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Abstract. We continue investigations on the use of so-called Strong PUFs as a cryp-
tographic primitive in realistic attack models, in particular in the “Bad/Malicious
PUF Model”. We obtain the following results:

– Bad PUFs and Simplification: As a minor contribution, we simplify a recent
OT-protocol for malicious PUFs by Dachman-Soled et al. [4] from CRYPTO
2014. We can achieve the same security properties under the same assumptions,
but use only one PUF instead of two.

– PUFs-inside-PUFs, Part I: We propose the new, realistic adversarial models of
PUF modifications and PUFs-inside-PUF attacks, and show that the earlier pro-
tocol of Dachman-Soled et al. [4] is vulnerable against PUFs-inside-PUFs attacks
(which lie outside the original framework of [4]).

– PUFs-inside-PUFs, Part II: We construct a new PUF-based OT-protocol,
which is secure against PUFs-inside-PUFs attacks if the used bad PUFs are state-
less. Our protocol introduces the technique of interleaved challenges.

– PUFs-inside-PUFs, Part III: In this context, we illustrate why the use of in-
teractive hashing in our new protocol appears necessary, and why a first protocol
attempt without interactive hashing fails.

1 Introduction and Overview

1.1 Physical Unclonable Functions (PUFs)

Physical unclonable functions (PUFs) [31, 30, 11] are a relatively young cryptographic and
security primitive, which has received ever increasing attention from both communities over
the last years. A PUF is a randomly structured physical system that can be excited with
external physical stimuli, which are called “challenges” in the language of the field. Upon
application of a challenge ci, the PUF reacts by producing a corresponding “response” ri.
The tuples (ci, ri) are commonly termed the challenge-response pairs (CRPs) of the PUF.
Each response thereby depends on the applied challenge, and on the unique internal structure
of the PUF that is caused by random manufacturing variations. Usually, these variations
are assumed to be non-recreatable, and beyond the control of the PUF’s own manufacturer.
Meanwhile, several technological proposals for realizing PUFs exist (see [25, 36, 37] for an
overview), and PUF may become widely available soon; in fact, the commercial usage of
PUFs has witnessed a number of breakthroughs recently.

It is essential to distinguish two different PUF types in our context: So-called Weak PUFs
and Strong PUFs [43, 36, 37, 35]. Weak PUFs have a small number of challenges (often only
one single challenge per PUF). They are usually employed for key storage applications: A
single, internal, secret key is derived from the responses of several Weak PUFs. One typical



example here are SRAM PUFs [16, 19]: Their random, but reproducible power-up states can
be employed to derive a secret key individual to each device [16, 19]. This presupposes that
the Weak PUF’s responses remain internal, and are non-accessible from the outside. At least
in part, this assumption has been put into question in a number of recent invasive attacks
on Weak PUFs [18].

So-called Strong PUFs follow a different route: They have a very large number of possible
challenges, ideally exponentially many in some system parameter (such as in the bitlength of
the applied challenges). Their challenge-response mechanism is publicly accessible, meaning
that everyone holding the Strong PUF can apply arbitrary challenges and collect corre-
sponding responses. Since there are too many challenges, it is impossible to read out all
CRPs of the Strong PUFs, despite the publicly accessible CRP-interface. Furthermore, the
internal, response-generating mechanism of Strong PUFs shall be complex: It shall be im-
possible for the adversary to predict unknown CRPs from a set of known CRPs. Meeting
the latter assumption can be difficult in practice, as so-called modeling attacks on Strong
PUFs have shown in recent years [43]. Both PUF types have in common that they cannot
be physically cloned with perfect precision by existing fabrication technology, hence their
name. Recent work has shown that perfect, atomic-scale cloning is not always necessary to
mount successful attacks, however: It suffices if the cloning is accurate enough to induce
the same challenge-response behavior [18]. Furthermore, certain attacks like PUF-modeling
[43] do not even attempt to physically clone the PUF, but try to derive a digital algorithm
which emulates the PUF’s behavior and predicts its responses.

Putting this in a nutshell, Weak PUFs are essentially a new form of a secure key storage
element, while Strong PUFs are comparable to a new type of pseudo-random function or
hash function, which is derived from the internal physical characteristics of a hardware. 1

PUF-responses are usually noisy, being affected by temperature variations, voltage fluc-
tuations, aging, measurement inaccuracies, and other effects. For this reason, the responses
of Weak PUFs and Strong PUFs usually must be error corrected. Various techniques have
been proposed to this end. Currently, the most popular approach works as follows: Given
a response measurement rNoise

i on a given challenge ci, a noise-free response ri and some
helper data HD are being derived. This helper data can accompany the challenge ci hence-
forth. Seeing HD alone shall tell an adversary nothing about the response. But given any
noisy response measurement (rNoise

i )′ on the challenge ci (which might be subject to different
noise than the original noisy value rNoise

i ), the helper data enables derivation of the same
noise-free response ri. Obviously, any such constructions must assume that the noise in
the PUF-responses is bounded. In other words: Physical random number generators, which
solely output completely random and “noisy” values, are no PUFs.

1.2 Strong PUFs as a Cryptographic Primitive (and a Brief History Thereof)

Initially, PUFs had mostly been considered for simple applications like secret key storage
in vulnerable hardware or the identification/authentication of systems [24, 11, 31]. Over the
last years, however, the utilization of Strong PUFs as a powerful primitive in protocols like
KE, OT and BC has increasingly moved into focus.

The basic idea here is relatively simple: In a PUF-protocol with k players P1, . . . , Pk, one
or more Strong PUFs PUF1, . . . , PUFm are being physically transfered between the players.
1 For this very reason, Strong PUFs had also been referred to as “physical random functions” in

early works [11].



Since the Strong PUFs have a publicly accessible CRP interface, any player Pk who physically
holds a PUF at a certain point in time can apply arbitrary challenges ci to it and collect
corresponding responses ri. As soon as the Strong PUF leaves the hands of Pk, however, he
cannot measure new CRPs any more. He will thus find it hard to present or derive the correct
response ri to a previously unknown, randomly chosen challenge ci. The reasons for this are
that (i) the Strong PUF has too many challenges to read out all of them; (ii) the Strong
PUF is physically unclonable; and (iii) it is impossible to numerically derive unknown Strong
PUF CRPs from known CRPs, at least if the Strong PUF is secure. External adversaries
are usually assumed to have access to a PUF while this PUF is in physical transit from one
player to another (but there are certain refinements of this basic attack scenario, such as
bad PUFs and communicating PUFs, see Sections 1.3 and [8, 40]).

We stress that all recent works on the use of PUFs in advanced cryptographic protocols
[7, 33, 46, 34, 1, 28, 8, 29, 40, 6, 4] relate to Strong PUFs (even though this is often not being
made explicit). Weak PUFs are not useful in scenarios like the above: First of all, their
responses are not publicly accessible, and therefore cannot be read out by all the honest
protocol participants when the PUF is being passed around. If, on the other hand, the Weak
PUF responses were actually made publicly accessible, all their CRPs could be read out too
quickly, as each Weak PUF has only one or few CRPs. All of the persons who once had
access to the Weak PUF would then know the entire CRP-space, which would disable secure
protocols. This means that only the combination of a publicly accessible CRP interface, a
huge number of challenges, and the unpredictability of unknown CRPs from known CRPs
(i.e., in one word, the use of a Strong PUF) makes PUFs applicable as a cryptographic
primitive in the sense of the earlier works of [7, 33, 46, 34, 1, 28, 8, 29, 40, 6, 4].

It seems ineffective at first sight that the PUFs need to be transferred physically from one
player to another. However, there are many scenarios in which this is practical: Consider
a bank card containing a PUF, which is being carried by the customer from terminal to
terminal, all of the terminals being connected to some central server at the bank. Before the
card was issued, the bank has collected many CRPs, which are now stored at the server.
This implies that the terminals, the bank server, and partly even the bank card itself, may
act as the parties P1, . . . , Pk in the abovementioned setting. Something similar applies in
situations where some hardware (including computers, laptops, smartphones, etc.) includes
a PUF, and is being shipped from its manufacturer (who has collected a large CRP list) to
its future owner. The manufacturer and the owner may act as two parties P1 and P2 in the
above type of setting, with exactly one physical PUF transfer occuring between them.

One key observation is that if a secure Strong PUF is being used in the above scenario,
then all players and all adversaries alike can only have partial knowledge about its huge
CRP-space, and only one of them can physically hold the (unclonable) Strong PUF at any
given point in time. The past few years have shown that a surprisingly large number of
protocols can be built on this simple fact, including key exchange [7, 33, 1], olivious transfer
[34, 1, 39], or bit commitment [1, 39].

In order to familiarize readers with this line of thinking, we give a simplified precursor
of a Strong PUF based key exchange protocol below (compare [7, 33, 46, 1]). The protocol
assumes a binary authenticated channel between Alice and Bob (please not that this is
a minimal requirement to avoid man-in-the-middle attacks). It assumes that Eve will not
manipulate or exchange the PUF while it is in transit, but will merely measure and inspect
it arbitrarily, and is designed for a stand-alone setting.



Protocol 1 (Simple Cryptographic Key Exchange with Strong PUFs [7, 33, 46, 1])

1. Alice creates a Strong PUF.
2. She applies randomly chosen challenges c1, . . . , ck to it, and collects the corresponding

responses r1, . . . , rk.
3. She derives a key K from the responses r1, . . . , rk (possibly applying some error correc-

tion).
4. The PUF is being physically transfered to Bob.
5. Bob reports to Alice over the authenticated binary channel that he has received the

PUF.
6. Only then, Alice sends the challenges c1, . . . , ck to Bob.
7. Bob applies these challenges to the PUF, and gets (possibly noisy versions of) the same

responses r1, . . . , rk. He derives the same key K as Alice from these responses (again
possibly using error correction).

Protocol 1 nicely illustrates how and why Strong PUF protocols work: While the PUF
is in transit, Eve may access it, but she does not know the challenges c1, . . . , ck that Alice
used. If the used PUF is a secure Strong PUF, Alice cannot read out its entire CRP-space,
since there are too many possible challenges. She also cannot build a digital model that
would later allow numeric prediction of the responses r1, . . . , rk, and she cannot physically
clone the PUF. This means that Eve will always only have partial knowledge about Strong
PUF’s CRP space. As soon as she learns the challenges c1, . . . , ck by eavesdropping Alice’s
message, she does not have physical access to the PUF any more. In sum, she will be unable
to derive the key K.

We stress again that a Weak PUF cannot be used in the protocol, for the reasons that
were given above: First of all, the responses of Weak PUFS are usually kept internal and
would not be publicly accessible for Alice and Bob. Secondly, and perhaps yet more im-
portantly, a Weak PUF would only have few CRPs. Even if the responses would be made
accessible, Eve could read out all CRPs while the Weak PUF is in transit, and thus break
the protocol.

The next paragraph briefly summarizes the historic roots of the use of Strong PUFs as
a cryptographic primitive. Readers who are not interested may directly skip to Section 1.3.

Brief Historic Account. The full history of Strong PUFs as a cryptographic primitive is
quite diverse, with publications spread over a unusually broad range of media. The first
PUF-based two-party protocol was published by Pappu in his seminal PhD thesis in 2001
[30]. He suggested the use of a PUF-variant called “Physical One-Way Functions (POWFs)”
in order to realize bit commitment (BC). His protocol uses the non-invertibility of POWFs,
not the unpredictability of standard Strong PUFs, though. In 2004, van Dijk gave an early
precursor key exchange (KE) protocol in a patent writing [7]. In 2006, Rührmair gave an
independent KE protocol in an internal draft shared with a number of colleagues [33],
which was published only later on ePrint [33]. Its protocol is the first to contain steps for
authenticating the PUF, and for securing it against being exchanged against another PUF
while it is in transit. In a book chapter from 2007, Tuyls and Skoric gave a combined protocol
for PUF-based key exchange and authentication in a bank-card scenario [46]. It is arguably
the first complex Strong PUF protocol, involving a considerable number of communication
steps. It also the first hybrid PUF protocol, where classical computational assumptions and
Strong PUF properties are being mixed.



Unfortunately, all of these protocols did not create too much resonance at their time
within the community. The interest in Strong PUFs as a cryptographic tool was then ar-
guably sparked a few years later in 2010 by the first published PUF-based oblivious transfer
(OT) protocol [34]. The fact that OT was implementable via Strong PUFs immediately
allowed realization of BC, KE, and any secure two-party computation, via some well-known
reduction results [21]. Also in 2010, the first formal security proof for a Strong PUF pro-
tocol (namely the CRP-based identification protocol of Pappu et al. [30, 31]) was being led
[35]. In 2011, these two works were soon followed-up by a formal treatment of Strong PUF-
based KE, OT and BC in the universal composition framework [1], which was published
at CRYPTO 2011. It reached the core cryptographic community, and created substantial
follow-up works within it. Many of these dealt with the actual practical security of Strong
PUF protocols in realistic attack models [28, 29, 8, 40, 6, 4] (see next Section 1.3).

1.3 Practical Security of Strong PUF Protocols, and Two Attack Models:
PUF Re-Use and Bad/Malicious PUFs

Relatively soon after the abovementioned KE, OT, and BC protocols were published [7, 33,
46, 34, 1], a closer look was taken at their practical security in several realistic attack models
[42, 8, 28, 29, 38–40]. This led to three different strands of research.

Quadratic Protocol Attacks and Their Relevance. First of all, in a relatively small vein that
is often overlooked, a quadratic attack on the security of the OT and BC protocol from
CRYPTO 2011 [1] was suggested at CHES 2012 [38] and in JCEN 2013 [39]. It has the
effect that an adversary does not need to read out the entire CRP-space of the PUF in
order to cheat: If the CRP-space contains n CRPs, then reading out

√
n of them suffices to

break the protocol. Among other things, this has two hardware-relevant effects: (i) The OT-
and BC-protocols of [1] cannot be used securely in connection with Pappu et al.’s optical
PUF in practice. In order to withstand the quadratic attack, the optical PUF would have
to be made extremely large to artificially increase its challenge space, too large to even fit
onto a bankcard. (ii) The protocols of [1] cannot be used in connection with electrical Strong
PUFs with bitlength 64, since their challenge space of 264 is reduced to a mere 232 by the
attack.

The basic technique underlying the attack is that a cheating Receiver may influence
the challenges that an honest Sender applies to the PUF in the course of the protocol [1].
Interestingly, this is also relevant in our context: We show in Section 5.1 and in Appendix A
that this observation enables an unexpected PUFs-inside-PUFs attack on a first version of a
OT-protocol by us that was meant to withstand PUFs-inside-PUFs attacks and stateless bad
PUFs. The above technique allws a cheating Receiver to influence the format of some of the
challenges that are applied to a PUF-inside-PUF in the course of the protocol. This allows
him to covertly communicate some information to the PUF-inside-PUF, and to trigger a
special type of malbehavior in the PUF exactly upon these challenges (see Section 5.1 and
Appendix A).

PUF Re-Use Model and Retrospective Access. Secondly, the abovementioned early protocol
suggestions often did not take into account that a PUF would usually be re-used in multiple
protocol runs in typical commercial scenarios, and might be physically transfered multiple
times between the protocol participants in this context (compare Section 1.2). As an illus-
trative example, take the abovementioned standard usage example of a PUF on a bank card.



Each of the terminals into which the card is inserted might be controlled by Eve. This may
obviously provide Eve with additional, retrospective physical access to the PUF after the
completion of earlier protocol runs. Another illustrative example in the setting of Section
1.2 is a PUF that is used between Alice and Bob for a key exchange (KE) protocol. The
PUF is transfered from Alice to Bob in the course of this protocol. Subsequently, Bob may
transfer the same PUF to Claire in another KE scheme. Following the standard adversarial
PUF model, Eve will then have physical access to the PUF not only while it is in transit
from Alice to Bob, but also while it is transfered from Bob to Claire. I.e., she will have
retrospective physical access to the PUF after completion of the first KE between Alice and
Bob. These and similar observations necessitate the so-called “PUF re-use model” [8, 40],
which we sometimes also term “retrospective access model” in this paper.

We would like to stress that retrospective access does not only occur in the case of
multiple physical transfers of the PUF. If the PUF is part of a complex embedding hardware,
like a computer, laptop or smartphone, also viruses or other malware may access the Strong
PUF and its interface. Among other things, they may collect CRPs after the completion of
an earlier protocol and transfer these to the adversary. Note that by the standard adversarial
model for Strong PUFs, their CRP-interface is not protected against adversarial access — if
it was, i.e., if we assumed that there are some protected regions of the hardware that cannot
be accessed by an adversary, then we could just as well store a classical key in these regions
straight away. This observation is particularly relevant for one-transfer protocols like those
of CRYPTO 2011 [1].

For all of these reasons, the assumption that no retrospective access can occur would
be equivalent to supposing that every PUF must be destroyed (or locked away for good)
immediately after its first-time use in a single protocol session. It must not be used or
accessed any single time afterwards. It is obvious that this assumption would lead to an
absolutely uneconomic and unrealistic PUF usage. The only alternative is, however, to
assume that adversaries might gain retrospective access, as we do in this paper, and as has
been done in earlier works [42, 40].

Bad/Malicious PUFs. Thirdly, recall that a PUF is a piece of hardware that is being
physically transfered between the protocol participants. Who can guarantee that this piece
of hardware has the expected properties, and only these? Who can guarentee that the party
who manufactured the PUF or introduced it to the protocol did not program any covert,
malicious behavior into the PUF? Who can guarantee that while the PUF was being passed
around from one party to the other, such malicious features where not added afterwards?

Currently, no practically effective methods are known to ensure that a given PUF is not
a so-called “bad” or “malicious” PUF, which has hidden properties that deviate from the
expected features of an ordinary PUF [8, 28, 29, 40].2

These hidden properties may potentially cover a wide range of unexpected features (com-
pare [40]), including:

– Bad PUFs that are nothing else than digital circuits which generate their responses via
a pseudorandom function F which is known to their creator. The creator can hence
digitally simulate and predict any responses without having physical access to the PUF,

2 The term “malicious” PUF has been introduced by Ostrovksy et al. in [28, 29]. Independent
work arising around the same time coined the name “bad” PUFs [8, 40]. We will use both terms
interchangeably, perhaps slightly more often the shorter expression bad PUFs for convenience.



allowing him to cheat in many protocols. These bad PUFs have been termed “simulatable
PUFs” in [40].

– Stateful bad PUFs that record all challenges that have been applied to them during the
course of a protocol, storing these in a special part of their memory that is only known
or accessible to their creator. Such PUFs have been named “challenge-logging PUFs” in
[40].

– Bad PUFs that change their behavior upon a certain triggering signal, which may be
one or more specific challenges that are applied to the PUF.

– Bad PUFs that communicate information to other bad PUFs or to their creator when
the opportunity arises, and/or which adapt their challenge-response behavior after such
communication. These have been denoted “communicating PUFs” in [40]. Note that
communicating PUFs do not need to be stateful.

We stress that certain bad PUFs are more difficult to implement than others; the used
bad PUF type determines how simple and efficient a given attack will be. Communicating
PUFs may be the most complex and effortful to realize, but they are also the most effec-
tive. We stress that also in the case of classical hardware tokens, equivalent attacks with
communicating tokens have been considered recently [9], meaning that it is wise to take
the possibility communicating PUFs into account. Especially if a PUF is used in a complex
application environment, or within a complex PUF-embedding hardware that is online in
some network, communication of the bad PUF (e.g., a normal PUF with a surrounding
extra code that runs the communication) with the outside world can indeed be very difficult
to prevent.

The bottomline of recent PUF research [8, 40, 28, 29, 42] is therefore that a PUF is not
solely an abstract mathematical function that is “transfered” between protocol participants
in the Platonic world. Rather, it is a real physical object, which may (or may not!) have
the expected properties. In opposition to optical PUFs, electrical PUFs, which mostly are
about the size of a large grain of dust, inevitably must be embedded into a larger piece of
hardware to be usable and transferrable between users. This embedding hardware again may,
or may not, have the expected properties. Furthermore, the economically imperative re-use
of PUFs in more than one protocol session may allow adversaries to physically inspect a
PUF more than once. Ideal PUF protocol design should take all the resulting attack surfaces
into account, aiming to establish practical security under a minimal set of assumptions.

1.4 Our Contributions

We present the following main results in this paper, which generally concern secure PUF-
protocols in the bad/malicious PUF model.

1. As a first, minor contribution asides (Section 2), we simplify an existing PUF-based OT-
protocol by Dachman-Soled et al. [4] from Crypto 2014. Their protocol is intended to
remain secure under stateless malicious PUFs, and uses two PUFs, one PUFS introduced
by the OT-Sender, one other PUFR introduced by the OT-Receiver. The same security
properties can also be realized by a simplified protocol: It uses only one PUFS introduced
by the Sender instead of the two PUFR and PUFS, and thus saves one physical PUF
transfer of PUFR from the Receiver to the Sender. Our new protocol has similar security
guarantees, but also similar vulnerabilities in the so-called “PUFs-inside-PUFs model”
as the original by Dachman-Soled et al. [4], see below.



2. Secondly (Section 3), we introduce two new, realistic attack models for Strong PUF pro-
tocols, that had been overlooked in previous works: “PUF-modifications” and “PUFs-
inside-PUFs attacks”. In PUF-modification attacks, adversaries do not only completely
exchange a given PUF against another, bad PUFs, but rather modify a given PUF,
and continue to use the modified version. PUFs-inside-PUFs are a special case of PUF-
modifications, in which given PUFs (that were initially fabricated by honest parties) are
used inside or as subparts of new, bad/malicous PUFs. For example, a new bad PUF
PUFnew could encapsulate an old, previously existing PUFold, and might redirect some of
the challenges it receives to PUFold (that it now encapsulates), and some of them to an
internal pseudo-random function PRF that is numerically predictable by the adversary.
The outputs of PUFnew would then sometimes be equal to those of PUFold, sometimes to
the pseudo-random function PRF. We argue why we consider these two models practi-
cally relevant, pointing out that equal assumptions on “tokens-inside-tokens” have been
considered realistic in the standard literature on hardware tokens [15].

3. We thirdly (Section 4) discuss the effect of “PUFs-inside-PUFs” attacks on the effective-
ness of CRP-based PUF-authentication, in particular on the security of the abovemen-
tioned OT-protocol by Dachman-Soled et al. [4]. We show that the previously suggested
“classical” CRP-based PUF-authentication technique [4], in which a set of prerecorded
challenges is applied in direct sequence or “blockwise” to the PUF, cannot differentiate
with certainty between (i) the abovementioned PUFs-inside-PUF type PUFnew contain-
ing PUFold, and (ii) PUFold itself. An adversary might hence unnoticedly substitute
PUFnew for PUFold in certain protocols and cheat with non-negligible probability. This
holds even under the assumption that PUFnew must be stateless.

This has direct consequences for the OT-protocol by Dachman-Soled et al. [4]: We show
that it is vulnerable to stateless PUFs-inside-PUFs attacks. This holds even if a blockwise
CRP-based authentication step is applied, as suggested in [4] (Section 4.3).

4. A fourth contribution (Sections 5 and 6) lies in developing a secure PUF-based OT
protocol for stateless malicious PUFs, which is optimal in several aspects within the
given limits of the known impossibility results in this paper and elsewhere [8, 29, 4].

Our protocol uses only one PUFS, which is transfered twice (once between the Sender
and the Receiver and then back from the Receiver to the Sender). The protocol upholds
its security if PUFS is malicious, and even if the Receiver modifies PUFS into a stateful
malicious PUF∗

S before he returns it to the Sender. Its only assumptions on PUFS is
that it is stateless when it leaves the hands of the Sender, and that it does not com-
municate during or after the protocol with adversaries. These are two comparatively
mild assumptions. The protocol is optimal in the number of used PUFs, the number
of PUF transfers, and the limited statelessness assumption on the used PUFS. One key
technique of our new protocol are “interleaved challenges”, i.e., to randomly mix the
challenges used to authenticate the PUFs with other challenges that are applied during
the protocol.

We also show asides for didactic purposes (Appendix A) that a first protocol attempt,
where randomly interleaved challenges are combined in a straightforward fashion with
methods from standard PUF-based OT, fails for very subtle reasons. We thereby intro-
duce a new attack strategy where the adversary chooses PUF-challenges maliciously in
order to communicate information to a bad PUF.



1.5 Organization of this Paper

Section 2 presents a slight simplification of the original protocol of Dachman-Soled et al.
from Crypto 2014 [4]; Section 3 introduces the attack models of “PUF-modification” and
“PUFs-inside-PUFs”; Section 4 illustrates the problems of CRP-based PUF-authentication
in the face of PUFs-inside-PUFs attacks and demonstrates the vulnerability of the protocol
by Dachman-Soled et al. [4] against PUFs-inside-PUFs techniques. 3 Section 5 presents a
countermeasure against PUFs-inside-PUFs attacks named interleaved challenges, and dis-
cusses (partly in Appendix A) why a first protocol attempt by us for restoring the security
of the protocol by Dachman-Soled et al. [4] fails. Section 6 finally presents a PUF-based
OT-protocol based on interleaved challenges and interactive hashing that is secure against
bad PUFs, PUF-modifications and PUFs-inside-PUFs attacks under somewhat minimal as-
sumptions. We conclude the paper in Section 7.

2 The Protocol of Dachman-Soled et al. and a Slight Simplification
of It

The starting point for our treatment is a protocol by Dachman-Soled et al. [4] from Crypto
2014, which was designed to realize OT secure against stateless malicious PUFs.

The protocol is given for the convenience of readers as Protocol 2 below. It assumes that
all possibly employed bad/malicious PUFs are stateless, and utilizes two PUFs: One PUFS
introduced by the Sender, another PUFR created by the Receiver. It then “combines” these
two PUFs into one PUF⊕, whose responses ri = PUF⊕(ci) on challenges ci are defined as

ri := PUF⊕(ci) := PUFR(ci)⊕ PUFS(ci).

This shall make the “combined” PUF⊕ unclonable and unpredictable both for the Sender
and the Receiver. 4 We describe the protocol in a stand-alone setting below, not in its
original UC-Setting, which slightly simplifies our presentation.

Protocol 2

(OT-Protocol with Intended Security against Stateless Bad/Malicious PUFs by
Dachman-Soled et al. [4])

Preparation Phase:

1. Sender creates PUFS, and sends PUFS to Receiver.
2. Receiver creates PUFR.
3. Receiver collects a random CRP (c, r) from the “combined” PUF⊕

(where r = PUF⊕(c) = PUFR(c)⊕ PUFS(c), see above).
4. Receiver sends PUFS and PUFR to Sender.
3 We stress again in this context that the attack model of PUFs-inside-PUFs is a realistic scenario

in our opinion, but lies outside the original setting of Dachman-Soled et al. Their formal proofs,
which rest on a different adversarial model, remain formally correct in their own framework.

4 We remark that the idea to combine a possibly malicious PUF with a benign PUF via an XOR
operation in order to obtain a benign PUF was first used in a PUF-based bit commitment
protocol by van Dijk and Rührmair from 2012 [8], which we already mentioned earlier (and
which Dachman-Soled et al. [4] unfortunately missed).



OT-Phase:

The Sender holds two bitstrings s0, s1. The Receiver holds a choice bit b.

1. Sender randomly chooses a pair of strings x0, x1 ∈ {0, 1}λ, and sends x0, x1 to Receiver.
2. Receiver defines v := c⊕ xb, and sends v to Sender.
3. Sender defines c0 := v ⊕ x0 and c1 := v ⊕ x1.

He applies c0 and c1 to PUF⊕, collecting responses r0, r1.
4. Sender defines S0 := s0 ⊕ r0 and S1 := s1 ⊕ r1, and sends S0, S1 to Receiver.
5. Receiver outputs sb := Sb ⊕ r.

Simplification of the Protocol. Before we discuss the security of the protocol later
on, there is one observation that we want to share. Interestingly, the unclonability and
unpredictability of the “combined” PUF⊕ against a cheating Sender is not exploited in the
above Protocol 2 of Dachman-Soled et al. [4]: After the preparation phase, the Sender holds
both PUFS and PUFR (i.e., PUF⊕) until protocol completion. It is therefore irrelevant if
PUF⊕ is unclonable or unpredictable for the Sender, since he has physical access to it until
the end of the protocol anyway. In turn, it is irrelevant if PUFR, which is a “part” of the
“combined” PUF⊕, is unpredictable or unclonable for the Sender. Once more in turn, it
becomes irrelevant if PUFR is being used in the protocol at all.

This observation allows the following simplification of Dachman-Soled at al. It uses only
one PUFS instead of two PUFs, saving one PUF (namely PUFR), and saving one PUF-transfer
(namely the transfer of PUFR from the Receiver to the Sender).

Protocol 3

(Simplified Version of the OT-Protocol of Dachmal-Soled et al. [4], using one
PUF instead of two)

Preparation Phase:

1. Sender creates PUFS, and sends PUFS to Receiver.
2. Receiver collects a random CRP (c, r) from PUFS.
3. Receiver returns PUFS to Sender.

OT-Phase:

The Sender holds two bitstrings s0, s1. The Receiver holds a choice bit b.

1. Sender randomly chooses a pair of strings x0, x1 ∈ {0, 1}λ, and sends x0, x1 to Receiver.
2. Receiver defines v := c⊕ xb, and sends v to Sender.
3. Sender defines c0 := v ⊕ x0 and c1 := v ⊕ x1.

He applies c0 and c1 to PUFS, collecting responses r0, r1.
4. Sender defines S0 := s0 ⊕ r0 and S1 := s1 ⊕ r1, and sends S0, S1 to Receiver.
5. Receiver outputs sb := Sb ⊕ r.



Brief Security Discussion of Protocols 2 and 3 and Importance of PUF Authen-
tication. Let us lead a short security discussion for Protocols 2 and 3. First of all, it is not
too difficult to see that both protocols have equivalent security properties, i.e., the same
security guarantees, but also the same attack surface. A formal proof of this fact is deferred
to the full version.

Both Protocols 2 and 3 must assume that all used bad PUFs are stateless. Otherwise,
a cheating Sender could build a challenge-logger into PUFS, which he could read out when
PUFS returns to him in the preparation phase. This would allow him to learn the challenge
c applied by the Sender. Knowing c, he can deduce the choice bit b from the value v.
We remark here as a caveat that we know of no effective way to enforce in practice that
bad PUFs are stateless. Even Pappu et al.’s optical PUF [31] can be manipulated to be
stateful by spraying a light-sensitive layer on top of it, which changes locally when being
illuminated with a laser beam [40]. This mechanism can serve as a covert challenge-logger.
Things are even worse for integrated PUFs, which only communicate with the users via a
digital challenge-response interface: What is behind the interface is impossible to inspect of
verify with the capabilities of average users. Even if PUFs would be opened and inspected
invasively, this would destroy them, and would not allow them to be used further [40].

Another important observation is that in both Protocols 2 and 3, the Receiver must not
be able to exchange PUFS, which he receives in the prepration phase, unnoted against a
bad PUF∗

S. If he could, then he might replace the two benign PUFR and PUFS by two bad
PUFs PUF∗

R and PUF∗
S, which are both simulatable to him. This would allow the Receiver to

simulate the “combined” PUF⊕, i.e., to simulate both responses r0 and r1, to decode both
S0 and S1, and to learn both secrets s0 and s1.

Dachman-Soled et al. [4] make this observation, too. They argue that effective authenti-
cation of the PUFS is necessary when it returns to the Sender, and suggested that this could
be done by the Sender probing a random point (=CRP) of the PUFS and then checking it
again later [4].

However, it turns out over the next section that CRP-based authentication of the re-
turning PUFS is more intricate than it seems at first glance.

3 PUF Modifications and PUFs-inside-PUFs Attacks

We start our analysis by suggesting and motivating two new attack models, namely “PUF
modifications” and “PUFs-inside-PUFs attacks”. Recall that in the course of a PUF-protocol,
PUFs may be physically transfered multiple times between users; the above Protocols 2 and
3 can serve as examples for this. Many current attack models [4] assume that adversaries
might attempt to use malicious PUFs instead of benign PUFs from the start, or to completely
exchange benign PUFs against malicious PUFs during the protocol run.

However, adversaries could also partially modify existing PUFs (in “PUF modification
attacks”), or might even use existing PUFs physically within the new bad PUF constructs
(in “PUFs-inside-PUFs attacks”).

Concrete examples include:

– The adversary might try to add certain physical parts, or also certain code in the case
of FPGA-PUFs, to a given PUF which “logs” or “records” every challenge (and possibly
every response), turning a benign PUF into a challenge-logging PUF. Note that the
challenge-response behavior of the original PUF thereby is not altered.
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Fig. 1. A PUFs-inside-PUFs example construction: Given two existing, “old” PUFs, the adversary
constructs a “new”, bad/malicious PUFs, which contains the old PUFs as subparts. In this example,
the new bad PUF receives a challenge over its digital input interface. It internally passes on the
challenge to a selection algorithm, which decides to which of its subcomponents this challenge shall
be applied: To one of the old PUFs, or to a digital pseudo-random function that is known to the
adversary. The output of the selected component is then passed on to the outside via the digital
response interface of the new PUF.

– He might add new hardware parts (or code in the case of FPGA-PUFs) that commu-
nicate the applied challenges (and/or the responses) to the adversary, turning a benign
PUF into a communicating PUF. Again, the modification leaves the CRP-behavior of
the original PUF unchanged.

– In a similar manner, he might try to create a modified, stateful and communicating PUF,
that (for example) adapts its CRP-behavior after communication with the adversary.

– The adversary might even use existing, “old” PUFs as subparts of a new, malicious PUF.
Such “PUFs-inside-PUFs attacks” are a subclass of PUF modifications, and represent
a particularly dangerous attack form, as we will see below. One example of a simple
PUF-inside-PUF construction is illustrated in Figure 1.

The applicability of PUF modification and PUFs-inside-PUFs attacks obviously depends
on the exact usage scenario, the employed type of PUF, and the capabilities of the adversary.
But if the used PUF is “integrated”, i.e., if the honest users communicate with the PUF
merely over a digital CRP-interface, the majority of the attacks are indeed hard to prevent.
Recall that what is behind the CRP-interface is difficult to check or inspect for honest users
without opening and thus destroying the PUF [40]. As integrated PUFs represent the vast
majority of current PUF architectures, this makes the PUF modification and PUFs-inside-
PUFs attacks particularly pressing.

Non-integrated PUFs, such as non-integrated optical PUFs a la Pappu et al. [31], are
only partly concerned by the above type of attacks. On the one hand, some above attacks
are indeed less realistic; for example, so-called “communicating bad PUFs” [40] seem hard
to realize in connection with non-integrated optical PUFs. On the other hand, also non-
integrated optical PUFs can be modified maliciously in certain ways [40]. For example, they
could be made stateful by spraying a light-sensitive layer on top of them. The layer could
change locally when it is hit by a laser beam, “marking” the point of incidence of the optical
PUF’s challenge, and realizing some form of challenge-logging behavior [40].
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Fig. 2. An example of a stateful PUFs-inside-PUFs construction, which internally employs an old
PUF. It cannot be distinguished from the old PUF by applying k CRPs in a consecutive block at
the beginning of a protocol. Still, it potentially allows cheating, because from the k +1-th challenge
onwards, it outputs only responses that are simulatable to the adversary.

Several further arguments support our PUFs-inside-PUFs attack model. Firstly, already
the PUF attack models of Dachman-Soled et al. [4] themselves assume that newly created
PUFs can be used as subparts of bad PUFs. Why should old, existing PUFs not be used in the
same way? Secondly, the use of “tokens-inside-tokens” is already established in the classical
hardware token literature [15]. Finally, also communicating tokens have been investigated
in the classical token literature recently [9]. All of these reasons make the abovementioned
PUF modifications, in particular PUFs-inside-PUFs, a legitimate scenario.

4 Problems of CRP-based PUF-Authentication under
PUFs-inside-PUFs Attacks

In order to prevent PUF-modification, PUFs-inside-PUFs attacks, and PUF substitution,
it seems suggestive to authenticate PUFs whenever they return home in the course of a
PUF-protocol. To this end, one might apply a few precorded challenges in sequence (i.e., in
a consecutive block) to the PUF, and check if the obtained responses match the prerecorded
values. The same technique has also been suggested, for example, by Dachman-Soled et
al. [4]. We observe in this section, however, that this approach is dangerous. Both stateful
and stateless PUFs-inside-PUFs can be constructed that survive certain CRP-based au-
thentication. Our stateless PUFs-inside-PUFs constructions lead to an attack vector on the
OT-protocol by Dachman-Soled et al. [4] in the PUFs-inside-PUFs model, which will be
described in Section 4.3.

4.1 Stateful PUFs-inside-PUFs that Survive Blockwise CRP-Based
Authentication with Non-Negligible Probability.

Let us start by the stateful case. We assume that the adversary holds some existing PUFold,
and would like to construct a stateful, malicious PUFnew, which has the following properties:

– When PUFnew is returned to the honest users/the creator of PUFold, it will pass a stan-
dard authentication test, in which a block of k prerecorded challenges is applied to



PUFnew, and its responses are compared to some prerecorded responses of PUFold. I.e.,
honest users will not notice the difference between PUFnew and PUFold when applying a
standard, blockwise, CRP-based authentication step.

– After the authentication phase with the k prerecorded CRPs has been passed, PUFnew
will only output responses that are simulatable/predictable to the adversary (allowing
him to cheat in protocols).

The described behavior can be achieved very easily in the PUFs-inside-PUFs model.
Figure 2 gives a simple construction of a stateful PUFnew from an existing PUFold which
has the desired properties. PUFnew passes the abovementioned blockwise authentication test
with probability 1 if the parameter k is known to the adversary. Even in the case that
the parameter k is unknown a priori to the adversary, the correct value k may be guessed
correctly with non-negligible probability by him in the preparation of PUFnew. Alternatively,
it may even be guessed by the bad PUF PUFnew itself during the protocol, assuming that
PUFnew has some sort of randomness on board. We comment that only polynomial values
for the number k of prerecorded CRPs in the authentication are admissible, since otherwise
the preparation and the authentication phase would both have superpolynomial runtime.
Guessing the value for k correctly therefore can be done with non-negligible probability.

4.2 Stateless PUFs-inside-PUFs that Survive Blockwise CRP-Based
Authentication with Non-Neglibible Probability.

The above problems more or less persist in the stateless case. The mere assumption that all
bad PUF are stateless, which was introduced in [4], hence cannot restore the possibility for
secure CRP-based authentication.

Let us sketch our stateless PUFs-inside-PUFs construct. Again, the goal of the adversary
is to build some PUFnew which contains a given PUFold, following the PUFs-inside-PUFs
attack model. This PUFnew shall go unnoticed in a CRP-based authentication step, in which
k challenges are applied in one block to PUFnew.

In the stateful case, PUFnew was able to count the challenges that were applied, and
could switch its behavior after k challenges. In opposition to this, stateless PUFs cannot
count. However, counting can to some extent be emulated by using a binary, (k + 1)-wise
independent hash function h with the following property:

1. With probability k
k+1 , the output of h(x) is equal to zero.

2. With probability 1− k
k+1 = 1

k+1 , the output of h(x) is equal to one.

The PUFnew, which contains PUFold, then can be programmed to have the following
functionality:

1. Given a challenge c as input, it computes h(c), using the above hash function h.
2. If h(c) = 0, it re-directs the challenge to PUFold, and outputs the response it receives

from PUFnew.
3. If h(c) = 1, it outputs a fixed value known to its creator and to the adversary, for example

the all zero string 0 · · · 00. (Alternatively, it may apply a pseudorandom function PRF
known to the adversary to the input challenge c, and output PRF(c), or forward the
challenge to any other type of simulatable bad PUF, outputting the response of the
latter.)
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Fig. 3. Construction of a stateless Bad PUF that follows the “PUFs-inside-PUFs” paradigm. It will
survive an authentication phase in which k authenticating challenges are applied in sequence and
are tested for correctness afterwards, and will subsequently output a simluatable response value
known to the adversary, with non-negligible probability.

The resulting bad PUF is illustrated in Figure 3. It survives blockwise authentication
with a probability that is non-negligible in k. Once more, if k is not known to the adversary
at the time when he creates PUFnew, he can simply guess it, being correct with non-negligible
probability. This leads to a non-negligible probability that PUFnew will survive the authen-
tication phase, and will output a manipulated response value right after.

A more detailed analysis follows. Consider the following (k,D)-simple consistency game
forM[P]. The game measures the adversary’s success probability to be able to pass k consis-
tency/authentication checks with a maliciously created PUF in sequence, and to “program”
the next PUF-output on a certain value, here demanding for concreteness that this output
shall simply be an all zero string 0λ. If the adversary succeeds in this (with non-negligible
probability), this usually suffices to break any cryptographic scenario in which this sub-
protocol is used:

– The challenger creates a PUF via create(pid) and computes k responses

ri = evaluate(pid, ci)

for random challenges ci ← D(1λ), sampled independently according to distribution D.
– The challenger issues a handover(pid) and the efficient adversary may now call

set-algo(pid, A),

where A is an arbitrary stateless oracle circuit with oracle access to P. In particular, A
may call the original PUF with identifier pid. The adversary calls handover(pid) again.

– The challenger samples c← D(1λ) and the adversary wins if we have evaluate(pid, ci) =
ri for all i = 1, 2, . . . , k, but if next evaluate(pid, c) = 0λ.

We show that for any polynomially bounded k and for any distribution D with super-
logarithmic min-entropy there is an adversary winning the consistency game with probability
Ω(1/k). Our adversary A, when receiving the PUF with identifier pid, creates algorithm A
as follows: A includes a (k + 1)-wise independent binary hash function h mapping to 0 with



probability 1− 1
k+1 , and to 1 with probability 1

k+1 . Algorithm A on input c first computes
h(c). If h(c) = 0 then A returns the original value PUFeval(pid, c); else, for h(c) = 1, the
algorithm returns 0λ.

To analyze A’s success probability note that for each of the k test queries of the chal-
lenger, the probability that the malicious PUF returns the original value, is 1− 1

k . Further-
more, for distinct challenges the outputs of the (k + 1)-wise independent hash functions are
independent. Since the challenger makes at most k different test queries, possibly repeating
some queries by chance, the probability of answering all of the distinct queries consistently
(with the original PUF) is at least (1− 1

k+1 )k ≥ Ω(e−1). Note further that the probability
of c being different from all c1, . . . , ck is at least 1

2 by the super-logarithmic min-entropy
of D. Hence, with constant probability the final evaluation happens on a fresh value c and
such that all previous test queries used the original PUF. Given this, by the (k + 1)-wise
independence of h, we obtain the output 0λ for c with probability 1

k+1 , making the overall
success probability at least Ω(1/k).

We comment that the above game assumes that k is known to the adversary. Still, our
strategy even works if k was chosen randomly during the protocol run by the honest parties.
To see this, note that we may assume that k is chosen from the range {1, . . . , N}, where
N is polynomial in the security parameter λ. 5 The adversary can hence guess a value k′,
hoping that it is equal to the later choice of k. His chances for doing so are polynomial in
λ. This means that the above attack still has a non-negligible chance of success.

4.3 Security Analysis of the OT-Protocol by Dachman-Soled et al. under
Stateless PUFs-inside-PUFs Attacks

The existence of PUFs-inside-PUFs attacks has consequences for the security of the OT-
protocol of Dachman-Soled et al. [4] (see Protocol 2 above): It turns out that it can be at-
tacked by the stateless bad PUFs-inside-PUFs of Section 4.2 and Figure 3. Before proceeding
with the details, we would like to stress once more that PUFs-inside-PUFs lie outside of
the original attack model of Dachman-Soled et al. [4].

Let us now detail said attack. First of all, recall from Section 2, page 11 that the protocol
of Dachman-Soled et al. [4] is not secure if a cheating Receiver can replace the PUFS (which
he receives from the Sender in the preparation phase) by a bad PUF∗

S which is simulatable
to the Receiver. The reason is that under this assumption, and under the further hypothesis
that the Receiver will not use an honest PUFR as the second PUF in the protocol, but again
a bad PUF∗

R that is simulatable to him, the entire “combined” PUF⊕ becomes simulatable
for the Receiver. This allows him to cheat.

This necessitates authentication of PUFS when it returns to the Sender, as already ob-
served by Dachman-Soled et al. They suggest that (quote) “this can be done by having the
Sender probe a random point before sending PUFS and then checking it again later. We omit
this check from the [protocol]” [4]. In other words, they stipulate that PUFS shall be authen-
ticated by applying a prerecorded challenge to it, and by comparing the given responses
to a prerecorded responses. Slightly generalizing one could use a polynomial number of k
prerecorded CRPs, and test them consecutively in a block of k challenges (Dachman-Soled
et al.’s original idea being the special case k = 1).

5 A choice of k that is superpolynomial in λ is not admissible, since the protocol then would have
superpolyomial runtime.



It is not too difficult to imagine how Dachman-Soled et al.’s protocol is going look like
when such an authentication step is included; to be fully specific, and to allow an accurate
description of our attack, we will nevertheless put it down below.

Protocol 4

(OT-Protocol of Dachman-Soled et al. [4] with Additional CRP-based Authen-
tication Step)

Preparation Phase:

1. Sender creates PUFS.
2. Sender collects k random “authenticating” CRPs (c∗

1, r∗
1), . . . , (c∗

k, r∗
k) from PUFS.

3. Sender sends PUFS to Receiver.
4. Receiver creates PUFR.
5. Receiver collects a random CRP (c, r) from the “combined” PUF⊕

(where r = PUF⊕(c) = PUFS(c)⊕ PUFR(c), as before).
6. Receiver sends PUFS and PUFR to Sender.

OT-Phase:

The Sender holds two bitstrings s0, s1. The Receiver holds a choice bit b.

1. Authentication Step:
– Sender applies the k challenges c∗

1, . . . , c∗
k to PUFS.

– He compares the obtained responses to the responses r∗
1 , . . . , r∗

k prerecorded in Step
2 of the preparation phase.

– If they match, he continues. Else, he aborts.
2. Sender randomly chooses a pair of strings x0, x1 ∈ {0, 1}λ, and sends x0, x1 to Receiver.
3. Receiver defines v := c⊕ xb, and sends v to Sender.
4. Sender defines c0 := v ⊕ x0 and c1 := v ⊕ x1.

He applies c0 and c1 to PUF⊕, collecting responses r0, r1.
5. Sender defines S0 := s0 ⊕ r0 and S1 := s1 ⊕ r1, and sends S0, S1 to Receiver.
6. Receiver outputs sb := Sb ⊕ r.

We note again that Dachman-Soled et al. originally suggest using one CRP in the authen-
tication phase, i.e., they deal with the case k = 1. However, regardless of the value of k, the
above PUF-authentication mechanism of k blockwise applied CRPs can be outsmarted by
PUFs-inside-PUFs as follows:

– Instead of honestly employing a benign PUFR, the malicious Receiver from the start of
the protocol uses a bad PUF PUF∗

R which is simulatable to him, e.g., which contains a
pseudo-random function PRF1.

– When the Receiver is handed PUFS from the Sender, he tries to guess the value of k
(i.e., the number of CRPs used for authentication). Since k is polynomial, he has a
non-negligible chance of success. Subsequently, he constructs a new, bad PUF∗

S following
Figure 3, using PUFS as the “old” PUF.



– More specifically, PUF∗
S shall apply a (k + 2)-wise independent hash function h with a

1-bit output in order to decide whether any applied challenge c shall be passed on to
PUFS or to some pseudo-random function PRF2. When h(c) is equal to 0, the challenge
shall be passed on to PUFS. When h(c) is equal to 0, the challenge shall be passed on
to PRF2. h shall furthermore have the property that it outputs 0 with probability k

k+1
and 1 with probability 1

k+1 .
– The malicious Receiver then hopes that the following two events will happen in the

course of the protocol: First of all, the internal hash function h of PUF∗
S will take the

value 0 for all of the k challenges c∗
1, . . . , c∗

k that are applied to PUF∗
S by the Sender in

the blockwise authentication step (compare Protocol 4 above). Secondly, h will take the
value 1 for the two challenges c0 and c1 that are applied to PUF∗

S in the further course
of the protocol.

– As our discussion in Section 4.2 shows, these two events happen jointly with non-
negligible probability in k. If the two events happen, the Receiver can cheat, though:
First of all, his substitution of PUF∗

S for PUFS will go unnoticed. Secondly, he can sim-
ulate the responses r0 and r1 of PUF⊕ (which are equal to PRF1(c0) ⊕ PRF2(c0) and
PRF1(c1) ⊕ PRF2(c1)). This allows him to decode both S0 and S1 and to learn both
secrets s0 and s1.

This completes the exposition of our attack.

5 The Countermeasure of Interleaved Challenges, and a First
Protocol Attempt (Which Fails)

Given the issues of PUF-authentication and the vulnerability of Dachman-Soled et al. [4], it
is natural to ask for countermeasures. How can effective authentication of PUFs be achieved
in the face of PUFs-inside-PUFs attacks?

One possibility consists of “randomly interleaved challenges”. Let us assume that some
given PUF-protocol applies m challenges to the PUF during its normal protocol run (let us
call these challenges “protocol challenges”). Suppose further that we would like to add an
authentication step to the protocol, which shall detect PUFs-inside-PUFs constructs. The
authentication step shall consist of the application of k “authenticating challenges” and of
checking the responses for correctness.

Now, the basic idea of “interleaved challenges” is as follows: Instead of executing the
authentication step in a consecutive block somewhere during the protocol, in which the k
“authenticating”-challenges in are applied in strict sequence to the PUF, we instead mix or
interleave the protocol-challenges and the authenticating-challenges. Their exact ordering is
chosen randomly during the protocol run.

The adversary then only has a chance of 1/
(

m+k
k

)
to correctly guess the k positions in

which authenticating challenges will be applied and the m positions in which the protocol
challenges will be applied. If m and k are about the same size, this chance will be exponen-
tially small. This is in stark contrast to situation where a single authenticating challenge or a
fixed block of authenticating challenges is applied: There, the adversary has a non-negligible
probability of guessing the starting and ending point of the block correctly, and to thus
guess the nature of all applied challenges.

Let us conclude by two comments. First, we stress again that it is essential for our
technique of interleaved challenges that the number of protocol challenges m and the number



of authenticating challenges k are on the same order. Only then, the number of interleaving
arrangements

(
m+k

k

)
=

(
m+k

m

)
becomes exponential. Secondly, when m and k are on the

same order, interleaved challenges are an authentication method that prevents not only the
specific stateless PUFs-inside-PUFs of Figure 3, but also the specific stateful PUFs-inside-
PUFs of Figure 2. 6

5.1 A First Protocol Attempt, Which Fails

The above discussion suggests to combine of the idea of interleaved challenges with the origi-
nal OT-protocol of Dachman-Soled et al. [4] in order to obtain security against PUFs-inside-
PUFs attacks in the stateless PUF scenario. The resulting protocol is given for illustration
purposes as Protocol 6 in Appendix A.

Unfortunately, there is a very subtle attack on this protocol, which we also provide in
Appendix A. In a nutshell, Protocol 6 can be attacked since a cheating Receiver has some
chance to maliciously influence the challenges that are applied to the PUF by the Sender.
He can enforce that the challenges have a certain format, which will trigger a certain type
of misbehavior in the PUF. A similar observation has already been made by Rührmair and
van Dijk in their quadratic attacks [38, 39] on the OT-protocol by Brzuska et al. [1]. Full
details can be found in Appendix A.

This leaves the question whether PUF OT-protocols that remain secure in the face of
malicious, stateless PUFs and PUFs-inside-PUFs attacks can be devised.

6 An OT-Protocol for Stateless Bad PUFs that remains Secure
under PUFs-inside-PUFs Attacks

This section will finally present a protocol secure against stateless bad/malicious PUFs,
including PUFs-inside-PUFs attacks. The protocol combines interleaved challenges with in-
teractive hashing (IH) [27]. Furthermore, it makes use of our simplifying observation from
Section 2/Protocol 3, and uses only one PUF. As an interesting historic sidenote, also the
first PUF-based OT-protocol from 2010 employed IH [34], and so did the PUF-based OT-
schemes from CHES 2012 [38] and JCEN 2013 [39].

In a nutshell, IH is a two-party protocol where the first player has no input, and the
second player holds an m-bit string C. As output, both players obtain two m-bit strings
C1 and C2, with the property that one of these strings is equal to C, and the other one
is essentially random. Even if the players cheat, the first player cannot learn which of the
strings C1, C2 is equal to C, and the first player cannot influence which value the “other”
string unequal to C will take; it is guaranteed by the protocol to be random. For further
details, we refer to the standard literature on IH [27, 44].

Our protocol runs as follows.

6 This does not mean that all protcols could be secured against stateful bad PUFs by interleaving
challenges, though: Recall that there are other PUF modifications where “good” PUFs are turned
into stateful bad PUFs that do not change the challenge-response behavior of the original PUF
at all, and hence cannot be detected by CRP-based PUF-authentication. One straightforward
example is the malicious addition of a challenge logger to an existing PUF.



Protocol 5

(OT-Protocol with Security against Stateless Bad PUFs, including PUFs-inside-
PUFs Attacks)

Preparation Phase:

1. Sender creates PUFS.
2. Sender collects k random “authenticating” CRPs (c∗

1, r∗
1), . . . , (c∗

k, r∗
k) from PUFS.

3. Sender sends PUFS to Receiver.
4. Receiver collects k random “protocol” CRPs (c1, r1), . . . , (ck, rk) from PUFS.
5. Receiver returns PUFS to Sender.

OT-Phase:

The Sender holds two bitstrings s0, s1. The Receiver holds a choice bit b.

1. Interactive Hashing Step:
– Sender and Receiver get engaged in an interactive hashing (IH) protocol.
– Receiver’s (secret) input to the IH-protocol is C = (c1, . . . , ck).
– The IH-output of both parties are two k-tuples of PUF-challenges C(0) = (c0

1, . . . , c0
k)

and C(1) = (c1
1, . . . , c1

k).
– By the properties of IH, exactly one of the two tuples C(0), C(1) is equal to C.

Let I ∈ {0, 1} be the index for which C(I) = C.
2. Receiver sends b′ := b⊕ I to Sender.
3. Challenge Mixing Step:

– Sender at this point knows the following 3k challenges:

c∗
1, . . . , c∗

k, c0
1, . . . , c0

k, c1
1, . . . , c1

k.

– He applies these challenges in a randomly permuted order to PUFS,
collecting (in randomly permuted order) the corresponding responses

r∗
1 , . . . , r∗

k, r0
1, . . . , r0

k, r1
1, . . . , r1

k.

4. Authentication Step:
– Sender compares the responses r∗

1 , . . . , r∗
k obtained in the last step to the responses

of the prerecorded “authenticating” CRPs of Step 2 of the preparation phase.
– If they match, he continues. Else, he aborts.

5. Blinding of OT-strings with k responses: Sender computes

S0 := s0 ⊕ rb′

1 ⊕ . . .⊕ rb′

k ,

and
S1 := s1 ⊕ r1−b′

1 ⊕ . . .⊕ r1−b′

k ,

and sends S0, S1 to the Receiver.
6. Receiver produces as output sb := Sb ⊕ r1 ⊕ . . .⊕ rk.



Brief Security Discussion. We suggested earlier that healthy PUF protocol design should
explicitly name the security assumptions and possible attack surfaces of the protocol. So
we briefly do in this section. Users of the protocol must carefully decide whether all of the
following conditions are met in their specific application scenario:

– The Sender must not learn any single of the challenges ci that are applied by the Receiver
in the preparation phase. This implies, first of all, that PUFS has no challenge-logger [8,
40] that the Sender could read out after the PUF has returned to him. (This is enforced
in theory by our assumption that PUFS is stateless. But it must also be guaranteed in
practice by users, which is less trivial: How would the Receiver detect the existence of
a challenge logger when he receives PUFS?).
Furthermore, even if PUFS is stateless, there must be no direct communication between
PUFS and the Sender (or the PUF-embedding hardware and the Sender), by which the
Sender would learn one or more of the ci. In other words, PUFS must not be a so-
called “communicating PUF”. Note that PUFS does not need to be stateful for such
communication. If the Sender only learns one single of the challenges ci, this suffices to
derive the index bit I, and to learn the Receiver’s choice bit.

– The Receiver must not learn all of the responses r0
i and r1

i . Since he already knows all
rI

i , this means that he must not learn all r1−I
i . This obviously implies that PUFS must

be a secure Strong PUF, e.g., that it is resilient against modeling attacks, that its large
number of CRPs prevents a full read-out of the entire CRP-space, and that it cannot
be physically cloned. It further necessitates that the Receiver must not be able to turn
PUFS into a so-called “communicating” PUF∗

S [8, 40] before he returns it to the Sender,
which communicates all the r1−I

i to him during or after the protocol. Again, we stress
that a communicating PUF may be stateless.

There are a number of other security aspects that should not go unnoticed:

– Similar to all the other Strong PUF protocols of recent years [34, 1, 28, 29, 8, 40, 6], the
above protocol only is secure in some type of stand alone setting. In particular, its secu-
rity can be broken if the Receiver gets access to the used PUF after protocol completion.
He will then read out all responses r0

i and r1
i , decode both S0 and S1, and learn both

secrets s0 and s1.
– Interestingly, Protocol 5 will remain secure if the Receiver maliciously turns the stateless

PUFS into a stateful PUF∗
S before he returns it to the Sender. For example, the protocol

is resilient against a Receiver who uses stateful PUFs-inside-PUFs attacks like the one
of Figure 3 – such attempts will be detected by our interleaved challenges.

– Protocol 5 has some optimality properties with respect to the following aspects:
(i) The number of used PUFs: It uses one PUF, which is obviously minimal, in oppo-

sition to Dachman-Soled et al.’s original protocol that employs two PUFs [4].
(ii) The number of PUF-transfers: Our protocol has two PUF transfers, which also is

minimal. Recall that one single PUF transfer provably cannot create secure OT-
Protocols if this PUF is simulatable to its creator [8, 4].

(iii) The statelessness condition on PUFS: The PUFS must merely be stateless when it is
introduced in the protocol, i.e., when the Sender transfers it to the Receiver. It must
not be stateless when it returns from the Receiver to the Sender. This means that
the Receiver may attempt turning PUFS into a stateful PUF-inside-PUF PUF∗

S, but
this still will not allow him to cheat (it will be thwarted by our interleaved challenge
method).



Again, this assumption is minimal; if PUFS is stateful from the start, containing a
challenge-logger for the Sender, the protocol will not be secure (see this paper and
[8]).

Finally, we emphasize again that it is essential for the security of Protocol 5 that

– authenticating and protocol challenges are randomly interleaved,
– there is roughly the same number of authenticating challenges (c∗

1, . . . , c∗
k) and protocol

challenges (c0
1, . . . , c0

k), (c1
1, . . . , c1

k), meaning that there are exponentially many possibil-
ities for randomly interleaving both types of challenges,

– and that the protocol has been constructed in such a way that an adversary would have
to know all the 2k protocol responses (r0

1, . . . , r0
k), (r1

1, . . . , r1
k) in order to cheat, i.e., in

order to decrypt both S0 and S1 and learn both s0 and s1. This is achieved by XORing
k responses each onto both s0 and s1.

A formal proof of the protocol’s security based on the above observations is defered to the
full version.

7 Conclusion

This paper dealt with the use of so-called Strong PUFs in advanced cryptographic protocols
like oblivious transfer (OT). The corresponding research area has been very active in recent
years, with a mixture of new attacks, constructive results, and impossibility theorems be-
ing obtained. One reason for the strong activities was that the employment of PUFs, and
generally of any hardware tokens, in cryptographic protocols introduces a number of new
attack surfaces, some of which had initially been overlooked. These include:

– The adversary’s capability to create bad/malicious PUFs from scratch, and to use them
instead of the benign PUFs that would be expected by honest users (e.g., [28, 29, 8, 40]);

– the possibility to intercept and substitute PUFs, instead of assuming authentic delivery
(e.g., [33, 8, 40, 5]);

– the possibility to partly modify existing PUFs while the adversary has physical access
to them, for example building new malicious PUFs by using existing PUFs as subcom-
ponents in so-called “PUFs-inside-PUFs” attacks (this paper);

– the possibility that bad/malicious PUFs may communicate with their creators, for ex-
ample transmitting challenges or responses, or even adapting their challenge-response
behavior after communication (see [8, 40, 9]);

– and, finally, the option to retrospectively access PUFs after the completion of a protocol,
or even between certain phases of a protocol (for example between the commit and reveal
phase in bit commitment) (see [42, 8, 40]).

All of these attack points can be motivated very well by practical and realistic example
scenarios. They may require different levels of effort when being implemented by the adver-
sary, depending on the exact usage scenario. But they certainly cannot, and must not, be
excluded a priori in PUF protocol design. We advise that comprehensive PUF protocol de-
sign should rather make all conceivable attack surfaces and underlying security assumptions
explicit, aiming at security under a minimal set of well-achievable assumptions.

We tried to obtain some progress in this situation. Our contributions include the following
(compare Section 1.4):



– We simplified a recent OT-protocol by Dachman-Soled et al. [4] from CRYPTO 2014,
which was originally designed to withstand bad PUF use. Our new protocol achieves the
same security properties under the same assumptions, but uses only one PUF instead
of two.

– We proposed the new adversarial model of “PUFs-inside-PUFs attacks”, and show that
the earlier protocol of Dachman-Soled et al. [4] from CRYPTO 2014 is indeed vulnerable
in this model. We stress again that the model is an extension of the original scenario
of Dachman-Soled et al. [4], meaning that their proofs remain viable in their original
framework.

– We constructed a new PUF-based OT-protocol, which is secure against PUFs-inside-
PUFs attacks if all used bad PUFs are stateless. Our protocol introduces the technique
of interleaved challenges, and uses interactive hashing as a building block. It seems to
have a number of optimality properties, for example with respect to the PUF-transfers,
the used number of PUFs, or the statelessness requirement, which only needs to hold
when the PUF is in its first transfer, not in the second.

– We illustrate why the use of interactive hashing in the protocol is necessary, and why a
first protocol attempt that builds on the OT-protocol of Brzuska et al. from CRYPTO
2011 [1], and which does not use interactive hashing, fails.

Our findings also have direct relevance for the PUF hardware community, connecting
the two worlds of PUF-protocols and PUF-hardware design.

We stress, though, that despite the positive results on PUF-protocols with security
against stateless bad PUFs (e.g., [4] and this work), we currently know of no way to enforce
that a bad PUF is actually stateless, and of no method to detect when it is stateful. Even
optical PUFs can potentially be turned into stateful bad PUFs by spraying an extra layer of
light-sensitive material on them. This material might change under laser illumination, and
could show later to adversaries (perhaps only under special circumstances, like ultraviolet
illumination), where earlier PUF-challenges, i.e., the laser beams, had been applied. The
situation is even more severe for electrical Strong PUFs with a digital input-output inter-
face: Controlling that no stateful system is sitting “behind” this interface appears extremely
difficult, perhaps even impossible for average users. These observations partly restrict the
relevance of any positive results in the stateless bad PUF model.

Furthermore, as has already been pointed out in various earlier works [8, 40], Strong PUFs
would have to be re-used in any economically viable application scenarios. Adversaries may
therefore get so-called “posterior” [8, 40] access to a PUF (recall that the CRP-interface of
Strong PUFs is assumed to be public), enabling a host of different attacks, too [8, 40].

This suggests that in order to both overcome both stateful bad PUF attacks and attacks
in the PUF re-use model, new Strong PUF hardware variants will be required. They include
reconfigurable PUFs [22], erasable PUFs [42, 40], or certificable PUFs [41]. In order to fully
re-establish the full practical usability of Strong PUFs, (reconfigurability or erasability) and
certifiability would even have to be realized in a single piece of PUF-hardware. We would
like to pose this task as a highly rewarding research goal to the hardware community at the
end of this work.
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APPENDIX

A A New PUF-based OT Protocol with Intended Security
against Stateless PUFs-inside-PUFs Attacks
(First Attempt, Which Fails)

In this appendix, we will deal with one straightforward attempt to use interleaved challenges
to achieve security against stateless PUFs-inside-PUFs attacks. The following Protocol 6 is
a straightforward combination of interleaved challenges and of the above Protocol 2 by
Dachman-Soled et al. [4]. In order to prevent the PUFs-inside-PUFs attack of Section 4, k
challenges are used not only to authenticate PUFS, but also in order to blind the secrets s0
and s1. This means that a cheating Receiver must know all of these k challenges in order to
decrypt S0 and S1 and learn s0 and s1. The internal hash function of PUF∗

S must hence take
an output value of 1 for all of these k challenges (which makes it pass on the challenges to
its internal pseudo-random function PRF2). The probability that this happens for all of the
k challenges is exponentially small in k (recall that h would take value 1 with probability

1
k+1 ).

Protocol 6

(A New OT-Protocol with Intended Security against PUFs-inside-PUFs Attacks
— First Attempt, Which Fails)

Preparation Phase:

1. Sender creates PUFS.
2. Sender collects k random, “authenticating” CRPs (c∗

1, r∗
1), . . . , (c∗

k, r∗
k) from PUFS.

3. Sender sends PUFS to Receiver.
4. Receiver creates PUFR.
5. Receiver collects k random CRPs (c1, r1), . . . , (ck, rk) from the “combined” PUF⊕

(where PUF⊕(c) := PUFS(c)⊕ PUFR(c), as before).
6. Receiver sends PUFS and PUFR to Sender.

OT-Phase:

The Sender holds two bitstrings s0, s1. The receiver holds a choice bit b.

1. For i = 1, . . . , k, Sender chooses random string pairs xi
0, xi

1 ∈ {0, 1}λ,
and sends all xi

0, xi
1 to Receiver.

2. For i = 1, . . . , k, Receiver defines

vi := ci ⊕ xb,

and sends all vi to Sender.
3. For i = 1, . . . , k, Sender defines

c0
i := vi ⊕ xi

0, c1
i := vi ⊕ x0

1.

4. Challenge Mixing Step:



– Note that Sender now holds 3k challenges:

c∗
1, . . . , c∗

k, c0
1, . . . , c0

k, c1
1, . . . , c1

k.

The c∗
i are all challenges to PUFS, while the c0

i and c1
i are all challenges to PUF⊕.

– The Sender applies these 3k challenges

c∗
1, . . . , c∗

k, c0
1, . . . , c0

k, c1
1, . . . , c1

k

in random order to PUFS or to PUF⊕, respectively, collecting (again in random
order) the 3k corresponding responses

r∗
1 , . . . , r∗

k, r0
1, . . . , r0

k, r1
1, . . . , r1

k.

Note again that the r∗
i are responses of PUFS, while the r0

i and r1
i are responses of

PUF⊕.
5. Authentication Step:

– Sender compares the obtained responses r∗
1 , . . . , r∗

k to the responses of the precorded
“authenticating” CRPs from the preparation phase.

– If they match, he continues. Else, he aborts.
6. Sender computes

S0 := s0 ⊕ rb′

1 ⊕ . . .⊕ rb′

k ,

and
S1 := s1 ⊕ r1−b′

1 ⊕ . . .⊕ r1−b′

k ,

and sends S0, S1 to Receiver.
7. Receiver produces as output sb := Sb ⊕ r1 ⊕ . . .⊕ rk.

A Subtle Attack. The protocol seems secure at first sight, but there is a very subtle, yet
efficient attack. The key observations are:

– A malicious Receiver can strongly influence the choice of the challenges cb
i and c1−b

i by
deviating from the protocol, and by sending selected values vi in Step 2 of the protocol.
It is not too difficult to see that by choosing the vi maliciously, he can in fact enforce
the challenges cb

i and c1−b
i to take any values that to fulfill the side condition that

cb
i ⊕ c1−b

i = x0
i ⊕ x1

i .

This leaves a substantial degree of freedom for the Receiver to enforce values for cb
i and

c1−b
i that enable certain attacks. 7

– If the challenges cb
i and c1−b

i are influenced maliciously by the Receiver (and are later
applied to the bad PUF by the unknowing Sender in the course of the protocol), they
can communicate a “message” or some kind of helpful “information” to the bad PUF.

– More concretely, in the above Protocol 6, a cheating Receiver could enforce that all of
the challenges cb

i have a first half that consists of only zeros, and that all of the challenges
c1−b

i have a second half that consists of only zeros. This choice does not hinder or violate
the abovementioned condition that cb

i ⊕ c1−b
i = x0

i ⊕ x1
i .

7 Interestingly, the same observation has also been at the heart of earlier attacks on the PUF-based
OT-protocol of Brzuska et al. [1], which were published at CHES 2012 and in JCEN 2013 by
Rührmair and van Dijk [38, 39].



These observations lead to the following attack: A cheating Receiver substitutes the
original PUFS that he had received in the preparation phase of the protocol. He replaces it
by a stateless malicious PUF∗

S that encapsulates PUFS, similar to the construction in Figure
3. This PUF∗

S is programmed to have the following functionality:

– It recognizes all mulitbit strings cb
i and c1−b

i by the fact that they start or end with a
half that solely conists of zeros (see above).

– Having recognized all cb
i and c1−b

i in this manner, PUF∗
S can immediately deduce which

of the applied challenges are the authenticating challenges c∗
i (it are those which do not

have a first or second half consisting solely of zeros.)
– The interface of PUF∗

S passes on all authenticating challenges c∗
i to the internal PUFS

that PUF∗
S encapsulates, and presents the responses of PUFS to the outside. This allows

PUF∗
S to survive the authentication unrecognizedly.

– All other applied challenges cb
i and c1−b

i are passed on by the interface of PUF∗
S to

a simulatable bad PUF, for example to a pseudo-random function (PRF), which is
simulatable by the adversary (see again Figure 3).

Using such a stateless malicious PUF∗
S, the cheating Receiver remains unnoticed despite

our authentication step and interleaved challenges. Still, he can (with overwhelming proba-
bility) simulate and learn all of the responses r0

1, . . . , r0
k, r1

1, . . . , r1
k. (Such simulation will only

then not be possible if by coincidence, one of the challenges c0
1, . . . , c0

k, c1
1, . . . , c1

k will start or
end with a half of solely zeros; but this happens only with exponentially small probability
in λ, where λ is the length of the challenges.) Knowing all r0

1, . . . , r0
k, r1

1, . . . , r1
k will allow

the Receiver to decode and learn both s0 and s1, however, breaking the confidentiality of
the Sender. This breaks Protocol 6 with a probability that is exponentially close to 1 in λ.

The above attack works since the two sets of challenges c0
i and c1

i can be influenced by
the Receiver. We therefore had to think about ways how this can be prevented; this was our
motivation behind using interactive hashing (IH) in Protocol 5. IH had already been used
by the historically first PUF protocol for OT by Rührmair in 2010 [34], and in subsequently
improved versions by Rührmair and van Dijk [38, 39], for exactly the same reasons.


