PUF-based identifica-
tion protocols, where the CRPs are sent in the clear [34]. Please
note that both eavesdropping on responses as well as physical
access to the PUF is part of the established, general attack model
for PUFs.
Once a predictive model for a Strong PUF has been derived,

the two main security features of a Strong PUF no longer hold:
The PUF is no longer unpredictable for parties that are not in
physical possession of the PUF; and the physical unclonability
of the PUF is overcome by the fact that the digital simulation
algorithm can be cloned and distributed arbitrarily. Any Strong
PUF protocol which is built on these two features is then no
longer secure. This includes any standard, widespread Strong
PUF protocols known to the authors.3

For example, if Eve can use her intermediate physical access
in a PUF-based key exchange protocol [11], [4] to derive a pre-
dictive model of the PUF, she can later predict the key that was

2We would like to stress that the term “Weak PUF” and “Strong PUF” are not
to be understood in any pejorative or judgemental sense. They are not meant to
indicate that one PUF-type would be superior or inferior to another. We merely
follow a terminology that had originally been introduced by Guajardo, Kumar,
Schrijen and Tuyls [18], andwhich has later been developed further by Rührmair
et al. in [42], [37], [41], [38].
3One sole potential exception are a few recent bit commitment protocols for

PUFs that were explicitly designed for the so-called “bad PUF model” or the
“malicious PUF model”. They promise to uphold security even if one or all
used PUFs are not unpredictable (see partly van Dijk and Rührmair [12] and
mainly Damgard and Scafuro [8]). At least some of these protocols are relatively
nonstandard in a number of aspects, however, such as the assumed input/output
lengths of the used PUFs. Asides from these two special protocols, all other
practically relevant, widespread Strong PUF schemes straightforwardly break
down if the main security feature of the Strong PUF is violated by a modeling
attack, namely their unpredictability.

exchanged between the honest parties. A similar effect occurs
in 1-out-of-2 oblivious transfer (OT) protocols [36], [4]: If the
OT-receiver can derive a numerical model of the PUF before
he physically transfers the PUF to the OT-sender, he can later
break the security of the sender, and learn both transferred bits
and . Also in the CRP-based, standard identification proto-

cols for Strong PUFs [33], [34], a numerical model can be used
to impersonate the original PUF.
Concerning applications where the form factor of the PUF

may play a role, such as smartcards, we stress that the very
simple additive simulation models derived in this paper can be
implemented in similar environments as the original PUFs, and
with a relatively small number of gates. An active fraudster can
come so close to the original form factor in a newly setup, mali-
cious smartcard hardware that the difference is very difficult to
notice in practice.
2) Controlled PUFS: Controlled PUFs are a second PUF-

type, which consists of an underlying Strong PUF with a sur-
rounding control logic [41], [38]. The challenge-response inter-
face of the Strong PUF is not directly accessible, but is protected
by the logic. Any challenges applied to the Controlled PUF are
preprocessed by the logic before they are input to the Strong
PUF, and any responses of the Strong PUF are postprocessed by
the logic before they are being output by the Controlled PUF.
Both the pre- and postprocessing step can add significantly to
the security of a Controlled PUF [16].
For any adversary that is restricted to noninvasive CRP mea-

surement, Controlled PUFs successfully disable modeling at-
tacks if the control logic uses a secure one-way hash over the
outputs of the underlying Strong PUF.We note that this requires
internal error correction of the Strong PUF outputs inside the
Controlled PUF, since they are inherently noisy [16]. Further-
more, it introduces a new, additional presumption, namely the
security of the applied one-way hash function.
Successful application of our techniques to a Controlled PUF

only becomes possible if Eve can probe the internal, digital re-
sponse signals of the underlying Strong PUF on their way to
the control logic. Even though this is a significant assumption,
probing digital signals is still easier than measuring continuous
analog parameters within the underlying Strong PUF, for ex-
ample determining its delay values. Note again that physical ac-
cess to the PUF is part of the natural attack model on PUFs, as
mentioned above. If a Controlled PUF has been modeled, the
same effects for protocols resting on their unpredictability and
physical unclonability apply that have been described in the last
Section I-B1.
3) Weak PUFs: Weak PUFs (or POKs) are PUFs with few,

fixed challenges, in the extreme case with just one challenge
[41], [38]. It is usually assumed that their response(s) remain
inside the PUF-carrying hardware, for example for the deriva-
tion of a secret key, and are not easily accessible for external
parties. Weak PUFs are the PUF class that is the least suscep-
tible to the presented modeling attacks.
We stress that our attacks only apply to them under relatively

rare and special circumstances: namely if a Strong PUF, em-
bedded in some hardware system and with a not publicly acces-
sible CRP interface, is used to implement the Weak PUF. This
method has been suggested in [14], [46]. Thereby only a few

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

RÜHRMAIR et al.: PUF MODELING ATTACKS ON SIMULATED AND SILICON DATA 3

(of the very many possible) challenges of the Strong PUF are
used for internal key derivation. Our attacks make sense in this
context only in the special case that the Strong PUF challenges
that are used in the key derivation process are not yet fixed

in the hardware at the time of fabrication, but are selected later
on. For one reason or another, the adversary may learn about
these challenges at a point in time that lies after his point of
physical access to the PUF. In this case, machine learning and
modeling of the Strong PUF can help the adversary to derive
the key, even though the points in time where he has access to
the PUF and where he learns the challenges strictly differ. In
order to make our MLmethods applicable in this case, one must
assume that the adversary was able to collect many CRPs of
the Strong PUF, for example by physically probing the internal
digital response signals of the Strong PUF to randomly injected
challenges, or by malware that abuses internal access to the un-
derlying Strong PUF’s interface. We comment that the latter
scenarios obviously represent very strong attack models. Under
comparable circumstances also many standard Weak PUFs and
other secret key based architectures break down.
In any other cases than the above, our modeling attacks will

not be relevant for Weak PUFs. This means that they are not
applicable to the majority of current Weak PUF implementa-
tions, including the Coating PUF [47], SRAM PUF [18], But-
terfly PUF [22], and similar architectures.
We conclude by the remark that this should not lead to the

impression that Weak PUFs are necessarily more secure than
other PUFs. Other attack strategies can be applied to them, in-
cluding invasive, side-channel and virus attacks, but they are not
the topic of this paper. For example, probing the output of the
SRAM cell prior to storing the value in a register can break the
security of the cryptographic protocol that uses these outputs as
a key. Also physical cloning strategies for certain Weak PUFs
have been reported recently [19]. Finally, we comment that at-
tacking a Controlled PUF via collecting CRPs from the under-
lying Strong PUF requires substantially more signal probing
than breaking a Weak PUF that possesses just one challenge.

C. Related Work

This article is an extended journal version of Rührmair et al.
[41] from CCS’10. Early work on PUF modeling attacks, such
as [17], [24], [31], [26], described successful attacks on stan-
dard Arbiter PUFs and on Feed-Forward Arbiter PUFs with one
loop. But these approaches did not generalize to Feed-Forward
Arbiter PUFs with more than two loops. The XOR Arbiter PUF,
Lightweight PUF, Feed-Forward Arbiter PUF with more than
two Feed-Forward Loops, and RingOscillator PUF had not been
cryptanalyzed until the first version of this work [41]. Further,
no scalability analyses of the required CRPs and computation
times had been performed in any earlier works. In comparison
to the first version of this article [41], the main novelty is that
results on a very large database of silicon CRPs fromASICs and
FPGAs have been added. The new result settles an open ques-
tion from the first version of this work [41], showing that our
findings on numerically simulated CRPs carry over with very
little performance loss to the silicon case.
Since the publication of the earlier version of this article [41],

some works have addressed the problem of the ML-suscepti-

bility of Strong PUFs. For example, Majzoobi et al. [30] de-
scribe an approach to improve the resilience of PUFs against
modeling attacks in identification protocols by certain hardware
and protocol measures, assuming a Controlled PUF environ-
ment. Under the assumptions that the internal digital signals can
be probed, however, similar attacks apply to this construction
as described in this paper (compare Section I-B). Furthermore,
Yu et al. [49] have described the use of PUFs for internal key
derivation in the context of machine learning. Again, this paper
is besides the focus of this work, which concentrates on Strong
PUFs (compare Section I-B).

D. Organization of the Paper

The paper is organized as follows. We describe the method-
ology of our ML experiments in Section II. In Sections III to
VII, we present our ML results for various Strong PUF candi-
dates on simulated, noise-free CRP data. These sections deal
with Arbiter PUFs, XOR Arbiter PUFs, Lightweight Arbiter
PUFs, Feed-Forward Arbiter PUFs and Ring Oscillator PUFs,
in sequence. Section VIII deals with the effect of randomly in-
jected noise in the simulated CRP data. Section IX carries our a
very detailed proof of concept for silicon data from FPGA and
ASICs. We conclude with a summary and discussion of our re-
sults in Section X.

II. METHODOLOGY SECTION

A. Employed Machine Learning Methods

We evaluated various machine techniques prior to our exper-
iments, including Support Vector Machines (SVMs), Logistic
Regression (LR), Evolution Strategies (ES), and briefly also
Neural Nets and Sequence Learning. The approaches in the fol-
lowing two sections performed best and are applied throughout
the paper.
1) Logistic Regression: Logistic Regression (LR) is a well-

investigated supervisedmachine learning framework, which has
been described, for example, in [2]. In its application to PUFs
with single-bit outputs, each challenge is as-
signed a probability that it generates a output

(for technical reasons, one makes the convention that
instead of). The vector thereby encodes

the relevant internal parameters, for example the particular run-
time delays, of the individual PUF. The probability is given by
the logistic sigmoid acting on a function parametrized by
the vector as . Thereby
determines through a decision boundary of equal output
probabilities. For a given training set of CRPs the boundary
is positioned by choosing the parameter vector in such a way
that the likelihood of observing this set is maximal, respectively
the negative log-likelihood is minimal:

(1)

As there is no analytical solution to determine the optimal pa-
rameter vector , it has to be optimized iteratively, e.g., using
the gradient information

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

4 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

(2)

From the different optimization methods which we tested
in our ML experiments (standard gradient descent, iterative
reweighted least squares, RProp [2], [35]), RProp gradient de-
scent performed best. Logistic regression has the asset that the
examined problems need not be (approximately) linearly sepa-
rable in feature space, as is required for successful application
of SVMs, but merely differentiable. As a supervised method,
it makes more efficient use of the CRP information than rein-
forcement learning or evolutionary methods [2]. Furthermore,
LR is to the knowledge of the authors the only method that
can be applied directly to the model of an Arb-PUF and XOR
Arb-PUF. Other methods like SVM and Neural Networks build
their own intrinsic models.
In our ML experiments, we used an implementation of LR

with RProp programmed in our group. The iteration is continued
until we reach a point of convergence, i.e., until the averaged
prediction rate of two consecutive blocks of five consecutive
iterations does not increase anymore for the first time. If the
reached performance after convergence on the training set is
not sufficient, the process is started anew. After convergence
to a good solution on the training set, the prediction error is
evaluated on the test set.
2) Evolution Strategies: Evolution Strategies (ES) [1], [44]

belong to anML subfield known as population-based heuristics.
They are inspired by the evolutionary adaptation of a population
of individuals to certain environmental conditions. In our case,
one individual in the population is given by a concrete instanti-
ation of the runtime delays in a PUF, i.e., by a concrete instan-
tiation of the vector appearing in Eqns. (1) and (2). The en-
vironmental fitness of the individual is determined by how well
it (re-)produces the correct CRPs of the target PUF on a fixed
training set of CRPs. ES runs through several evolutionary cy-
cles or so-called generations. With a growing number of genera-
tions, the challenge-response behavior of the best individuals in
the population better and better approximates the target PUF. ES
is a randomizedmethod that neither requires an (approximately)
linearly separable problem (like Support Vector Machines), nor
a differentiable model (such as LR with gradient descent); a
merely parameterizable model suffices. Since all known elec-
trical PUFs are easily parameterizable, ES is a very well-suited
attack method.
We employed an inhouse implementation of ES that is avail-

able from our machine learning library PyBrain [43]. The meta-
parameters in all applications of ES throughout this paper are
(6,36)-selection and a global mutation operator with .
We furthermore used a technique called Lazy Evaluation (LE).
LE means that not all CRPs of the training set are used to eval-
uate an individual’s environmental fitness; instead, only a ran-
domly chosen subset is used for evaluation, that changes in
every generation. In this paper, we always used subsets of size
2,000 CRPs.

B. Employed Computational Resources

We used three hardware systems to carry out our exper-
iments: A standalone, consumer INTEL Quadcore Q9300,
and a comparable consumer AMD Quadcore, both worth less
than 1,000 Euros. Thirdly, a 30-node cluster of AMD Opteron
Quadcores, which represents a worth of around 30,000 Euros.
To ensure ease of comparison, all computation times given by
us in this paper are calculated for one core of one processor of
the corresponding hardware. If cores are used in parallel, the
computation times can be reduced roughly by a factor of ,
since our ML algorithms parallelize straightforwardly.

C. PUF Descriptions and Models

1) Arbiter PUFs: Arbiter PUFs (Arb-PUFs) were first intro-
duced in [17], [23], [46]. It has become standard to describe the
functionality of Arb-PUFs via an additive linear delay model
[24], [27], [26]. The overall delays of the signals are modeled
as the sum of the delays in the stages. In this model, one can
express the final delay difference between the upper and the
lower path in a -bit Arb-PUF as , where and are
of dimension . The parameter vector encodes the delays
for the subcomponents in the Arb-PUF stages, whereas the fea-
ture vector is solely a function of the applied bit challenge
[24], [27], [26].
The output of an Arb-PUF is then determined by the sign of

the final delay difference . We make the technical convention
of saying that when the Arb-PUF output is actually 0,
and when the Arb-PUF output is 1:

(3)

Equation (3) shows that the vector via determines a
separating hyperplane in the space of all feature vectors . Any
challenges that have their feature vector located on the one
side of that plane give response , those with feature vec-
tors on the other side . Determination of this hyperplane
allows prediction of the PUF.
2) XOR Arbiter PUFs: One possibility to strengthen the re-

silience of arbiter architectures against machine learning, which
has been suggested in [46], is to employ individual Arb-PUFs
in parallel, each with stages (i.e., each with bitlength). The
same challenge is applied to all of them, and their individual
outputs are XORed in order to produce a global response

. We denote such an architecture as -XORArb-PUF (with
the 1-XOR Arbiter PUF being identical to the standard Arbiter
PUF).
A formal model for XOR Arb-PUFs can be derived as fol-

lows. Making the convention as done earlier, it
holds that . This leads with equation (3) to a
parametric model of an -XOR Arb-PUF, where and de-
note the parameter and feature vector, respectively, for the -th
Arb PUF:

(4)

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

RÜHRMAIR et al.: PUF MODELING ATTACKS ON SIMULATED AND SILICON DATA 5

(5)

While (4) gives a nonlinear decision boundary with pa-
rameters, (5) defines a linear decision boundary by a separating
hyperplane which is of dimension .
3) Lightweight Secure PUFs: Another type of PUF, which

we term Lightweight Secure PUF or Lightweight PUF for short,
has been introduced in [27]. At its heart are individual stan-
dard Arb-PUFs arranged in parallel, each with stages (i.e.,
with bitlength), which produce individual outputs .
These individual outputs are XORed to produce a multibit re-
sponse of the Lightweight PUF. Another difference
to the XOR Arb-PUFs lies in the inputs which
are applied to the individual Arb-PUFs. Contrary to XOR
Arb-PUFs, it does not hold that , but
a more complicated input mapping that derives the individual
inputs from the global input is applied. We refer the reader
to [27] for further details.
In order to predict the whole output of the Lightweight PUF,

one can apply similar models and ML techniques as in the last
section to predict its single output bits . While the probability
to predict the full output of course decreases exponentially in
the misclassification rate of a single bit, the stability of the full
output of the Lightweight PUF also decreases exponentially in
the same parameters. It therefore seems fair to attack it in the
described manner; in any case, our results challenge the bit se-
curity of the Lightweight PUF.
4) Feed Forward Arbiter PUFs: Feed Forward Arbiter PUFs

(FF Arb-PUFs) were introduced in [17], [23], [24] and further
discussed in [26]. Some of their multiplexers are not switched
in dependence of an external challenge bit, but as a function of
the delay differences accumulated in earlier parts of the circuit.
Additional arbiter components evaluate these delay differences,
and their output bit is fed into said multiplexers in a “feed-for-
ward loop” (FF-loop). We note that an FF Arb-PUF with -bit
challenges (i.e., with bitlength) and loops has

multiplexers or stages.
The described dependencymakes natural architecture models

of FF Arb-PUFs no longer differentiable. Consequently, FF
Arb-PUFs cannot be attacked generically with ML methods
that require linearly separable or differentiable models (like
SVMs or LR), even though such models can be found in special
cases, for example for small numbers of nonoverlapping loops.
The number of loops as well as the starting and end point of

the FF-loops are variable design parameters, and a host of dif-
ferent architectures for an FF Arb-PUF with a moderate or even
large number of loops are possible. We conducted first exper-
iments with equally distributed loops that do not overlap (this
is the original design suggested in [23]), finding that it was rel-
atively simple to learn. The architecture we eventually investi-
gated in this paper was more resilient to modeling. It consists
of loops that are distributed at equal distances over the struc-
ture, and which just overlap each other: If the starting point of
loop lies in between stages and , then the previous

loop has its end point in the immediately following stage
. This seemed a natural and straightforward architectural

choice; future experiments will have to determine whether this
is indeed the optimal (i.e., most secure) architecture.
5) Ring Oscillator PUFs: Ring Oscillator PUFs (RO-PUFs)

were discussed in [46], though oscillating loops were proposed
in the original silicon PUF paper [15]. While [46] describes the
use of Ring Oscillator PUFs in the context of Controlled PUFs
and limited-count authentication, it is worth analyzing them as
candidate Strong PUFs. A RO-PUF consists of identically
designed ring oscillators, each of which has its own, unique
frequency caused by manufacturing variations. The input of a
RO-PUF consists of a tuple , which selects two of the
oscillators. Their frequencies are compared, and the output of
the RO-PUF is “0” if the former oscillates faster than the latter,
and “1” else. A ring oscillator can be modeled in a straightfor-
ward fashion by a tuple of frequencies . Its output
on input is “0” if , and “1” else.

D. Numeric CRP Generation, Prediction Error, and Number
of CRPs

Given a PUF-architecture that should be examined, the chal-
lenge-response pairs (CRPs) that we used in our ML experi-
ments were generated in the following fashion: (i) The delay
values for this PUF architecture were chosen pseudo-randomly
according to a standard normal distribution.We sometimes refer
to this as choosing a certain PUF instance in the paper. (ii) If a
response of this PUF instance to a given challenge is needed,
the above delays of the two electrical signal paths are simply
added up and compared. This methodology follows the well-es-
tablished linear additive delay model for PUFs [9], [24], [23],
[17], [31], [26]. In case of the RO PUF, the frequencies were
simply chosen at random according to a normal distribution.
We use the following definitions throughout the paper: The

prediction error is the ratio of incorrect responses of the trained
ML algorithm when evaluated on the test set. For all appli-
cations of LR, the test set each time consisted of 10,000 ran-
domly chosen CRPs. For all applications of ES (i.e., for the
Feed-Forward Arbiter PUF), the test set each time consisted
of 8,000 randomly chosen CRPs. The prediction rate is .

(or simply “CRPs”) denotes the number of CRPs em-
ployed by the attacker in his respective attack, for example in
order to achieve a certain prediction rate. This nomenclature
holds throughout the whole paper. Nevertheless, one subtle dif-
ference should be made explicit: In all applications of LR (i.e.,
in Sections III to V), is equal to the size of the training set
of the ML algorithm, as one would usually expect. In the appli-
cations of ES (i.e., in Section VI), however, the situation is more
involved. The attacker needs a test set himself in order to deter-
mine which of his many random runs was the best. The value

given in the tables and formulas of Section VI hence re-
flects the sum of the sizes of the training set and the test set
employed by the attacker.

E. FPGA CRP Collection

To obtain CRP data from FPGAs, ten independent instances
of Arb-PUFs have been implemented on Spartan-6 FPGAs. The
Arb-PUFs were composed of 64 pairs of multiplexers (MUXs)

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

6 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

and a D flip-flop based arbiter, andwere implemented in Verilog.
In order to balance FPGA routing asymmetries, which would
otherwise dominate the effect of manufacturing variations, a
lookup table (LUT) based Programmable Delay Line (PDL) has
been implemented, as suggested by Majzoobi et al. [28], [29].
We collected 200,000 CRPs from each of our ten FPGA Arb-

PUFs instances, resulting in two million CRPs altogether. For
each CRP, majority voting over five repetitive measurements of
the response to the same challenge was performed in order to
determine the final response. For example, if the five measure-
ments resulted in three “0”s and two “1”s, the final response was
set to “0”. The challenges were generated by a 64-bit pseudo-
random number generator (PRNG), which was based on a max-
imal-length linear feedback shift register (LFSR). The chosen
LFSR polynomial generated the maximal-length sequence ac-
cording to the formula

(6)

where denotes the corresponding 1-bit output from the th
register. This PRNG is cryptographically weak, but it suffices
for our purpose of CRP collection, and operates simply and
quickly.

F. ASIC CRP Collection

To collect CRPs from ASICs, we built Arb-PUF circuits with
45 nm SOI CMOS ASICs. Our Arb-PUF circuits are composed
of 64 delay elements and an arbiter circuit element. Each delay
element consists of two multiplexers with their inputs con-
nected, leading to 64 pairs of MUXs altogether. The challenge
vectors are the select inputs to the MUX pairs, which determine
the paths taken by the top and bottom signal, respectively. This
leads to 64-bit challenges in our implementation. A SR-latch is
used as the arbiter to determine which signal arrived first.
The challenges that we applied to our ASIC Arb-PUFs were

generated pseudo-randomly by the same LFSR as in the FPGA
case (see Section II-E). To minimize the number of signal IOs
on the ASIC PUF test chips, this LFSR was implemented on
chip. The LSFR circuit is provided with a “SET” signal and a
fixed initial seed, so that it can be reset to a known state when
necessary.
40 unpackaged chips of 45 nm SOI CMOS technology were

taped out for postsilicon measurement. Each chip has two sym-
metrically placed Arb-PUFs, resulting in 80 PUF instances, 10
of which were used for data collection. To capture the CRPs, we
set up a postsilicon validation lab. A microscope station is uti-
lized to mount a 2-pin DC probe and an 8-pin AC probe on the
die. Tektronix AFG3252 and Agilent 8251A systems were used
to generate “CLK”, “SET” and other signals. A PicoScope 5000
with 1 GS/s sampling rate is used to capture the response bits.
In order to minimize measurement errors, the majority response
value of five repetitive measurements was selected as the rep-
resentative, just as in the case of FPGAs. We captured 200,000
CRPs from each of the ten used PUF instances, resulting in a
total of two million CRPs collected from ASICs.

G. PUF Noise and Our Evaluation Methodology

In practice, PUFs may be noisy; but the CRP simulation
models used in this paper originally do not incorporate noise.
We therefore investigate the ML hardness of the considered
Strong PUFs in three different manners.
(1): First, we evaluate the purely “logic” security of PUF de-

signs. Noise-free CRPs from simulations by the additive linear
delay model are used in this process. The resulting ML rates
indicate the intrinsic security of the considered design. This se-
curity measure has several advantages: Firstly, it is relatively
simple to obtain, but still very accurate (see, e.g., Table XI).
Secondly, it is independent of any specific PUF implementation
and its noise level, as well as of any particular numeric error
correction mechanism. Recall that both might change for any
new implementation, applications or protocols. Furthermore,
the evaluated “logic” security represents an upper limit on a
PUF’s ML-resilience, at the least in any applications where per-
fect error correction or fuzzy extractors are utilized to obtain
stable responses, such as PUF-based key exchange [11], [4]
and oblivious transfer [36], [4] protocols. Finally, the above ap-
proach allows a close evaluation of the behavior of the predic-
tion error as a function of the used number of CRPs, the run-
ning times of the ML algorithms, the PUF input sizes, and other
architectural PUF parameters. Comparably detailed ML exper-
iments on silicon CRPs would require a practically infeasible
implementation effort.
One natural side effect of this method is that the obtained pre-

diction errors for the “logic” security of the PUF can lie beyond
the stability of a given silicon implementation. This may seem
paradoxical at first glance, but is a natural side effect of our ap-
proach.
(2): Secondly, we evaluate the performance ofML algorithms

on artificially noisy data of the PUF. We do so in a proof of
concept for a selected number of architectures and ML methods
(see Section VIII). Thereby random noise is injected into the
digitally simulated CRP data by inverting a certain percentage
of all (single-bit) PUF outputs. The outputs to be flipped are
chosen uniformly at random.
This approach gives a general indication of the error-toler-

ance of the ML algorithms. The uniform choice of flipped re-
sponses is no optimal noise model from a circuit perspective.
But the approach realistically describes situations in which the
attacker is limited to eavesdropping a noisy channel for col-
lecting his PUF-CRPs. This situation practically occurs in PUF
protocol eavesdropping, or if malware transfers PUF CRPs to
the adversary. It also accurately models situations where noisy
and error-prone digital probing is used to collect the PUF-CRPs
(compare Section I-B).
In order to stay close to this attack model, the prediction error

is evaluated on a set of noise-free CRPs. This allows us to better
isolate and quantify the effect that noise has on the prediction
quality. Similar to above, this has the natural consequence that
the achieved prediction error can be smaller than the injected
noise level.
(3): Finally, we evaluate the feasibility of our attacks on real,

silicon systems, again in selected proof of concept experiments
(see Section IX). We assume that the adversary has got physical

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

RÜHRMAIR et al.: PUF MODELING ATTACKS ON SIMULATED AND SILICON DATA 7

access to the Strong PUF and its public CRP interface, as it is
common in the established PUF attack model. He can thus re-
peat CRP measurements at will in order to gain output stability,
or put the PUF to chosen ambient conditions that ensure partic-
ular reliability.
We carried out our proof of concept attacks on Arbiter PUFs

and XOR Arbiter PUFs, both on FPGAs and ASICs CRPs,
keeping the PUF at the same room temperature and using ma-
jority voting over several measurements (compare Sections II-E
and II-F). Again, this allowed us to derive extremely accurate
models, whose predication rate (for these fixed ambient con-
ditions) is better than the general stability of the PUF over the
entire temperature range of its potential use. The occurrence
of this phenomenon in real silicon systems finally confirms its
nonparadoxical nature.
The results we obtained throughout this paper in steps (1),

(2) and (3) are very close to each other. Among other things,
our work therefore establishes the high suitability of the “logic”
hardness of a PUF as a measure for the PUF’s general security,
at the least for our considered class of delay-based PUFs.
Closely related to the above discussion is the question when

a modeling attack on a PUF should be called successful in prac-
tice. Given our above discussion, the following criteria appear
suggestive: If the security of a concrete PUF implementation is
considered as in step (3), the attack should be called successful
if the achieved prediction rate is better than the stability of this
PUF within the temperature, voltage and aging variations envis-
aged during its use. Dependent on the exact attack model, the
CRPs for the attack thereby may be measured under ambient
conditions controlled by the adversary. For example, measures
such as repeated measurements and majority voting may be al-
lowed to stabilize the output.
If the security of an abstract PUF design is evaluated, as in

steps (1) and (2), the attack can be called successful if it signifi-
cantly exceeds the realistic stability levels of currently existing
implementations, even though this criterion is somewhat vague.
Another abstract criterion, which is sufficient but not necessary,
is the growth rate: If the preduction error is related linearly or
low-degree polynomially to the PUF’s challenge length, its ar-
chitectural parameters and the number of CRPs used in the ML
experiment, an abstract PUF design should no longer be called
secure.

III. ARBITER PUFS

We now start the results part of the paper by presenting our
findings for standard Arbiter PUFs on simulated, noise-free
data.

A. Machine Learning Results

To determine the separating hyperplane , we ap-
plied SVMs, LR and ES. LR achieved the best results, which
are shown in Table I. We chose three different prediction rates
as targets: 95% is roughly the environmental stability of a 64-bit
Arbiter PUF when exposed to a temperature variation of 45C

TABLE I
LR ON ARBITER PUFS WITH 64 AND 128 STAGES (I.E., WITH BITLENGTH 64

AND 128), FOR NOISE-FREE, SIMULATED CRPS

Fig. 1. Double logarithmic plot of misclassification rate on the ratio of
training CRPs and .

and voltage variation of %4. The values 99% and 99.9%,
respectively, represent benchmarks for optimized ML results.
All figures in Table I were obtained by averaging over 5 dif-
ferent training sets. Accuracies were estimated using test sets of
10,000 CRPs.

B. Scalability

We also executed scalability experiments with LR, which are
displayed in Figs. 1 and 2. They show that the relevant pa-
rameters—the required number of CRPs in the training set and
the computational complexity, i.e., the number of basic oper-
ations—grow linearly or low-degree polynomially in the mis-
classification rate and the length of the Arb PUF. Theoretical
considerations (dimension of the feature space, Vapnik-Chervo-
nenkis dimension [3]) suggest that theminimal number of CRPs

that is necessary to model a -stage arbiter with a mis-
classification rate of should obey the relation

(7)

This was confirmed by our experimental results.
In practical PUF applications, it is essential to know the con-

crete number of CRPs that may become known before the PUF-
security breaks down. Assuming an approximate linear func-
tional dependency in the double logarithmic plot of
Fig. 1 with a slope of , we obtained the following em-
pirical formula (8). It gives the approximate number of CRPs

4The exact figures reported in [24] are: 4.57% CRP variation for a temperature
variation of 45C, and 2.16% for a voltage variation of %.

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

8 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Fig. 2. Number of iterations of the LR algorithm until “convergence” occurs
(see Section II), plotted in dependence of the training set size .

that is required to learn a -stage arbiter PUF with error
rate :

(8)

Our experiments also showed that the training time of the ML
algorithms, measured in terms of the number of basic operations

, grows slowly. It is determined by the following two fac-
tors: (i) The evaluation of the current model’s likelihood (1) and
its gradient (2), and (ii) the number of iterations of the optimiza-
tion procedure before convergence occurs (see Section II-A1).
The former is a sum over a function of the feature vectors for
all , and therefore has complexity . On the
basis of the data shown in Fig. 2, we may further estimate that
the numbers of iterations increases proportional to the logarithm
of the number of CRPs . Together, this yields an overall
complexity of

(9)

IV. XOR ARBITER PUFS

We continue by examining XOR Arbiter PUFs on simulated,
noise-free CRPs.

A. Machine Learning Results

In the application of SVMs and ES to XOR Arb-PUFs, we
were able to break small instances, for example XORArb-PUFs
with 2 or 3 XORs and 64 stages. LR significantly outperformed
the other twomethods. The key observation is that instead of de-
termining the linear decision boundary (5), one can also specify
the nonlinear boundary (4). This is done by setting the LR de-
cision boundary . The results are displayed in
Table II.

B. Scalability

Figs. 3 and 4 display the results of our scaling experiments
with LR. Again, the smallest number of CRPs in the training
set needed to achieve predictions with a misclassifica-
tion rate scales linearly with the number of parameters of the

TABLE II
LR ON XOR ARBITER PUFS FOR NOISE-FREE, SIMULATED CRPS. TRAINING

TIMES ARE AVERAGED OVER DIFFERENT PUF-INSTANCES

Fig. 3. Double logarithmic plot of misclassification rate on the ratio of
training CRPs and problem size .

Fig. 4. Average rate of success of the LR algorithm plotted in dependence of
the ratio [see (11)] to .

problem (the product of the number of stages and the number
of XORed Arb-PUFs):

(10)

But, in contrast to standard Arb-PUFs, optimizing the nonlinear
decision boundary (4) on the training set now is a nonconvex
problem, so that the LR algorithm is not guaranteed to find (an
attractor of) the global optimum in its first trial. It needs to be
iteratively restarted times. thereby can be expected
to not only depend on and , but also on the size of the
employed training set.
As is argued in greater detail in [45], the success rate

of finding (an attractor of) the global optimum is de-
termined by the ratio of dimensions of gradient information

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

RÜHRMAIR et al.: PUF MODELING ATTACKS ON SIMULATED AND SILICON DATA 9

(as the gradient is a linear combination of the feature
vector) and the dimension in which the problem is linear
separable. The dimension is the number of independent di-
mensions of .
As the tensor product of several vectors consists of all pos-

sible products between their vector components, the indepen-
dent dimensions are given by the number of different products
of the form for
(where we say that for all). For XOR
Arb-PUFs, we furthermore know that the same challenge is ap-
plied to all internal Arbiter PUFs, which tells us that

for all and .
Since a repetition of one component does not affect the product
regardless of its value (recall that),
the number of the above products can be obtained by counting
the unrepeated components. The number of different products
of the above form is therefore given as the number of -tuples
without repetition, plus the number of -tuples without
repetition (corresponding to all -tuples with 1 repetition), plus
the number of -tuples without repetition (corresponding
to all -tuples with 2 repetitions), etc.
Writing this down more formally, is given by

(11)

The approximation applies when is considerably larger than ,
which holds for the considered PUFs for stability reasons. Fol-
lowing [45], this seems to lead to an expected number of restarts

to obtain a valid decision boundary on the training set
(that is, a parameter set that separates the training set), of

(12)

Furthermore, each trial has the complexity

(13)

V. LIGHTWEIGHT SECURE PUFS

This section investigates the ML-resilience of LW PUFs on
simulated, noise-free CRPs.

A. Machine Learning Results

In order to test the influence of the specific input map-
ping of the Lightweight PUF on its machine-learnability (see
Section II-C), we examined architectures with the following
parameters: variable , and arbitrary . We
focused on LR right from the start, since this method was best
in class for XOR Arb-PUFs, and obtained the results shown in
Table III. The specific design of the LW PUF leads to signif-
icantly increased training times and CRP requirements. Still,
we were able to predict single output bits for LW PUFs with up
to 5 XORs with probabilities of 99%, both for bit lengths 64
and 128 bits.

TABLE III
LR ON LIGHTWEIGHT PUFS FOR NOISE-FREE, SIMULATED CRPS. PREDICTION
RATE REFERS TO SINGLE OUTPUT BITS. TRAINING TIMES WERE AVERAGED

OVER DIFFERENT PUF INSTANCES

B. Scalability

Some theoretical consideration [45] shows the underlying
ML problem for the Lightweight PUF and the XOR Arb PUF
are similar with respect to the required CRPs, but differ quan-
titatively in the resulting runtimes. The asymptotic formula
on given for the XOR Arb PUF (10) analogously also
holds for the Lightweight PUF. But due to the influence of the
special challenge mapping of the Lightweight PUF, the number

has a growth rate that is different from (12). It seems to
lie between) and the related expression
[45]. While these two formulas differ by factor of , we note
that in our case , and that is comparatively small for
stability reasons. Again, all these considerations on
and hold for the prediction of single output bits of the
Lightweight PUF.
These points were at least qualitatively confirmed by our scal-

ability experiments. We observed agreement with the above dis-
cussion in that with the same ratio the LR algorithm
will have a longer runtime for the Lightweight PUF than for
the XOR Arb-PUF. For example, while with a training set size
of 12,000 for the 64-bit 4-XOR Arb-PUF on average about 5
trials were sufficient, for the corresponding Lightweight PUF
100 trials were necessary.

VI. FEED FORWARD ARBITER PUFS

We consider the case of FF Arb-PUFs on simulated, noise-
free CRPs in this section.

A. Machine Learning Results

Recall from Section II-C4 that FF Arb-PUFs with -bit chal-
lenges (i.e., with bitlength) and loops have

multiplexers or stages. We experimented with SVMs
and LR on these PUFs, using different models and input repre-
sentations, but could only break special cases with small num-
bers of nonoverlapping FF loops, such as . This is in
agreement with earlier results reported in [26].
The application of ES finally allowed us to tackle much

more complex FF-architectures with up to 8 FF-loops. In the
architectures examined by us, all loops have equal length, and
are distributed regularly over the PUF, with overlapping start-
and endpoints of successive loops, as described in Section II-C.
Table IV shows the results we obtained. The given prediction
rates are the best of 40 trials on one randomly chosen PUF-in-
stance of the respective length. The given CRP numbers are the
sum of the training set and the test set employed by the attacker;
a fraction of 5/6 was used as the training set, 1/6 as the test

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

10 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

TABLE IV
ES ON FEED-FORWARD ARBITER PUFS FOR NOISE-FREE, SIMULATED CRPS.
PREDICTION RATES ARE FOR THE BEST OF A TOTAL OF 40 TRIALS ON A
SINGLE, RANDOMLY CHOSEN PUF INSTANCE. TRAINING TIMES ARE FOR A

SINGLE TRIAL. WE APPLIED LAZY EVALUATION WITH 2,000 CRPS

Fig. 5. Results of 10 trials per data point with ES for different lengths of FF
Arbiter PUFs and the hyperbola fit.

set (see Section II-D). We note for comparison that in-silicon
implementations of 64-bit FF Arb-PUFs with 7 FF-loops are
known to have an environmental stability of 90.16% [24].

B. Scalability

We started by empirically investigating the CRP growth as
a function of the number of challenge bits, examining architec-
tures of varying bitlength that all have 6 FF-loops. The loops are
distributed as described in Section II-C. The corresponding re-
sults are shown in Fig. 5. Every data point corresponds to the av-
eraged prediction error of 10 trials on the same, random PUF-in-
stance.
Secondly, we investigated the CRP requirements as a function

of a growing number of FF-loops, examining architectures with
64 bits. The corresponding results are depicted in Fig. 6. Again,
each data point shows the averaged prediction error of 10 trials
on the same, random PUF instance.
In contrast to the Sections IV-B and V-B, it is nowmuch more

difficult to derive reliable scalability formulas from this data.
The reasons are threefold. First, the structure of ES provides less
theoretical footing for formal derivations. Second, the random
nature of ES produces a very large variance in the data points,
making also clean empirical derivations more difficult. Third,
we observed an interesting effect when comparing the perfor-
mance of ES vs. SVM/LR on theArb PUF:While the supervised
MLmethods SVM and LR showed a linear relationship between
the prediction error and the required CRPs even for very small
, ES proved more CRP hungry in these extreme regions for ,

Fig. 6. Results of 10 trials per data point with ES for different numbers of
FF-loops and the hyperbola fit.

Fig. 7. Graphical illustration of the effect of error on LR in the training set,

with chosen data points from Tables VI and VII.[Please cite Fig 7
in order in the text]

clearly showing a superlinear growth. The same effect can be
expected for FF architectures, meaning that one consistent for-
mula for extreme values of may be difficult to obtain.
It still seems somewhat suggestive from the data points in

Figs. 5 and 6 to conclude that the growth in CRPs is about linear,
and that the computation time grows polynomially. For the rea-
sons given above, however, we would like to remain conserva-
tive, and present the upcoming empirical formulas only in the
status of a conjecture.
The data gathered in our experiments is best explained by

assuming a qualitative relation of the form

(14)

for some constant , where is the number of stages
in the PUF. Concrete estimation from our data points leads to
an approximate formula of the form

(15)

The computation time required by ES is determined by the fol-
lowing factors: (i) The computation of the vector product ,
which grows linearly with . (ii) The evolution applied to this
product, which is negligible compared to the other steps. (iii)
The number of iterations or “generations” in ES until a small

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

RÜHRMAIR et al.: PUF MODELING ATTACKS ON SIMULATED AND SILICON DATA 11

misclassification rate is achieved. We conjecture that this grows
linearly with the number of multiplexers . (iv) The number of
CRPs that are used to evaluate the individuals per iteration. If
(15) is valid, then is on the order of .
Assuming the correctness of the conjectures made in this

derivation, this would lead to a polynomial growth of the com-
putation time in terms of the relevant parameters and . It
could then be conjectured that the number of basic computa-
tional operations obeys

(16)

for some constant .

VII. RING OSCILLATOR PUFS

Ring Oscillator PUFs (RO PUFs) to some extent constitute an
exception within this paper. They are a relatively versatile PUF
structure, and have been suggested for uses in various contexts
and also under different specific designs. The majority of these
suggestions applies them the context of Weak PUFs or Con-
trolled PUFs, i.e., in applications where their CRP interface is
not publicly accessible for external parties. One typical example
would be their use within pseudorandom digital number genera-
tors which employ the RO-responses as a secret seed. We stress
once more that our modeling attacks apply in such application
contexts either not at all, or only under very rare and restricted
circumstances; compare again our discussion in Section I-B.
Still, in order to complete our picture on delay-based PUFs,

it seems worthwhile to clarify the security of the RO PUF if it
is used as Strong PUF, i.e., if its CRP interface can be accessed
without restrictions, or if its CRP are sent in the clear in proto-
cols and can be eavesdropped. The specific type of ring oscil-
lator PUFwe analyze is taken from [46]: It employs ring oscil-
lators overall. Two of them are selected by a challenge, and their
frequencies are compared in order to produce a single output bit.
This structure leads to possible challenges.
There are several strategies to attack this particular type of

RO-PUF if it is used as a Strong PUF. A first, straightforward at-
tempt would be a simple collection or read out of all its (quadrat-
ically many) CRPs.
A more interesting case is if Eve can choose the CRPs adap-

tively. This case occurs if the CRP interface is public and she
has physical access to it. She can then improve her attack, em-
ploying a standard sorting algorithm to obtain the RO-PUF’s
frequencies in ascending order. This strategy sub-
sequently allows her to predict the outputs without knowing the
exact frequencies themselves. The time and CRP complexi-
ties of the respective sorting algorithms are well known [32]; for
example, there are several algorithms with average- and even
worst-case CRP complexity of . Their
running times are also low-degree polynomial.
Perhaps the most advanced case is when Eve cannot adap-

tively choose the CRPs, but is restricted to eavesdropped CRPs,
which were chosen randomly by other parties. We carried out
experiments for this case, in which we applied Quick Sort (QS)
to randomly drawn CRPs. The results are shown in Table V. The
estimated required number of CRPs is given by

TABLE V
QUICK SORT APPLIED TO THE RING OSCILLATOR PUF. THE GIVEN CRPS

ARE AVERAGED OVER 40 TRIALS

TABLE VI
LR ON 128-BIT, 4-XOR ARB PUFS WITH DIFFERENT LEVELS OF NOISE
IN THE TRAINING SET AND NOISE-FREE TEST SETS. WE SHOW THE BEST
AND AVERAGE PREDICTION RATES OF 40 RANDOMLY CHOSEN INSTANCES,
THE PERCENTAGE OF SUCCESSFUL TRIALS OVER THESE INSTANCES, AND
THE PERCENTAGE OF INSTANCES THAT CONVERGED TO A SUFFICIENT

OPTIMUM IN AT LEAST ONE TRIAL

(17)

and the training times are low-degree polynomial. Among other
things, (17) quantifies for howmany runs RO-PUFs can be used
in identification protocols à la Pappu et al. [33], [34], even under
the assumption that the adversary is limited to CRP eavesdrop-
ping and never can access the PUF physically.

VIII. RESULTS ON ERROR-INFLICTED CRPS

Having examined the performance of ML algorithms on sim-
ulated, noise-free CRPs over the last sections, we now investi-
gate the effect of noise and errors in the CRPs. For various noise
levels, we choose an fraction of all CRPs uniformly at random,
and flip their single-bit responses. We then run the ML algo-
rithm on the noise-inflicted data, and evaluate its performance
on a noise-free training set. This allows us to precisely pinpoint
the effect of the erroneous CRPs. For a further discussion on our
methodology, please see Section II-G. Our findings were that
our ML algorithms are very robust with respect to the examined
error levels. This again confirms the relevance and validity of
the purely “logic” ML hardness as a measure for PUF security;
compare again our discussion in Section II-G.

A. LR on XOR Arbiter PUFs With Error-Inflicted CRPs

We started by investigating LR on XOR Arbiter PUFs. The
results are displayed in Tables VI and VII for various noise
levels. They show that LR can cope very well with errors, pro-
vided that around three to four times more CRPs are used. The
required convergence times on error inflicted training sets did
not change substantially compared to error free training sets of
the same sizes.

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

12 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

TABLE VII
LR ON 128-BIT, 5-XOR ARB PUFS WITH DIFFERENT AMOUNTS OF ERROR

IN THE TRAINING SET. REST AS IN THE CAPTION OF TABLE VI

Fig. 8. Graphical illustration of the tolerance of ES to errors. We show the best
result of 40 independent trials on one randomly chosen PUF instance for varying
error levels in the training set. The results hardly differ.

TABLE VIII
ES ON 64-BIT, 6 FF ARB PUFS WITH DIFFERENT LEVELS OF NOISE IN

THE TRAINING SET AND NOISE-FREE TEST SETS. WE SHOW THE BEST AND
AVERAGE PREDICTION RATES FROM OVER 40 INDEPENDENT TRIALS ON A
SINGLE, RANDOMLY CHOSEN PUF INSTANCE, AND THE PERCENTAGE OF

SUCCESSFUL TRIALS THAT CONVERGED TO 90% OR BETTER

B. ES on Feed-Forward Arbiter PUFs With Error-Inflicted
CRPs

In the same manner as above, we investigated the perfor-
mance of ES on FF Arb PUFs when it is run with error-inflicted
CRPs. The results are shown in Table VIII and Fig. 8. ES pos-
sesses an extremely high tolerance against the inflicted errors;
its performance is hardly changed at all.

IX. RESULTS ON SILICON CRPS

So far, all of our results were achieved on numerically simu-
lated CRPs. In any simulations of the Arbiter PUF variants, the
additive linear delay model has been used (see Section II-C).
Based on earlier experiments with silicon implementations [24],
[9], it had been conjectured in the first version of this work that
this model is accurate enough that our attacks transfer well to
the silicon case [41].
We are now able to conduct a detailed validation of this con-

jecture, both for ASIC and FPGA implementations, in this sec-
tion. The two architectures we chose to investigate were Ar-
biter PUFs and XOR Arbiter PUFs. They are the two most rele-
vant designs in our context: For RO PUFs, the analytical model,
which simply assigns one frequency to each oscillator, is very
close to reality. FF Arb PUFs and Lightweight PUFs are also
delay-based, therefore it can be assumed that our results on

TABLE IX
LR ON ARB PUFS OF BITLENGTH 64 FOR FPGA AND ASIC DATA,
COLLECTED UNDER STABLE TEMPERATURE AND MAJORITY VOTING

(XOR) Arb PUFs transfer well to their case. In our analysis, we
used overall more than four million silicon CRPs from FPGAs
and ASICs (see Sections II-F and II-E).
For standard Arbiter PUFs, the CRP-stability of the used

FPGA systems (again under majority voting) was at 95.13%
under an artificially injected % voltage variation. For
ASICs, this number was 96.82%. These figures also give us an
indication of the projected stability of the two systems under
varying temperature and aging, even though we did not execute
detailed studies on the latter two. Interestingly, our obtained
ML prediction rates exceeded these noise levels. The reason
is that we assumed realistically in our measurements that an
attacker with physical access could collect the CRPs at one
single, relatively stable temperature level, and could apply ma-
jority voting to stabilize the responses (compare Section II-G).
Overall, the findings detailed in the next subsections con-

firm that there is little performance loss of our method for sil-
icon CRPs. This establishes the good applicability of the linear
additive delay model in any future security analyses of delay-
based PUFs, and again confirms our paradigm that the perfor-
mance on noise-free, simulated CRPs is a very good indicator
for a delay-based PUF’s security. It turned out in this context
that FPGA-CRPs were slightly harder to learn than the ASIC
data. Two conceivable causes could be the slightly higher noise
levels of FPGAs (see above), and the insertion of PDLs (Pro-
grammable Delay Lines) on FPGAs, which makes the MUX
structures more complicated.

A. Results on Silicon Arbiter PUFs

As described in detail in Sections II-E and II-f, we used ten
PUF-instances on FPGAs and ten on ASICs, and collected
200,000 CRPs of each of them, applying majority voting on
five responses for each challenge. Table IX gives the results of
our LR algorithm on the FPGA and ASIC data, respectively.
They are very close to the earlier findings for synthetic CRPs
(see Section III and Table I). Only for very small prediction
errors slightly below 1%, the known small deviations from
the linear additive delay model, possible measurement errors,
and instabilities come into play and have a notable effect. This
makes it more difficult to achieve extremely low prediction
rates significantly below 1%; a strongly increasing amount of
CRP data is required for such low rates. Anyway, in practice a
prediction error of 1% or below is already sufficient to break
the system; compare the stability levels mentioned above.
1) Scalability: Similar to Section III-B, we conducted

scaling experiments on FPGA and ASIC data. We investigated
the relationship between the number of CRPs and prediction
rates, as well as the overall running time of our algorithm.
Fig. 9 depicts the results of our scaling experiments on the

required number of CRPs for FPGA and ASIC data. The figure

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

RÜHRMAIR et al.: PUF MODELING ATTACKS ON SIMULATED AND SILICON DATA 13

Fig. 9. Performance of LR on FPGA and ASIC Arbiter PUFs for small predic-
tion errors. Each data point represents a single PUF instance.

shows that the linear relation of Section III-B between the
number of CRPs and the prediction rate holds very well for a
prediction error of above 1%. In this regime, it is described by
exactly the same formula as in Section III-B:

(18)

Below around 1%, a saturation effect occurs, however.
Reducing the prediction error further is still possible, but in-
creasingly requires more than a linear number of CRPs. In this
regime, the limits of the additive linear delay model begin to
show. Possible measurement errors and instabilities contribute
to this phenomenon, too.
Interestingly, this effect concerns FPGAs and ASICs in ex-

actly the same fashion. Among other things, this confirms that
Majzoobi et al.’s method of balancing the routing asymmetries
of FPGAs via lookup tables [28], [29] works very well (see
Section II-E).
The second aspect we investigated is the scaling of the overall

runtime of our algorithm. It is given in Fig. 10. Our results
can be seen as confirmation that the basic relationship given in
Section IV-B still holds, and that the runtime scales as

(19)

Still, some differences between the silicon and simulated
CRPs regarding are observable; noise and deviations from the
perfect linear additive delay model have a stronger effect in the
XOR case than in the case of single Arb-PUFs, and increase
the training times.

B. Results on Silicon XOR Arbiter PUFs

Wealso investigated the case of XORArbiter PUFs for FPGA
and ASIC data. Our results are summarized in Table X. Again,
they are relatively close to our earlier findings of Section IV-A.
However, the small deviations from the linear additive delay
model now certainly have a stronger effect, since we consider
the XOR of several single Arbiter PUFs. We were not able to
learn 6-XOR Arb PUFs anymore with the collected amount of

Fig. 10. Necessary trials for LR on FPGA and ASIC Arbiter PUFs.

TABLE X
LR ON XOR ARB PUFS OF BITLENGTH 64 FOR FPGA AND ASIC DATA
(COLLECTED UNDER STABLE TEMPERATURE AND MAJORITY VOTING).
TRAINING TIMES ARE AVERAGED OVER DIFFERENT PUF-INSTANCES

data. Extrapolating from our previous experience, we believe
that about 700,000 CRPs would be necessary to this end.
1) Scalability: We also conducted detailed scalability ex-

periments, following the methodology of Section IV-B. The
required number of CRPs vs. the achieved prediction error
is shown in Fig. 11. It shows that for XOR Arb PUFs, the
saturation effect is similar to single Arbiter PUFs. The only
difference is that it already starts at slightly lower prediction
rates, and slowly increases with the number of XORs. Still, the
saturation is so mild that also prediction errors below 1% can
be achieved, provided that a sufficient amount of CRPs is used.
Over 1%, the basic relationship

(20)

appears to hold well, as discussed already in Section IV-B.
In terms of computation times, our findings are summarized

in Fig. 12. It corresponds to Fig. 4 in Section IV-B, which used
simulated CRPs. Again, our results at least qualitatively confirm
the scaling behavior we earlier observed on simulated data. Also
for FPGA andASIC data, the expected number of restarts
to obtain a valid decision boundary on the training set (that is, a
parameter set that separates the training set), is given approx-
imately by

(21)

Furthermore, each trial again has the approximate complexity

(22)

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

14 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

TABLE XI
SOME OF OUR MAIN RESULTS FOR SIMULATED, NOISE-FREE CRPS AND FOR SILICON CRPS FROM FPGAS AND ASICS. THE PREDICTION RATES AND TRAINING
TIMES ARE AVERAGED OVER SEVERAL INSTANCES. ALL PRESENTED TRAINING TIMES ARE CALCULATED AS IF THE ML EXPERIMENT WAS RUN ON ONLY ONE

SINGLE CORE OF ONE SINGLE PROCESSOR. USING CORES WILL APPROXIMATELY REDUCE THEM BY

Fig. 11. Performance of LR on XOR Arbiter PUFs for FPGA and ASIC data
for small prediction errors.

Fig. 12. Average rate of success of the LR algorithm on XOR Arbiter PUFs
for FPGA and ASIC data, plotted in dependence of the ratio [see (11)] to

.

X. SUMMARY

A. Summary

We investigated the resilience of several electrical Strong
PUF designs against modeling attacks. To that end, we applied
various machine learning techniques to challenge-response sets
from two sources: (i) Pseudorandom numeric simulations which
used an additive delay model, with and without artificially in-
jected errors; and (ii) Silicon CRP data from FPGAs and ASICs.
The examined Strong PUFs included standard Arbiter PUFs,

XOR Arbiter PUFs, Lightweight Secure PUFs, and Feed-For-
ward Arbiter PUFs. We also investigated the hardness of cer-
tain Ring Oscillator (RO) PUF architectures [46] if used in typ-
ical Strong PUF scenarios, i.e., under the presumption that their
CRP-interface is publicly accessible. If nothing else, this gives
us an indication for how many runs these PUFs can be used se-
curely within (limited count) identification protocols à la Pappu
et al. [33], [34]. Some of our main results are summarized in
Table XI.
We found that all examined Strong PUF candidates under

a certain size and architectural complexity could be machine
learned with prediction rates above 99%. These rates sometimes
are above the practical silicon stability of the examined PUFs.
As explained in detail Section II-G, this is not paradoxical, but
a natural consequence of our evaluation methodology. For ex-
ample, in silicon attacks an adversary can put the PUFs to stable
ambient conditions and apply majority voting to get extremely
stable CRP sets.
The attacks required a number of CRPs that grows only lin-

early or log-linearly in the internal parameters of the PUFs, such
as their number of stages, XORs, feed-forward loops, or ring os-
cillators. Apart from XOR Arbiter PUFs and Lightweight PUFs
(whose training times grew quasi-exponentially in their number
of XORs for large bitlengths and small to medium number of
XORs), the training times of the applied machine learning al-
gorithms are low-degree polynomial, too.
We also executed a very detailed proof of concept for sil-

icon CRPs for the twomost well-studied and commerciallymost
relevant [9], [10] electrical Strong PUF designs, Arbiter PUFs
and XOR Arbiter PUFs. In this process, more than four million
CRPs collected from ASICs and FPGAs were used. The simi-
larity of our results on simulated and silicon data settles a con-
jecture that had been posed in earlier versions of this work [41].
It shows that the linear delay model is close to practice, and es-
tablishes its use in future security analyses of any Arbiter PUF
variants.
Our findings prohibit the use of the modeled architectures up

to a certain size and complexity in typical Strong PUF proto-
cols whose security rests on the unpredictability or physical un-
clonability of the Strong PUF, and where the adversary can col-
lect many CRPs via access to the Strong PUF’s interface or by
eavesdropping protocols. Under the assumption that digital sig-
nals can be probed, our results also affect the applicability of the
examined Strong PUFs as building blocks in Controlled PUFs,

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

RÜHRMAIR et al.: PUF MODELING ATTACKS ON SIMULATED AND SILICON DATA 15

again up to a certain size and complexity. The security of Weak
PUFs is not strongly affected by our methods. As discussed in
detail in Section I-B, our attacks apply to this PUF type only
under the rare circumstance that a Strong PUF is employed in-
side a hardware system as the Weak PUF, using only few of
the many possible challenges of this Strong PUF. Most typical
Weak PUFs, such as the SRAM PUF [18], Butterfly PUF [22]
or Coating PUF [47], remain unaffected by our attacks.

B. Discussion

Two straightforward, but biased interpretations of our results
would be the following: (i) All Strong PUFs are insecure. (ii)
The long-term security of electrical Strong PUFs can be restored
trivially, for example by increasing the PUF’s size. Both views
are simplistic, and the truth is more involved.
Starting with (i), our current attacks are indeed sufficient to

break several delay-based PUF implementations. But there are a
number of ways how PUF designers can fight back in future de-
signs. First, increasing the bitlength in an XOR Arbiter PUF
or Lightweight Secure PUF with XORs increases the effort
of the presented attacks methods as a polynomial function of
with exponent (in approximation for large and small or

medium). At the same time, it does not worsen the PUF’s sta-
bility [9]. For now, one could therefore disable attacks through
choosing a strongly increased value of and a value of that
corresponds to the stability limit of such a construction. For ex-
ample, an XOR Arbiter PUF with 8 XORs and bitlength of 512
is implementable by standard fabrication processes [9], but is
currently beyond the reach of our attacks. Similar considera-
tions hold for Lightweight PUFs of these sizes. Secondly, new
design elements may raise the attacker’s complexity further, for
example adding nonlinearity (such as AND and OR gates that
correspond to MAX and MIN operators [24]). Combinations of
Feed-Forward and XOR architectures could be hard to machine
learn too, partly because they seem susceptible only to different
and mutually-exclusive ML techniques.
Moving away from delay-based PUFs, the exploitation of the

dynamic characteristics of current and voltage seems promising,
for example in analog circuits [7]. Also special PUFs with a
very high information content (so-called SHIC PUFs [39], [40],
[21]) could be an option, but only in such applications where
their slow read-out speed and their comparatively large area
consumption are no too strong drawbacks. Their promise is that
they are naturally immune against modeling attacks, since all of
their CRPs are information-theoretically independent. Finally,
optical Strong PUFs, for example systems based on light scat-
tering and interference phenomena [34], show strong potential
in creating high input-output complexity.
Regarding view (ii), PUFs are different from classical cryp-

toschemes like RSA in the sense that increasing their size often
likewise decreases their input-output stability. For example,
raising the number of XORs in an XOR Arbiter PUF and
Lightweight PUF has an exponentially strong effect both on
the attacker’s complexity and on the instability of the PUF. We
are yet unable to find parameters that increase the attacker’s
effort exponentially while affecting the PUF’s stability merely
polynomially. Nevertheless, one practically viable possibility is
to increase the bitlength of XOR Arbiter PUFs and Lightweight

PUFs, as discussed above. Future work will have to show
whether the described large polynomial growth of the latter
method can persist in the long term, or whether its high degree
can be diminished by further analysis.

C. Future Work

The upcoming years will presumably witness strong competi-
tion between codemakers and codebreakers in the area of Strong
PUFs. Similar to the design of classical cryptoprimitives, for ex-
ample stream ciphers, this process can be expected to converge
at some point to solutions that are resilient against the known at-
tacks. Some first attempts into this direction have already been
made in [49], [30], [5], [6], but we did not analyze their viability
in detail in this work.
For PUF designers, it may be interesting to investigate some

of the concepts that we mentioned above. For PUF breakers, a
worthwhile starting point is to improve the attacks presented
in this paper through optimized implementations and new ML
methods. A performance comparison between our results and
earlier approaches that used SVMs and comparable techniques
[24], [31], illustrates the strong effect of the choice of the
right ML-algorithm (see Section I-C). Another, qualitatively
new path is to combine modeling attacks with information
obtained from direct physical PUF measurements or from side
channels. For example, applying the same challenge multiple
times gives an indication of the noise level of a response bit.
It enables conclusions about the absolute value of the final
runtime difference in the PUF. Such side channel information
can conceivably improve the success and convergence rates of
ML methods, though we have not exploited this in this paper.

REFERENCES
[1] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution

Strategies, Evolutionary Programming, Genetic Algorithms. New
York, NY, USA: Oxford Univ. Press, 1996.

[2] C. M. Bishop et al., Pattern Recognition and Machine Learning.
New York, NY, USA: Springer, 2006.

[3] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Learn-
ability and the Vapnik-Chervonenkis dimension,” J. ACM, vol. 36, no.
4, pp. 929–865, 1989.

[4] C. Brzuska, M. Fischlin, H. Schröder, and S. Katzenbeisser, “Phys-
ical unclonable functions in the universal composition framework,” in
Proc. CRYPTO 2011.

[5] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, and U. Rührmair, “The
bistable ring PUF: A new architecture for strong physical unclonable
functions,” in Proc. HOST 2011.

[6] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, and U. Rührmair, “Char-
acterization of the bistable ring PUF,” in Proc. DATE 2012.

[7] G. Csaba, X. Ju, Z. Ma, Q. Chen, W. Porod, J. Schmidhuber, U.
Schlichtmann, P. Lugli, and U. Rührmair, “Application of mismatched
cellular nonlinear networks for physical cryptography,” in Proc. IEEE
CNNA, 2010.

[8] I. Damgard and A. Scafuro:, “Unconditionally secure and universally
composable commitments from physical assumptions,” in Proc. Cryp-
tology ePrint Archive 2013, 2013, vol. 108.

[9] S. Devadas, “Physical unclonable functions and secure processors,” in
Proc. CHES 2009, Invited Talk.

[10] S. Devadas et al., “Design and implementation of PUF-based ‘Unclon-
able’ RFID ICs for anti-counterfeiting and security applications,” in
Proc. IEEE Int. Conf. on RFID, 2008.

[11] M. van Dijk, “System and Method of Reliable Forward Secret Key
Sharing With Physical Random Functions,” U.S. Patent 7,653,197,
Oct. 2004.

[12] M. van Dijk and U. Rührmair:, Physical unclonable functions in cryp-
tographic protocols: Security proofs and impossibility results, Cryp-
tology ePrint Archive, 2012:228, 2012.

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

16 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

[13] Y. Dodis, R. Ostrovsky, L. Reyzin, L. , and A. Smith:, “Fuzzy ex-
tractors: How to generate strong keys from biometrics and other noisy
data,” SIAM J. Comput., vol. 38, no. 1, pp. 97–139, 2008.

[14] B. L. P. Gassend, “Physical Random Functions,” M.Sc. Thesis, MIT,
Cambridge, MA, USA, 2003.

[15] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proc. ACM CCS, 2002.

[16] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Controlled phys-
ical random functions,” in Proc. ACSAC 2002.

[17] B. Gassend, D. Lim, D. Clarke, M. Van Dijk, and S. Devadas, “Iden-
tification and authentication of integrated circuits,” Concurrency and
Computation: Practice & Experience, vol. 16, no. 11, pp. 1077–1098,
2004.

[18] J. Guajardo, S. Kumar, G. J. Schrijen, and P. Tuyls, “FPGA intrinsic
PUFs and their use for IP protection,” in Proc. CHES 2007.

[19] C. Helfmeier, C. Boit, D. Nedospasov, and J. P. Seifert, “Cloning phys-
ically unclonable functions,” in Proc. HOST, 2013.

[20] D. E. Holcomb, W. P. Burleson, and K. Fu, “Initial sram state as a
fingerprint and source of true random numbers for RFID tags,” in Proc.
Conf. RFID Security, 2007.

[21] C. Jaeger, M. Algasinger, U. Rührmair, G. Csaba, and M. Stutzmann,
“Random p-n-junctions for physical cryptography,” Appl. Phys. Lett.,
vol. 96, p. 172103, 2010.

[22] S. S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen, and P. Tuyls, “Ex-
tended abstract: The butterfly PUF protecting IP on every FPGA,” in
Proc. HOST, 2008.

[23] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. Van Dijk, and S. Devadas,
“A technique to build a secret key in integrated circuits for identifi-
cation and authentication applications,” in Proc. IEEE VLSI Circuits
Symp., 2004.

[24] D. Lim, “Extracting Secret Keys from Integrated Circuits,” M.Sc.
thesis, MIT, Cambridge, MA, USA, 2004.

[25] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. Van Dijk, and S. De-
vadas, “Extracting secret keys from integrated circuits,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 10, pp. 1200–1205,
Oct. 2005.

[26] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Testing techniques
for hardware security,” in Proc. Int. Test Conf. (ITC), 2008.

[27] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure
PUFs,” in Proc. IEEE/ACM Int. Conf. Computer-Aided Design, 2008.

[28] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques for de-
sign and implementation of secure reconfigurable PUFs,” ACM Trans.

Reconfig. Technol. Syst., vol. 2, no. 1, 2009[Please provide
page range].

[29] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA PUF using pro-
grammable delay lines,” in Proc. IEEE Workshop Information Foren-
sics and Security (WIFS), 2010.

[30] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. De-
vadas, “Slender PUF protocol: A lightweight, robust, and secure au-
thentication by substring matching,” in Proc. IEEE S&P Workshops,
2012.

[31] E. Öztürk, G. Hammouri, and B. Sunar, “Towards robust low cost au-
thentication for pervasive devices,” in Proc. IEEE PerCom, 2008.

[32] C. H. Papadimitriou, Computational Complexity. Hoboken, NJ,
USA: Wiley, 2003.

[33] R. Pappu, “Physical One-Way Functions,” Ph.D. thesis, MIT, Cam-
bridge, MA, USA, 2001.

[34] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way
functions,” Science, vol. 297, no. 5589, p. 2026, 2002.

[35] M. Riedmiller and H. Braun, “A direct adaptive method for faster back-
propagation learning: The RPROP algorithm,” in Proc. IEEE Int. Conf.
Neural Networks, 1993.

[36] U. Rührmair, “Oblivious transfer based on physical unclonable func-
tions (extended abstract),” in Proc. TRUST 2010, 2010, vol. 6101,
LNCS, Springer.

[37] U. Rührmair, H. Busch, and S. Katzenbeisser, , A.-R. Sadeghi and P.
Tuyls, Eds., “Strong PUFs: Models, constructions and security proofs,”
in Towards Hardware Intrinsic Security: Foundation and Practice.
New York, NY, USA: Springer, 2010.

[38] U. Rührmair, S. Devadas, and F. Koushanfar, “Security based on phys-
ical unclonability and disorder,” in Introduction to Hardware Security
and Trust, M. Tehranipoor and C. Wang, Eds. New York, NY, USA:
Springer, 2011.

[39] U. Rührmair, C. Jaeger, M. Bator, M. Stutzmann, P. Lugli, and G.
Csaba, “Applications of high-capacity crossbar memories in cryptog-
raphy,” IEEE Trans. Nanotechnol., vol. 10, no. 3, pp. 489–498, May
2011.

[40] U. Rührmair, C. Jaeger, C. Hilgers, M. Algasinger, G. Csaba, and
M. Stutzmann, “Security applications of diodes with unique cur-
rent-voltage characteristics,” Financial Cryptography and Data
Security (FC), 2010.

[41] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmid-
huber, “Modeling attacks on physical unclonable functions,” in Proc.
ACM CCS, 2010.

[42] U. Rührmair, J. Sölter, and F. Sehnke, “On the Foundations of Physical
Unclonable Functions,” Cryptology ePrint Archive, vol. 2009, p. 277,
2009.

[43] T. Schaul, J. Bayer, D.Wierstra, Y. Sun,M. Felder, F. Sehnke, T. Rück-
stieß, and J. Schmidhuber, “PyBrain,” J. Mach. Learning Res., vol. 1,
pp. 999–1000, 2010.

[44] H. P. P. Schwefel, Evolution and Optimum Seeking: The Sixth Gener-
ation. Hoboken, NJ, USA: Wiley, 1993.

[45] J. Sölter, “Cryptanalysis of Electrical PUFs via Machine Learning
Algorithms,” M.Sc. thesis, Technische Universität München, ,

2009[Please provide city].
[46] G. E. Suh and S. Devadas, Physical unclonable functions for device

authentication and secret key generation, DAC, 2007.
[47] P. Tuyls, G. J. Schrijen, B. Škorić, J. van Geloven, N. Verhaegh, and R.

Wolters, Read-proof hardware from protective coatings, CHES, 2006.
[48] P. Tuyls and B. Skoric, “StrongAuthentication with PUFs,” in Security,

Privacy and Trust in Modern Data Management, M. Petkovic and W.
Jonker, Eds. New York, NY, USA: Springer, 2007.

[49] M.-D. Yu, D. M’Raïhi, R. Sowell, and S. Devadas, “Lightweight and
secure PUF key storage using limits of machine learning,” in Proc.

CHES, 2011[Please provide page range or
location of conference for Refs 4-10,
15, 16, 18-20, 22, 23, 26, 27, 29, 30, 31,
35, 41, and 49].

Ulrich Rührmair photograph and biography not available at the time of publi-
cation.

Jan Sölter photograph and biography not available at the time of publication.

Frank Sehnke photograph and biography not available at the time of publica-
tion.

Xiaolin Xu photograph and biography not available at the time of publication.

Ahmed Mahmoud photograph and biography not available at the time of pub-
lication.

Vera Stoyanova photograph and biography not available at the time of publi-
cation.

Gideon Dror photograph and biography not available at the time of publication.

Jürgen Schmidhuber photograph and biography not available at the time of
publication.

IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

RÜHRMAIR et al.: PUF MODELING ATTACKS ON SIMULATED AND SILICON DATA 17

Wayne Burleson (M’84–SM’01–F’11), photograph and biography not avail-
able at the time of publication.

Srinivas Devadas (S’87–M’88–SM’96–F’98), photograph and biography not
available at the time of publication.

