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ABSTRACT
Physical Unclonable Functions (PUFs) have established them-
selves in the scientific literature, and are also gaining ground
in commercial applications. Recently, however, several at-
tacks on PUF core properties have been reported. They con-
cern their physical and digital unclonability, as well as their
assumed resilience against invasive or side channel attacks.
In this paper, we join some of these techniques in order
to further improve their effectiveness. The combination of
machine-learning based modeling techniques with side chan-
nel information allows us to attack so-called XOR Arbiter
PUFs and Lightweight PUFs up to a size and complexity
that was previously out of reach. For Lightweight PUFs,
for example, we report successful attacks for bitlengths of
64, 128 and 256, and for up to nine single Arbiter PUFs
whose output is XORed. Previous work at CCS 2010 and
IEEE TIFS 2013, which provides the currently most efficient
modeling results, had only been able to attack this structure
for up to five XORs and bitlength 64.
Our attack employs the first power side channel (PSC) for

Strong PUFs in the literature. This PSC tells the attacker
the number of single Arbiter PUF within an XOR Arbiter
PUF or Lightweight PUF architecture that are zero or one.
This PSC is of little value if taken by itself, but strongly
improves an attacker’s capacity if suitably combined with
modeling techniques. At the end of the paper, we discuss ef-
ficient and simple countermeasures against this PSC, which
could be used to secure future PUF generations.
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Physical unclonable functions, side channel attacks, model-
ing attacks, hardware security
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1. INTRODUCTION
Most modern cryptographic and security schemes are built

on the concept of a secret key. This forces current hardware
to contain a piece of digital information that is, and re-
mains, unknown to the adversary. This requirement can be
difficult to uphold in practice: Physical attacks like invasive,
semi-invasive or side-channel attacks, as well as software at-
tacks like malware, can lead to key exposure and full security
breaks.

Indeed, one of the main motivations in the development of
Physical Unclonable Functions (PUFs) was their promise to
better protect secret digital keys in vulnerable hardware sys-
tems. A PUF is an (at least partly) disordered physical sys-
tem P that can be excited with external stimuli or so-called
challenges c. It reacts with corresponding responses r, which
depend on the challenge and on the micro- or nanoscale
structural disorder that is present in the PUF. It is assumed
that this disorder cannot be cloned or reproduced exactly,
not even by the PUF’s original manufacturer, and that it is
unique to each PUF. Each PUF P thus implements a unique
and individual function g that maps challenges c from an
admissible challenge set to responses r = g(c). The tuples
(c, r) are thereby usually called the challenge-response pairs
(CRPs) of the PUF.

Due to its complex internal structure, a PUF can avoid
some of the shortcomings of classical digital keys. It is usu-
ally harder to read out, predict, or derive PUF-responses
than to obtain digital keys that are stored in non-volatile
memory. The PUF-responses are only generated when needed,
which means that no secret keys are present permanently in
an easily accessible digital form.

These facts have been exploited in the past for different
security protocols. Prominent examples include schemes for
identification [21, 6] or various forms of (tamper sensitive)
key storage and applications thereof, such as intellectual
property protection or read-proof memory [8, 13, 32]. Simul-
taneously, the use of so-called Strong PUFs 1 in advanced
cryptographic protocols has been investigated. Various pro-
tocols were suggested, including schemes for identification
[21], key exchange [21, 5, 1], oblivious transfer [22, 1], or bit

1For a differentiation between different PUF types, including
so-called Weak PUF and Strong PUFs, we refer to [28, 26].



commitment [20, 1]. Using Strong PUFs in these protocols
has the advantage that no permanently stored digital secret
keys and standard computational assumptions (such as the
hardness of factoring) are involved. Overall, the assumed
security advantages of PUFs have attracted considerable at-
tention within the security community over the last decade.

Recent Attacks on PUFs.
In recent years, however, an increasing number of attacks

on PUFs have been published. Some of them were specifi-
cally developed for this new primitive, while others are an
adaption of known strategies to the PUF case. Not all at-
tacks apply to every PUF design, and, more generally, to the
two major PUF types of “Weak PUFs” and “Strong PUFs”
[28, 26], in the same manner.
To start with, one of the best-known PUF attacks are

machine-learning (ML) based modeling attacks. They al-
most exclusively apply to Strong PUFs, however, since this
PUF type has a publicly accessible CRP interface, which
allows the simple collection of the large numbers of CRPs
that are required in this attack type (see [28, 30]). This
attack form has been discovered already in the early days
of the field [12], and has been the subject of a relatively
large number of subsequent publications [12, 19, 15, 14, 10,
2]. In two recent works from CCS 2010 [28] and IEEE T-
IFS 2013 [30], a rather large number of Strong PUF designs
have been examined and attacked successfully. The archi-
tectures that exhibited the highest ML-resilience in these
two investigations were the XOR Arbiter PUF [31, 28] and
the Lightweight PUF [14]. They could only be be attacked
efficiently if they are composed of up to five or six single
Arbiter PUFs with bitlength 64 or 128 each [28, 30].
Summarizing the current state of the literature, XOR Ar-

biter PUFs and Lightweight PUFs composed of eight single
Arbiter PUFs with bitlength 64 or 128, say, currently must
be considered secure against modeling. At the same time,
these architectures are just sufficienly stable to be used in
practice — the authors of [28, 30] estimate the stability lim-
its of these designs to be around eight single Arbiter PUFs
which are XORed at the end of the structure. Recall in
this context that XOR Arbiter PUFs and Lightweight PUFs
cannot be made arbitrarily large — their stability descreases
exponentially in the number of single Arbiter PUFs whose
output is XORed [28, 30].
Other recent PUF attacks have in majority focused on

so-called Weak PUFs. For example, Helfmeier et al. have
reported cloning attacks on SRAM PUFs at HOST 2013 [9].
Nedospasov et al. very recently described successful invasive
attempts on SRAM PUFs at FDTC 2013 [18]. Merli et
al. attacked the error-correcting module of Weak PUFs at
TRUST 2011 [16], and EM analyses on ring oscillator PUFs
(RO PUFs) have been carried out by the same group at
WESS 2011 [17].
Interestingly, comparable cloning, invasive or side chan-

nel attacks on typical Strong PUFs, such as optical PUFs
or the Arbiter PUF and variants thereof, have not been re-
ported to this date. In general, it appears more difficult to
clone or invasively attack Strong PUFs. They possess very
many CRPs and their response generation process is more
complex: Typically, a quite large number of components
interact in the generation of a single response. Successful
physical cloning hence requires the accurate duplication of
all of these components: For example successful tuning of

all delay values in an Arbiter PUF; or precise positioning of
all the scattering centers in an optical PUF.

Finally, a number of protocol attacks on advanced Strong
PUF protocols such as key exchange or oblivious transfer
have been presented recently at CHES 2012, IEEE S&P
2013, and other venues [27, 23, 24, 25]. They represent
interesting and relevant strategies, but are beyond the topic
of this paper, which focuses on hardware attacks.

Our Contributions.
In this work, we combine ML with side channel informa-

tion to substantially improve the reach of modeling attacks
on electrical Strong PUFs. We thereby target XOR Arbiter
PUFs and Lightweight PUFs, which are currently consid-
ered the two securest electrical Strong PUFs [28, 30]. Our
approach for the first time allows us to reach and exceed the
practical stability limit of these architectures, which was es-
timated to be around eight single Arbiter PUFs in [28, 30]:
We are now able to successfully attack XOR Arbiter PUFs
and Lightweight PUFs of bitlengths 64 and 128 that are
composed of up to ten single Arbiter PUFs. The attacks are
executed on simulated CRPs generated by the established
additive delay model for Arbiter PUFs; recent publications
have shown that these synthetical CRPs are very close to
“real” silicon CRPs, and can be used without much loss for
ML-based security analyses [30]. For a detailed discussion
on synthetic CRPs, PUF noise, practical stability limits, and
ML performance, we refer the reader to [30], Section II-G.

Our attacks in practice require physical access to the PUF,
which is part of the established Strong PUF attack model
[28, 30]. They involve the collection of a substantial amount
of CRPs (up to the order of millions), but lead to very
short computation times for the machine learning algorithms
themselves (up to several hundred seconds on a standard
INTEL Quadcore). At the cost of more CRPs, the attacks
could be extended relatively easily to XOR-based structures
with more than ten XORed single Arbiter PUFs, but we did
not follow this route in this paper.

Our power side channel tells the attacker the number of
zeros and the number of ones that enter the large, final XOR
gate of the XOR Arbiter PUF or Lightweight PUF. Taken
for itself, this side channel appears relatively worthless, since
the attacker still does not know which of the single Arbiter
PUF outputs was a one and which a zero. But by waiting
for the “good” cases where either all responses of the single
Arbiter PUFs were a zero or all were a one, the attacker
can gain useful information. Suitable combination with ML
techniques leads to a drastic improve of modeling perfor-
mance and accuracy, as shown in the sequel.

The presented approach is one of the first side channels
for Strong PUFs reported in the literature. The only other
known side channel for Strong PUFs is the exploitation of
unstable CRPs in modeling attempts. Without implement-
ing it, this idea has been mentioned briefly in [28], and
has been carried out for the first time in two very inter-
esting works by Delvaux and Verbauwhede [2, 3]. One cur-
rent practical problem is that the efficiency is worse than in
pure machine-learning based modeling attacks: More CRPs
are required, and the remaining prediction error is slightly
worse. This may be improved in future versions of the
attacks. Currently, our PSC seems the only side channel
that can substantially improve the reach and performance
of Strong PUF modeling attacks.



At the end of the paper, we also discuss efficient coun-
termeasures against our power side channel. They could
be implemented easily in new, future generations of Arbiter
PUFs and variants to thwart our attacks.

Organization of this Paper.
Section 2 provides some background on arbiter-based PUFs

and previous machine learning attacks thereon. Section 3
describes a power tracking side channel. In sections 4 and 5,
we discuss the effect of the power side channel on the security
of Lightweight and XOR Arbiter PUFs, respectively. Poten-
tial design countermeasures against our power side channel
are discussed in Section 6. Our work is summarized in Sec-
tion 7.

2. BACKGROUND

2.1 Different Delay-based PUF Types
Delay-based PUFs were among the first electrical PUFs

that have been introduced [6, 7, 11, 31] , and are currently
among the most widespread and best investigated PUFs.
They are based on a “race” between two competing signal
paths, which is called by a final arbiter element (mostly a
latch). Three delay-based PUFs that are relevant for this
work are described in the sequel.

Arbiter PUFs.
The basic Arbiter PUF (Arb-PUF) is discussed in [7, 11,

31]. It consists of a sequence of n stages, for example mul-
tiplexers. Two electrical signals race simultaneously and in
parallel through these stages. Their exact paths are deter-
mined by a sequence of n external bits b1 · · · bn applied to
the stages, whereby the i-th bit is applied at the i-th stage.
If bi = 0, then the paths run “in parallel” through the mul-
tiplexers, and if bi = 1, they cross each other and change
position. After the last stage, an “arbiter element” consist-
ing of a latch determines whether the upper or lower signal
arrived first and correspondingly outputs a zero or a one.
The external bits are usually regarded as the challenge C of
this PUF, i.e., C = b1 · · · bn, and the output of the arbiter
element is interpreted as their response R. See [7, 11, 31]
for further details. The parameter n is often referred to as
the bitlength of the Arbiter PUF.

XOR Arbiter PUFs.
One possibility to strengthen the resilience of arbiter ar-

chitectures against machine learning attacks, which has been
suggested in [12, 31], is to employ k individual Arb-PUFs
in parallel, each with n stages (i.e., each with bitlength n).
The same challenge C is applied to all of them, and their in-
dividual outputs ti are XORed in order to produce a global
response tXOR. We denote such an architecture as k-XOR
Arb-PUF. The case of a 2-XOR Arb-PUF is illustrated in
Figure 1.

Lightweight Secure PUFs.
Another type of delay-based PUF, which we term Light-

weight Secure PUF or Lightweight PUF for short, has been
introduced in [14]. It is similar to the XOR Arb-PUF of
the last paragraph. At its heart are k individual standard
Arb-PUFs arranged in parallel, each with n stages (i.e., with
bitlength n), which produce k individual outputs r1, . . . , rk.

XOR

b
1

b
2 b

3 b
n-1

b
n

Figure 1: The architecture of a 2-XOR Arb-PUF.
It consist of two single, parallel Arbiter PUFs. The
outputs of their Arbiters (red triangles) are XORed
to produce the final output.

These individual outputs are XORed to produce a multi-bit
response o1, ..., om of the Lightweight PUF, according to the
formula

oj =
⊕

i=1,...,x

r(j+s+i) mod k for j = 1, . . . ,m. (1)

Thereby the values for m (the number of output bits of the
Lightweight PUF), x (the number of values rj that influence
each single output bit) and s (the circular shift in choosing
the x values rj) are variable design parameters.

Another difference to the XOR Arb-PUFs lies in the k in-
puts C1 = b11 · · · b1n, C2 = b21 · · · b2n, . . . , Cl = bl1 · · · bln which
are applied to the k individual Arb-PUFs. Contrary to XOR
Arb-PUFs, it does not hold that C1 = C2 = . . . = Ck = C,
but a more complicated input mapping that derives the in-
dividual inputs Ci from the global input C is applied. This
input mapping constitutes the most significant difference be-
tween the Lightweight PUF and the XOR Arb PUF. We
refer the reader to [14] for further details.

2.2 Previous Attacks on Delay-Based PUFs
In modeling attacks, an adversary collects a subset of all

CRPs of the PUF, and uses them to predict or extrapolate
the behavior of the PUF in the entire CRP space. This at-
tack form can essentially only be applied to Strong PUFs,
since they have many CRPs (only then extrapolation makes
sense!), and since they have a publicly accessible CRP in-
terface (meaning that everyone with physical access to the
PUF or PUF embedding hardware can collect CRPs) (com-
pare [28, 30]).

Usually, machine learning (ML) algorithms are employed
as the weapon of choice for CRP prediction or CRP ex-
trapolation, even though other techniques have been used
at times, such as linear programming [19] or solving inte-
ger equations [2]. It is useful for ML performance to use a
parametrized model of the PUF in this process. For Arbiter
PUF, the standard a parametric model is the“linear additive
delay model” [12, 28, 30]. It uses the delays in the Arbiter
PUF’s circuit elements as unknown variables, and sums up
these delays to compute the overall delay and thus the PUF
response at the end of the structure.

It has been shown in IEEE T-IFS 2013 [30] by compari-
son of ML performance on silicon and simulated CRP data
that this model is very exact, and that it can be used to



PUF
Bit Pred. No. of CRPs Training

Length Rate XORs (×103) Time

Arbiter PUF
64

99% —
2.5 0.13 sec

128 5.5 0.51 sec

XOR Arb PUF

64 99%
4 12 3:42 min
5 80 2:08 hrs
6 200 31:01 hrs

128 99%
4 24 2:52 hrs
5 500 16:36 hrs
6 — —

Lightweight PUF

64 99%
4 12 1:28 hrs
5 300 13:06 hrs
6 — —

128 99%
4 500 59:42 min
5 1000 267 days
6 — —

Table 1: The performance of Logistic Regression on Arbiter PUFs, XOR Arbiter PUFs, and Lightweight
PUFs, taken from Rührmair et al. [28]. The results were obtained on simulated CRPs generated by the
additive linear delay model [12, 28, 30].

accurately examine the ML resilience of any Arbiter PUF
variants, as the ones considered in this paper. The authors
of IEEE T-IFS [30] also give a detailed discussion on the role
of PUF-noise in simulated CRPs ([30], Section II-G). They
argue why simulated, noise free CRPs, as the ones examined
in this paper, are a good measure and benchmark for the
ML-resilience of a PUF. In opposition to the occuring noise
level, they are independent of the concrete implementation
and environment, and hence indicate the intrisic hardness
of a design. Furthermore, they represent the upper limit
of the ML hardness of a given design – recall that error
correction will usually be exectued on the PUF, and that
this error correction cuts of information and ML-hardness
from the PUF’s output. Finally, physical adversarial ac-
cess to the PUF is part of the established attack model for
Strong PUFs. During this access period, the attacker can
control the environmental parameters, and execute multiple
measurements with majority voting. This can help him to
collect CRP sets with very small error levels, as executed in
[30]. Once more, this justifies the use of error-free synthetic
CRPs as an “upper bound case” for ML experiments. For
further details, please see [30].
While various PUF-models and ML algorithms have been

applied to Arbiter PUFs and variants in the literature [12,
15, 19, 28], the strongest results up to this point were achieved
by use of a special variant of Logistic Regression (LR) [28,
30]. For comparison with our findings, we summarize these
known results from CCS 2010 [28] in Table 1.
The strong growth of the required CRPs and computa-

tion times for large numbers of XORs is an important as-
pect of the above data. The authors of [28] concluded that
the growth is exponential in the number of XORs. At the
same time, also the output instability of XOR Arbiter PUFs
and Lightweight PUFs increases exponentially in the num-
ber of their XORs. This implies that there is a certain sta-
bility limit up to which they can be implemented in practice.
In [28, 30], this stability limit was estimated around eight
XORs. This is just beyond the reach of the current ML
methods, which is five or six XORs as shown in Table 1.
This poses the question if and how XOR-based PUF ar-

chitectures can be attacked up to this estimated limit in

practical use cases (or even beyond). Note again that the
attacker – by applying special environmental control and
majority voting etc. – may be able to obtain CRP sets with
less noise than the noise level of practical use cases, in which
the environmental conditions may vary strongly (see discus-
sion above and in [30], Section II-G).

The use of current ML algorithms alone had not been
successful to this end [28, 30]. We now tackle this goal in
this paper for the first time by a combined use of modeling
and side channel attacks.

3. POWER CONSUMPTION AS A SIDE
CHANNEL FOR ARBITER PUFS

The basic concept of our power side channel (PSC) is to
apply power tracing to determine the transition from zero
to one of the latches (=arbiter elements) that are part of
Arbiter PUF based architectures. The power tracing tech-
nique is based on measuring the amount of current drawn
from the supply voltage during any latch transition to one.

In order to lead a proof-of-concept for our approach, we
implemented a SPICE simulation that uses only one latch
with three different outputs loading (floating output, out-
put connected to one gate, and output connected to four
gates). Figure 2 illustrates our results, and shows the differ-
ent amount of current drawn for the three different output
loading. The reason for having different values for the dif-
ferent loading is that an additional amount of charges is
required to charge the capacitance of each gate. Hence, the
amount of drawn charges, which is the integration of the cur-
rent curve, is linearly proportional with the number of gates.
Taking into consideration, the amount of charges normally
drawn in case of a floating load should be subtracted. Con-
sequently, for extreme cases when all latches’ output in the
device are zeros or all are ones, this power tracing technique
would allow the attacker to determine these cases very easily.

By applying this idea to XOR Arbiter PUFs and Light-
weight PUFs, which utilize more than one single Arbiter
PUF in parallel, one could determine the exact number of
ones (and zeros) stored in the latches (arbiters) within the
PUF. Following our above discussion, the power consump-



Figure 2: The Power Tracking SCA for a latch that had a transition to 1, with different driving loads. The
inset is the amount of drawn charges, which is calculated from the area under each curve. The amount of
charges is linearly proportional with the number of gates, noting that the amount of charges normally drawn
for a floating load should be subtracted.

tion will tell us the (cumulative) number of zeros and ones
that are stored in the latches (or, in other words, the cumu-
lative number of zeros and ones that is output by the single
Arbiter PUFs before the large XOR gate). Please note, how-
ever, that we cannot derive which of the single Arbiter PUFs
in an XOR Arbiter PUF have output one and which have
output zero. We only know the overall number of zeros and
ones before the XOR. Taken by itself, the side channel thus
appears relatively worthless. We will nevertheless show that
this basic information can boost PUF attacks significantly
if it is used in the right manner.

4. ATTACKING LIGHTWEIGHT PUFS
Let us start by illustrating how combined power side chan-

nels and modeling can attack Lightweight PUFs.

4.1 Attack Strategy
As mentioned in the last section, our power side channel

only tells us the cumulative number of zeros and ones before
the XOR element. If we knew the exact output of each single
Arbiter element before the XOR, this would be much more
helpful: We could then machine learn each single Arbiter
PUF separately. According to [28], this is possible with very
high prediction rates and very few CRPs per Arbiter PUF.
Once we have learned every single Arbiter PUF with very
high accuracy, we could also predict the output of the entire
structure exactly.
One way to resolve this problem is the following: Suppose

that we want to break a Lightweight PUF with k paral-
lel single Arbiter PUFs, and that we have the power side
channel described in Section 3 available. We can then start

collecting CRPs of the Lightweight PUF, using our power
side channel for each collected CRP. We then simply wait
for those “good” CRPs where the side channel tells us that
either all k single Arbiter outputs were zeros, or all k single
Arbiter outputs were one. We use only the “good”CRPs for
machine learning, throwing away the others: As we know
the output of each single Arbiter PUF for each of the good
CRPs, we can apply the known ML techniques for learning
each single Arbiter PUF separately on the basis of the good
CRPs. Once we can predict each single Arbiter PUF with
high accuracy, we can also predict the entire structure.

In order to decide if this strategy is viable, the critical
question is: How frequent are the good CRPs, i.e., how often
is it the case that all single Arbiter outputs are all zero or
all one? Assuming an equally distributed output, this event
will occur for a fraction of 2 · 1

2k
= 2k−1 cases, where k is

the number of XORs. But note that around eight XORs are
the current stability limit, whence k is relatively small in
absolute terms, and so is the expression 2k−1. This makes
our strategy applicable in practice. Exact CRP requirements
and prediction rates are given in the next section.

4.2 Results on Synthetic CRP Data
Table 4.2 shows the results of applying our technique to

synthetic CRPs generated by the additive linear delay model
[28]. 2 We waited for the cases where the single outputs are
all zero or all one. The CRP numbers given in the table
include all CRPs necessary for the attack, also those that

2As before, we stress that synthetic CRPs can be used well
to evaluate ML performance on Arbiter PUF variants, as
shown by the results of [30].



are not “good”, and which are not used for training the ML
algorithm. Please note that the collection of the required
number of CRPs poses no problem in practice, since Arbiter
PUFs operate at MHz CRP frequencies [11]; collecting the
CRPs takes hence only few seconds or less.
Comparing our results to the success of ML attacks with-

out side channels (Table 1), a strong performance gain in
terms of computation times and reachable bitlengths of the
PUF can be observed. It would even be possible to go
strongly beyond nine XORs with still very small compu-
tational times by using enough CRPs.

Bit Pred. No. of CRPs Training
Length Rate XORs (×103) Time

64

97.3% 4 40 18 sec
96.6% 5 80 22 sec
96.2% 6 200 44 sec
96.8% 7 500 91 sec
96.3% 8 1,000 98 sec
96.0% 9 2,000 105 sec

128

97.4% 4 80 46 sec
97.6% 5 200 122 sec
97.4% 6 500 191 sec
96.8% 7 1,000 200 sec
96.4% 8 2,000 238 sec
96.1% 9 4,000 303 sec

256

97.6% 4 200 200 sec
97.4% 5 500 340 sec
96.8% 6 1,000 400 sec
96.4% 7 2,000 490 sec
96.1% 8 4,000 580sec
96.1% 9 8,000 700 sec

Table 2: The performance of LR plus power side
channels on Lightweight PUFs. The training times
are averaged over different PUF instances.

5. ATTACKING XOR ARBITER PUFS

5.1 Attack Strategy
Let us now discuss the effect of our side channel on the se-

curity of the (standard) XOR Arbiter PUF. It seems natural
to transfer the approach of the last section to XOR Arbiter
PUFs: Simply wait for the “good” CRPs, and use them to
machine learn each single Arbiter PUF separately.
Rather unexpectedly, this straightforward approach fully

fails in the case of XOR Arb PUFs. The reason is that in
a XOR Arb PUF with k parallel single Arbiter PUFs, the
input challenge C is directly applied to all of the k single
Arbiter PUFs without being changed. 3 In other words,
the very same challenge C is applied at all k single arbiter
PUFs. The “good” CRPs collected for the single Arbiter
PUFs hence all have the same input challenge C. Further-
more, by definition, the good CRPs all have the same output
for the k single Arb PUFs. The collection of good CRPs thus
leads to a collection of exactly the same CRPs for all k single

3Please note that this is in opposition to the Lightweight
PUF, where an input mapping is applied to the input chal-
lenge C. In this process k different challenges C1, . . . , Ck are
generated, which are then used as the k different inputs of
the single Arb PUFs.

Arb PUFs. If these CRPs are fed into a machine learning
algorithm, it develops exactly the same model for all of the k
single Arb PUFs, and predicts the very same outputs for all
k single Arbiter PUFs (while in reality, they are, of course,
different). The morale here is that symmetry in the design
(such as in the XOR Arbiter PUF) can sometimes increase
security against side channels.

This leads to the question whether there are other fruit-
ful combinations of power side channel information with ML
techniques. This turned out to be a very hard problem. Af-
ter investigating several potential alternative methods (and
failing with them), we finally discovered an effective tech-
nique.

Let us start by comparing how logistic regression (and
other supervised ML methods) perform on Arbiter PUFs
and on XOR Arbiter PUFs. The standard arbiter PUF is
relatively easy to learn for two reasons: First of all, the
model of the Arbiter PUF is simple (linear additive delay
model [12]). Secondly, when we compare the response of
the modeled PUF to the responses of the original PUF we
have two cleanly separated cases: (i) The response is correct,
leading to a positive feedback for the ML algorithm. (ii) The
response is not correct, leading to a negative feedback. The
model parameters are changed in this case, and iteratively
converge to a correct solution.

For XOR Arbiter PUFs, this picture changes strongly, as
the final XOR gate “masks” the output of the single Arbiter
PUFs. Assume as an example that k = 5. If the output of
such a 5-XOR Arb PUF is a “one”, there are three possible
cases:

(i) There is exactly one single Arbiter PUF that has out-
put one, and the remaining four have output zero.

(ii) There are exactly three single Arbiter PUFs that have
output one, and two have output zero.

(iii) All five single Arbiter PUFs have output one.

In a classical XOR Arbiter PUF, we cannot distinguish
between the three cases (i.e., we would not know the overall
number of zeros and ones); and even if we knew, we would
not know exactly which of the single Arbiter PUFs output
a one and which a zero. The second problem remains, but
the first problem can directly be solved via power side chan-
nel information. This leads to a very strongly improved ML
convergence, as shown in the next sections. It helps us to
tackle XOR Arbiter PUFs with extremely reduced compu-
tation times.

5.2 Results on Synthetic CRP Data
Table 5.2 shows the error ratio and the time taken for

our attack on XOR arbiter PUFs explained in the previ-
ous subsection. Although we can in principle go further for
higher number of XORs, there is a memory limitation prob-
lem that we still must to overcome. The reason is that the
algorithm needs to work with the entire CRPs matrix which
overfloats the memory limitation. This problem did not ap-
pear when attacking Lightweight PUFs, since we then ini-
tially divided the employed CRPs. We filtered them, using
just the “good” CRPs in the learning process. In opposition
to this, we needed to employ all the CRPs during the learn-
ing process for attacking XOR Arbiter PUFs. Experiments
are on the way in our group to circumvent this problem by
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Figure 3: Standard Arbiter PUF with a differential
output. Two arbiters are employed to generate two
differential response bits, which have inverted input
signals. The architecture would prevent the use of
power tracking SCA. Asides, it also provides new
error detection and correction capabilities.

hardware or software, and to fully unleash the power of our
attack strategy with respect to XOR Arbiter PUFs. Table
5.2 gives some first indication of how strongly the training
times decrease, compared to the pure machine learning at-
tacks shown in Table 1.

Bit Pred. No. of CRPs Training
Length Rate XORs (×103) Time

64 95%

4 40 10 sec
5 80 37 sec
6 200 160 sec
7 500 247 sec

128 95%
4 80 34 sec
5 200 170 sec
6 500 374 sec

Table 3: The performance of LR plus power side
channels on XOR Arbiter PUFs. The training times
are averaged over different PUFs-instances.

6. COUNTERMEASURES
In order to immunize arbiter-based PUFs against power

tracking SCA, one could add an additional, symmetric ar-
biter at the last stage of the PUF. The input signal for the
added arbiter is inverted before it enters the arbiter (see
Figure 3).
This idea behind the architecture is obviously to keep the

number of zeros and ones in the entire PUF architecture
constant, thereby preventing power tracking side channel at-
tacks. A differential output of the described kind could also
be desirable in fault tolerant applications, since it might al-
low error correction, and indicate unstable responses. Recall
that the arbiter (=latch element) typically is one of the main
sources of instability in an arbiter PUF: Signal pathes with
a runtime difference that is on the order of the switching
time of the latch often cause unstable responses. If the two
differential latches have inconsistent content, this indicates
the occurence of an unstable PUF response.
Use of k latches in such a differential design, together with

standard majority voting over the latches’ outputs, could
be used as a simple and very efficient means for response
stabilization and error correction.

7. SUMMARY AND CONCLUSIONS
In this paper, we investigated the reach of combined power

side channel (PSC) and modeling attacks on electrical Strong
PUFs architectures. We focused on XOR Arbiter PUFs
and Lightweight PUFs, which are presumably considered the
most secure electrical Strong PUF architectures [28, 30], at
the least among the class of delay-based PUFs. Previous
examinations had shown that these two PUFs could only be
attacked successfully for around five XORed single Arbiter
PUFs, and for bitlengths of 64 bits or 128 bits [28, 30]. This
implied that XOR Arbiter PUFs or Lightweight PUFs with
bitlenghts of 64, 128 or 256 bits and eight single Arbiter
PUFs had to be considered both practical (i.e., sufficiently
stable) and secure previous to our work [28, 30].

The new side channel we suggested and examined in this
work is power tracing of the arbiter element (i.e., the latch)
in Arbiter PUFs and variants thereof, such as the XOR Ar-
biter PUF and Lightweight PUF. We led a proof of concept
by SPICE simulations for the viability of this approach. The
power side channel (PSC) tells us the cumulative number of
zeros and ones before the XOR gate. Taken by itself, our
PSC is almost worthless, since the attacker does not learn
which of the single Arbiter PUF outputs is zero or one. If
combined with machine learning based modeling techniques,
it can strongly boost performance, however.

First of all, it allowed us to tackle Lightweight PUFs with
up to nine XORs and bitlengths of up to 256 bits (see Table
4.2). Our strategy was to wait for the“good”CRPs in which
either all outputs of the single Arbiter PUFs are a zero, or
all these outputs are a one. In these special cases, the ML
problem of attacking Lightweight PUFs reduces to the prob-
lem of machine learning single Arbiter PUFs – which can
be done extremely efficiently both on simulated and silicon
data, as shown earlier [28, 30]. The described strategy leads
to a high, even exponential CRP consumption in the num-
ber of XORs (since the good cases are exponentially rare),
but to very small computation times and prediction errors.
For the comparably small number of XORs used in practical
Lightweight PUF architectures, the exponential number of
required CRPs does not hinder the attacks and is still quite
practical. Recall that implementations of Arbiter PUF vari-
ants would work at MHz CRP frequencies [11], whence the
collection of the maximally required few millions of CRPs
could be carried out in relatively short time. Furthermore,
the bitlengths of the Lightweight PUFs no longer provides a
good handle for increasing ML resilience under out attacks.
This previously was the case with pure modeling attacks, as
pointed out in [28].

The second examined case of XOR Arbiter PUFs turned
out to be far more complicated. This was surprising, since
Lightweight PUFs had proven more resilient to classical mod-
eling attacks in previous works than XOR Arbiter PUFs [28,
30]. Their special “input mapping”, by which they derive
the challenges applied to each single Arbiter PUF, had com-
plicated earlier machine learning attempts. With respect to
our power side channel, however, it turns out that this input
mapping makes attacks easier: It has the effect that all the
“good” CRPs (see last paragraph) of the Lightweight PUF
have different challenges, and can be used without further
ado in machine learning algorithms. Due to the symmet-
ric design of XOR Arbiter PUFs, however, all the “good”
CRPs of XOR Arbiter PUFs have exactly the same chal-
lenges, and, by definition, also the same responses. They



hence do not differentiate between all the different single
Arbiter PUFs within the structure! This prevents the above
direct application of our above technique to XOR Arbiter
PUFs. The morale here is that symmetry sometimes can be
a useful design principle against PSCs. We thus developed
a new strategy, in which the collected side channel informa-
tion about the number of zeros and ones is fed directly into
the used machine learning algorithm. It turned out that
this can drastically improve the computation times of LR
on XOR Arbiter PUFs compared to attacks that solely use
ML techniques without side channel information (compare
Tables 5.2 and 1).
Finally, we suggested a simple new differential architec-

ture for the arbiter PUF as a countermeasure that could po-
tentially immunize PUFs against the power tracking SCA.
It consists of using two symmetric, inverted output signals
with two latches, and essentially re-iterates our above credo
that design symmetry can be helpful against PSC attacks.
It is an important outcome of our work that this simple,
but efficient countermeasure should be used in future PUF
designs in order to prevent our attack. Asides, it can also
be used to detect and stabilize output errors, even though
we did not follow this route in detail in this paper.
The PUF-attacks presented in our and other recent pa-

pers could be seen as a natural consolidation process in the
PUF area, similar to the detailed investigations that classi-
cal cryptoprimitives and security systems have already un-
dergone in the last decades. We believe that this interplay
between attacks and countermeasures will in the long term
be to the benefit of PUFs. Similar as in the case of classi-
cal systems, it will further improve implementation security
step by step, and will presumably lead to secure PUF con-
structions in the end.
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[27] Ulrich Rührmair, Christian Jaeger, Michael Algasiner:
An Attack on PUF-based Session Key Exchange, and
a Hardware-based Countermeasure: Erasable PUFs.
Financial Cryptography and Data Security 2011.
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