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Abstract

We investigate the power of physical unclonable functions (PUFs) aw ammitive in cryptographic proto-
cols. Our contributions split into three parts. Firstly, we focus on the rdmligaof PUF-protocols in a special
type of stand-alone setting (the “stand-alone, good PUF setting”) unitémed assumptions. We provide new
PUF definitions that require only weak average security properties d?thi€ and prove that these definitions
suffice to realize secure PUF-based oblivious transfer (OT), bitditmment (BC) and key exchange (KE) in said
setting. Our protocols for OT, BC and KE are partly new, and have ceptaicticality and security advantages
compared to existing schemes.

In the second part of the paper, we formally prove that there arestamp limits on the usability of PUFs for
OT and KEbeyondhe above stand-alone, good PUF scenario. We introduce two newalisticexttack models,
the so-called posterior access model (PAM) and the bad PUF modeprawnel several impossibility results in
these models. First, OT and KE protocols whose security is solely badedEsare generally impossible in the
PAM. More precisely, one-time access of an adversary to the PURé#end of a single protocol (sub-)session
makes all previous (sub-)sessions provably insecure. Secondyh03e security is solely based on PUFs is
impossible in the bad PUF model, even if only a stand alone execution ofdbepl is considered (i.e., even if
no adversarial PUF access after the protocol is allowed). Our impiitygiivoofs do not only hold for the weak
PUF definition of the first part of the paper, but even apply if ideal camtess and unpredictability is assumed
in the PUF, i.e., if the PUF is modeled as a random permutation oracle.

In the third part, we investigate the feasibility of PUF-based bit commitmeyurzbthe stand-alone, good
PUF setting. For a number of reasons, this case is more complicated ThandXE. We first prove that BC is
impossible in the bad PUF model if players have got access to the PUFdretineecommit and the reveal phase.
Again, this result holds even if the PUF is “ideal” and modeled as a randomugation oracle. Secondly, we
sketch (without proof) two new BC-protocols, which can deal with ba&&d with adversarial access between
the commit and reveal phase, but not with both.

We hope that our results can contribute to a clarification of the usability osEREryptographic protocols.
They show that new hardware properties such as offline certifiabilitytendrasure of PUF responses would be
required in order to make PUFs a broadly applicable cryptographic tbeksdfeatures have not yet been realized
in practical PUF-implementations and generally seem hard to achieve abkie: Our findings also show that
the question how PUFs can be modeled comprehensively in a UC-settsidemoonsidered at least partly open.

1 Introduction

Since the time of Kerckhoff’s principle [1], most cryptogtdac schemes have been built on the concept of a secret
key. This forces modern security hardware to contain a peéatigital information that is, and must remain,
unknown to the adversary. It is long known that this requeatrcan be difficult to uphold in practice. Physical
attacks like invasive, semi-invasive or side-channelkclaas well as software attacks like malware, can lead to
key exposure and full security breaks. As Ron Rivest empbdsin his keynote talk at CRYPTO 2011 [36],
merely calling a bit string a “secret key” does not make itrsedut rather identifies it as an interesting target for
the adversary.

Indeed, one of the initial motivations in the developmenPbj/sical Unclonable Functions (PUFg)as their
promise to better protect secret digital keys in vulnerdtdedware. A PUF is an (at least partly) disordered
physical systen® that can be excited with external stimuli or so-called drales:. It reacts with corresponding
responses, which depend on the challenge and on the micro- or nanostraletural disorder that is present in



the PUF. It is assumed that this disorder cannot be clonedproduced exactly, not even by the PUF’s original
manufacturer, and that it is unique to each PUF. Each PUkus implements a unique and individual functipn
that maps challengesirom an admissible challenge set to responsesg(c). The tuplegc, r) are usually called

the challenge-response pairs (CRPs) of the PUF. Due to iitplex internal structure, a PUF can avoid some
of the shortcomings of classical digital keys. It is usuddbrder to read out, predict, or derive PUF-responses
than to obtain digital keys that are stored in non-volatilermory. The PUF-responses are only generated when
needed, which means that no secret keys are present perthganesin easily accessible digital form. These
facts have been exploited in the past for different secymitocols. Prominent examples include schemes for
identification [33, 17] or various forms of (tamper sengjikey storage and applications thereof, for example
intellectual property protection or read-proof memory,[2@, 48].

In recent years, however, the use of PUFs in more advancptbgnaphic protocols has been investigated. Not
their application as a key storage mechanism is in the fottiseege approaches, but their usability as a novel, and
possibly very powerful, cryptographic primitive. The udelme PUF in these protocols is similar to a “physical
random oracle”. It is physically transferred between thetigs, and can be queried for responssely by the very
party who currently holds physical possession of it. Itdlelnge-response behavior is so complex that its response
to a randomly chosen challenge cannot be predicted pureherically and without physical measurement of the
PUF, not even by a person who held the PUF at earlier poinisian tn 2010, Riihrmair [38] showed that oblivious
transfer (OT) can be realized by physically transferrindJé Between two parties in this setting. In the same year,
the first formal security proof for a PUF-protocol was pra@ddoy Rihrmair, Busch and Katzenbeisser [39]. At
CRYPTO 2011, Brzuska et al. [7] presented a way to adapt @angtiversal composition (UC) framework [9]
to include PUFs, an approach that was followed up in 2012 by nexzent work of Ostrovsky et al. [31].

In this paper, we continue this line of research, and tryaoifgl the power of PUFs in cryptographic protocols.
We approach the problem from two opposite ends: At the oneoéride spectrum, we prove the security of
several PUF protocols in a stand-alone scenario under anead¢ PUF definition, and under the assumption that
all parties faithfully generate and use non-manipulated&Urhis ideal scenario is called the stand-alone, good
PUF model. At the other end of the spectrum, we introduce tews and very realistic attack models: The first
is the so-callegosterior access model (PAMh which it is assumed that the adversary has got physicassc
to the PUF at least once after at least one protocol sessienbmession (if there are any subsessions). Among
other situations, the PAM applies in practice whenever émesPUF is used multiple sequential protocol sessions
or subsessions. The second new model isbidd PUF modelwhich allows malicious players to fabricate and
use malicious hardware that looks like a PUF from the oujsghibiting the same CRP behavior etc., but which
possesses hidden extra properties that enable fraud. Wetkabin these two models, several PUF-protocols are
provably impossible. This includes PUF-based OT and KE&RAM, and OT in a stand alone, bad PUF model.
Our impossibility results even apply if we assume a veryrggjnandomness and unpredictability of the PUF, i.e.,
if the PUF is modeled as a random permutation oracle. Finatlyconsider the case of PUF-based BC, providing
one impossibility result and two new constructions (withproof) that can withstand adversarial access between
the commit and the reveal phase or the use of bad PUFs, bubtiot b

Related Work. Our paper relates to existing literature as follows. RUhirj@s] was the first to give (without
proof) an oblivious transfer protocol for PUFs, but his pautl is more complicated than ours, and is based on
an interactive hashing step with a linear number of rounds. r@odified OT-scheme is still based on interactive
hashing, but has constant rounds.

Ruhrmair, Busch and Katzenbeisser [39] were the first toigeoR UF-definitions together with formal security
proofs, but only considered schemes for identification.yTdeenot treat more advanced protocols like OT and BC
or consider more sophisticated attacks like bad PUFs. Eurtbre, their PUF-definition involves a relatively large
number of parameters.

Ruhrmair, Jaeger and Algasinger [41] provided an attack eassion key exchange protocol by Tuyls and
Skoric [47], in which they implicitly assume access to theFPAfter a protocol execution. Their attack motivated
our posterior access model (see Section 2). One differermartwork is that they do not lead general impossibility
proofs, but focus on attacking one specific protocol.

Brzuska, Fischlin, Schréder and Katzenbeisser present€dyato 2011 one (of several possible) ways to
adapt Canetti's UC framework to PUFs [7, 8]. They give PUResnes for OT, BC and KE, and prove them
secure in their setting. Their work differs from our work imamber of aspects: First, quadratic attacks exist on
their OT- and BC-protocols, whence they cannot be usedysafgiractice with optical PUFs or with PUFs of
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Table 1: A taxonomy of protocols whose security is solelydobsn PUFs in various scenarios (see Section 2 for
detailed definitions). A checkmark indicates that we prevadprotocol together with a formal security argument.

A cross means we lead a formal impossibility proof. A circtdeickmark says that we give a protocol without

a formal security argument, possibly making additionalusiég assumptions. A hyphen shows that the listed

scenario does not apply to the respective protocol. All isgtality results in the bad PUF models hold already

if the malicious parties use no other than simulatable ardlehge-logging PUFs (Section 2.4). Pointers to the
respective theorems and protocols are provided, too.

challenge lengths 64 bits, not even in the stand-alone, gtditisetting (see [40] and Appendix B). Second, their
PUF-based BC-protocol is a generic reduction to OT, whileB@-protocol is the first direct PUF-construction.
Finally, and perhaps most importantly, their adaption ef t/C-framework to PUFs does not deal with the cases
that adversaries have repeated access to the same PUF iplequibtocol (sub-)sessions, or that players actively
use manipulated, malicious PUFs. We introduce these twoamelwvealistic attack models in this manuscript, and
show that several protocols provably cannot solely be basdRlUFs under these attacks.

Just recently, Ostrovsky, Scafuro, Visconti and Wadiaaes@ered PUFs in the UC framework, and presented
new protocols and security proofs in an ePrint paper [31kyTihtroduce a new class of PUFs termed malicious
PUFs that is related, but not equal to our bad PUF model. Hexyévey do not give formal impossibility proofs
for PUF protocols, and do not consider specific bad PUFs (asi¢he simulatable bad PUFs or challenge-logging
bad PUFs introduced in Section 2). Another difference toveark is that they do not focus on protocols that are
solely based on PUFs, but combine PUFs with classical caatipntl assumptions. Contrarily, all protocols that
we provide are based on PUFs only, and the impossibility fsratrich we lead refer to protocols that are solely
based on PUFs. We will further comment on the exact relatipnisetween the work of Ostrovsky et al. and our
efforts in future versions of this paper.

Organization of this Paper. Section 2 describes different communication models amtlatcenarios. Section
3 gives protocols for OT, BC and KE, and security proofs in dtend-alone, good PUF setting. Section 4 lays
the mathematical foundations for our impossibility resulwhich are proven in Section 5. Section 6 deals with
PUF-based bit commitment protocols. Section 7 summariges/ork.

2 Communication Models and Attack Scenarios for PUF-Protocols

Let us overview and motivate the four communication modetsattack scenarios that are relevant for this paper.

2.1 The Stand-Alone, Good PUF Model

The stand-alone, good PUF model is the vanilla model amomgdhsidered scenarios. We assume that there is
only one single, isolated execution of a PUF-protocol (ab{¥session, if there are any (sub-)sessions). The PUF



cannot be accessed any more or communicated with after thefehe protocol (or (sub-)sessior).

The parties and also any external adversaries may only itbdufly generated, non-manipulated, “good”
PUFs. They are not allowed to change or manipulate existiig Rardware when they have access to it. Apart
from these restrictions, all parties may be actively malisi and can deviate from the protocol arbitrarily (includ-
ing the exchange of one good PUF against another good PUF).

The stand-alone, good PUF model will not be realistic in maractical applications, but makes a clean first
setting for studying the security of PUF-protocols.

2.2 The UC-Model of Brzuska et al.

Brzuska et al. [7, 8] proposed one possible method how Gand-framework can be adapted to PUFs. For a
detailed treatment we refer the readers to the originalnsdfze 8], but summarize the features of their model that
are most relevant for us in the sequel:

1. It is assumed that all used PUFs are drawn faithfully fropreviously specified PUF-family. Not only
external adversaries, but also the players themselvesoaelowed to use malicious hardware instead of a
PUF, physically manipulate a PUF, or add malicious hardw@emn existing PUF.

2. Only one PUF can be used per protocol sessiah The PUF is bound to this protocol session and cannot
be used in another session.

3. The adversary does not have physical access to the PUEdrethe different subsessiagsid of a protocol.

For completeness we indicate where the above features ecdisg in [8]: Features 1 and 2 directly follow
from the specification of the ideal PUF-functionalifg g, in particular the first and third dotted item of Fig. 2 of
[8]. Regarding feature 2, the functionalityitpyr specifies thafpyr turns into the waiting state if the sessieid
already contains a PUF. And the functionalityhdoverpyr specifies thagid remains unchanged in the handover,
i.e., the PUF remains in the same sessioa after the handover process. Feature 3 follows from therreit of
the subsessionssid throughout their paper. Examples include Figs. 3 to 8, tlséogols given in Figs. 3 and 7,
or the proof of Theorem 7.1, where the adversary is only albto access the PUF in the set-up phase, but not
during or between the different subsessions.

Please note that the above features are not rudimentargtaggehe model of [7, 8], but that they are central
to the security of their protocols and the validity of thescarity proofs.

2.3 The Posterior Access Model

The UC model of Brzuska et al. and their protocols assumetktigatdversary cannot access the PUF between
different (sub-)sessions of the protocol. However, thigureement cannot be guaranteed in many natural PUF-
applications. To see this, consider a well-establishediGgin scenario of PUFs: Their use on a smart-card (or
bank card) that has been issued by a central authGAtyand which is subsequently used in different terminals
by a user [33, 32]. To be more concrete, let us assume thattReérepeatedly employed in different terminals
for a session key exchange between @#e on the one hand, and the smart-card/terminals on the othmet. ha
Since an adversary could set up fake terminals, add fakereaa the card slots of terminals, or gain temporary
possession of the bank card when the user employs it in éifferontexts (for example when he is paying with
it), a straightforward and very realistic assumption ig traadversary will have temporary physical access to the
PUF between the different key exchange (sub-)sessions.

This natural scenario — and the multiple adversarial adoéssent to it — is hard to express in the framework
of Brzuska et al. The reason is twofold (see Section 2.2stRinheir model does not allow the same PUF to be
used in different sessions. Second, while the same PUF e@llde used in different subsessions, the adversary
has no PUF-access between these different subsessiorgafaple in the OT or KE protocol of [7, 8].

This motivates the introduction and investigation of new arore realistic attack models. One straightforward
possibility would be to assume that the adversary has adoetbe PUF betweerachsession or subsession.
However, for our upcoming impossibility results even a waraknd more general assumption suffices. We will
show in Section 5 that whenever the adversary gains accesBli#- only once after the end of a (sub-)session, all

10ne (costly) possibility to realize this in pratice wouldtbghysically destroy the PUF directly at the end of the protdor (sub-)session).



previous (sub-)sessions that have been carried out by tliB\§UF become insecure. This leads to the following
model:

The Posterior Access Model (PAM). In the PAM, we assume that the adversary and malicious Hagen
access the PUF at least one time after at least one completgat@ session or subsession (if there are any
subsessions).

Security of Existing PUF-Protocols in the PAM. We observe that many existing PUF-protocols are naturally
no longer secure in the PAM. This applies to the OT-protoé&tishrmair [38] and to the OT and KE protocol of
Brzuska et al. [7]. Since this is not of central importancéhis paper, we provide an example attack on the OT
protocol of Brzuska et al. in the posterior access model ipefglix C. Interested readers may perhaps use this
example attack to become familiar with the PAM.

2.4 The Bad PUF Model

One other central assumption in the UC-model of Brzuska.as @hat the players will not use malicious PUF-
hardware with properties beyond the expected PUF funditgn&onsider again the above smart-card example
for illustration purposes. Let us assume that @feissues the card that carries the PUF, and thaChand the
smart-card/terminals want to run an OT protocol in thisisgitWe must assume that tlié\ is not fully trusted

by the smart-card/terminals (note that if the CA was fullysted, then the smart-card/terminals would not require
an OT implementation). However, a malicio8 can cheat easily in this scenario by putting a malicious PUF-
hardware (a “bad PUF”) instead of a normal PUF on the smatt By name one example, ti&\ could replace
the normal PUF by a pseudo random number generator (PRNG avgieeds known to theCA. This enables the
CA to simulate and predict all responses of this “bad PUF” withzeing in physical possession of it, and breaks
one of the essential security features of the purported "RisiRhe bankcard, namely its unpredictability. It is
not too difficult to see that under the assumptions thatGheeplaces the PUF by a PRNG the currently known
OT protocols of Rihrmair [38] and Brzuska et al. [7] break doand are no longer secure. If ti&\ acts as
OT-receiver, for example, it can learn both bits of the Orels.

This motivates a systematic study of bad PUF attacks. Giyyeva denote by the terrtbad PUF” a hardware
system that looks like a proper PUF from the outside, showimgnput-output behavior indistinguishable from
a proper PUF, but which possesses secret, additional piepénat allow cheating. The assumed similar input-
output behavior makes it impossible to distinguish a bad ®dfm a proper PUF by mere challenge-response
measurements. In order to detect bad PUFs, an honest partgt need to physically open the PUF-hardware and
to inspect it thoroughly (as a regular and dedicated stelpeoptotocol), a task that is beyond the capabilities of an
average user. While detection of a bad PUF would not even lraigigeed with certainty by such a step (adversaries
would presumably develop obfuscation techniques for tlieFiaF hardware), it would surely destroy the opened
PUF, even if it was “good” and non-manipulated. Overallstiniakes bad PUFs a very simple and effective way
to cheat.

From an abstract perspective, bad PUFs exploit the facPt&is are real physical objects. Unlike the clean
binary strings transferred in classical cryptographidgeols, these objects may bring about unwanted properties.
They can act as real, physical “Trojans”. The two types of BakFs that we focus on in this paper are the PUFs
that are numerically simulatable by their manufacturet guno one else), and bad PUFs that “log” or record
all challenges that have been applied to them. Both arecpéatly easy to implement, but suffice for our formal
impossibility results in the upcoming sections.

Simulatable Bad PUFs (SIM-PUFs). The concept of a simulatable PUF (or SIM-PUF, for short) latieely
simple: It is a hardware system that looks like a PUF, havichallenge-response interface etc., but which pos-
sesses a simulation algorithim. Sim takes as input any challenge and computes in polynomial time the
corresponding response It is assumed th&lim has been derived during the fabrication of the simulatable P
via the special construction of the PUF. External parties wterely have access to the simulatable PUF after
fabrication are not able to derive a simulation model.

In practice there are several possibilities for implemeptsimulatable PUFs. A straightforward and very
efficient way is to use a trapdoor one-way permutation or ggeandom functiory, based on a short digital seed



s. The hardware of the simulatable PUF simply implementa/Nhenever the PUF is interrogated over the digital
interface with a challenge the hardware outputs the respomse g, (c).

The party who manufactured the PUF knows bgtis well as seed and can easily simulate the input-output
behavior of the PUF. Furthermore, if a cryptographicallychpseudo-random function is used, it is practically
infeasible for the honest parties to distinguish the bad RoiR a proper PUF with a real, random output. Two
other, more involved examples of simulatable PUFs are destin Appendix E. They are not strictly necessary
for the exposition of this paper, but they add interestingeeixformation.

Challenge-Logging Bad PUFs (CL-PUFs). A second feature that bad PUFs may possess is challengedpgg
A challenge-logging PUF (CL-PUF for short) with secret d¢diadie c*, also called the access challenge, is a
malicious piece of hardware that looks like a proper PUF ftbmoutside (with a challenge-response interface
etc.), but which possesses the following properties:

1. Except for one input challengg, the challenge-response behavior of a CL-PUF is exactty tlilat of
the underlying PUF. Whenever a challengenequal toc* is applied to the CL-PUF via its interface, the
challenge is passed on to the underlying PUF. The correspgpnelsponse is obtained from the latter, and
the CL-PUF uses this responsas its output.

2. The CL-PUF has a non-volatile memory (NVM) module in whithutomatically records all challenges
that have been applied to it.

3. When challenge* is applied to the CL-PUF, it does not pass on this challengbeainderlying PUF as
usual. Instead, the CL-PUF outputs the entire content afidimevolatile memory module (i.e., all challenges
that have previously been applied to it) via the challeregponse interface, and erases the content of the
NVM module.

If the PUF has a large, preferably exponential challengédtsen the probability that someone by chance inputs
¢* and detects the challenge-logging feature is negligiblglsm

Countermeasures? At first sight, a seemingly simple countermeasure agairgtaFs would be to “authenti-
cate” or “certify” the PUF in some way to detect bad PUFs. B@ameple, a trusted authorityA) could send a list
of CRPs as a “fingerprint” of a genuine PUF to the players leeéay protocol execution. On closer inspection,
however, this countermeasure turns out to be problematidéreaffective.

First of all, the use of &A that needs to be called in every single protocol sessiondvmake the use of PUFs
in security protocols obsolete. The aspired functioregittould then be implemented in a much simpler fashion
directly via theTA, avoiding the significant effort of physically transfeigia PUF during the protocol. Secondly,
CRP-based authentication does not rule out externallychddsdicious hardware, such as external challenge log-
gers. The latter do not affect the CRP-behavior of an exjgimd previously certified) PUF.

Meaningful “certification” of a PUF hence requires not orgy‘identify” a PUF. It also must (i) exclude that
external parts have been added to the PUF and that the P& has been manipulated; and (ii) it should
work offline, i.e., it must avoid calling a centr@A in every execution of the protocol. Currently, no protocmls
PUF implementations that realize these two properties bae®a considered in the literature. Given the current
state of the field, it seems hard to design such methods, evea $0 at low costs. Once more, this makes bad
PUFs a realistic and efficient method to cheat.

Brzuska et al. indeed assume certification of the PUF, butalqgive protocols or methods how it can be
achieved. For the above reasons, we believe that efficiification is currently infeasible in practice. This holds
even more if malicious players (not only external adveesgrgenerate and use manipulated PUFs.

Natural Limits on Bad PUFs and Super-Bad PUFs. How “bad” can a PUF be? When do protocols based
on bad PUFs become straightforwardly impossible? Perlapsbst extreme type would be a PUF that has a
real-time wireless connection to the malicious party. Tagypcould use the wireless connection (i) to passively
learn which challenges are applied to and/or which respoase obtained from the PUF by the honest parties,
or (ii) to actively influence and alter the challenge-resgmhehavior of the PUF. In the worst case, the malicious
party receives in real-time any challenge that is applietth¢oPUF, and returns in real-time a personally selected



response, which the PUF then outputs. A less laborious lgitigsivas that the malicious party sends one single
signal to the PUF that flips some selected PUF-CRPs for good.

We call bad PUFs of the above type (where there is a wirelessemion between the PUF and the malicious
party) “super-bad PUFs". Super-bad PUFs are not our cetapid in this publication. There are two reasons:
Firstly, it is straightforward that many protocols cannet lbased solely on PUFs (without making additional
complexity assumptions) if malicious parties can use sbperPUFs? Secondly, communication between the
super-bad PUF and the malicious player during a protocolbeaprevented in several natural PUF-applications
(for example bank cards) by shielding the PUF/bank cardHettime in which the protocol is run. This allows at
least protocols that are secure in a single execution, stbome setting. Such measures are already common today
in Automated Teller Machines.

We comment that all of our formal impossibility results irthad PUF model hold already if only two realistic
and simple types of bad PUFs are used, namely simulatabls Btufchallenge-logging PUFs (see the last Section
2.4). We leave PUF-protocols that remain secure duringipi@lprotocol executions in versions of the super-bad
PUF model (possibly under additional computational asgiomg) as a future research topic.

Security of Existing PUF-Protocols in the Bad PUF Model. Again, it is relatively easy to see that many
existing PUF-protocols are no longer secure if the advgrsan use bad PUFs, for example simulatable PUFs.
This applies to the OT-protocol of Rihrmair [38] and to the & BC protocol of Brzuska et al. [7]. Since this
is not of central importance to this paper, we describe exaaipacks on the OT protocol of Brzuska et al. under
the use of simulatable PUFs in Appendix D. Interested resagety perhaps use this example attack in order to
become familiar with the bad PUF model.

2.5 Combinations of Model Features

As indicated in Table 1, we consider different combinatiofisttack models, such as “Posterior Access, Bad
PUFs”, or “Stand Alone, Bad PUFs”. These combinations haeeeixpectable properties that follow from our
above discussion: For example, “Posterior Access, Bad PtdEans that the adversary and malicious players are
allowed to (i) have posterior access to the PUF as describ8ddtion 2.3, and (i) that they are allowed to use bad
PUFs as described in Section 2.4. Similar statements holthéoother combinations of model features that we
examine.

3 Protocols and Security Proofs in the Stand Alone, Good PUF Model

We now turn to the first part of the paper as announced in thieaadbsWe provide protocols for OT, BC and KE,
and prove their security in the stand-alone, good PUF ggtiihe protocols that we provide are at least partly new;
for example, we give the first direct BC construction thatses the unpredictability of the PUF alone. The exact
motivation for each protocol is described in the respediviesections. We start by giving a new PUF definition
that is relatively simple, avoiding an asymptotic treattrasmd min-entropy conditions.

3.1 Yet Another PUF Definition (YAP)

The question about an intuitive security definition for PUfes been open for some time. Early suggestions
captured the intuition about PUFs well, but partly suffefiemn formal problems [43]. Recent suggestions by
Ruhrmair, Busch and Katzenbeisser [39] and by Brzuska §fJatan be used in formal security proofs, but are
relatively complicated. The framework of Armknecht et &)} inainly applies to so-called Physically Obfuscated
Keys or POKs (sometimes also termed weak PUFs), for exanmfpfaVBPUFs, which are not relevant for this
paper. Finding an intuitive PUF-definition that appealsaodware designers and theoretical cryptographers alike
seems at least partly open. Existing work indicates thatesemall concessions between formal correctness and
simplicity might be inevitable.

2There are some parallels to another well-established exanopreclassical cryptography here, namely the condition thatwo provers
in Multi-Prover Interactive Proof Systems must not communiegite each other. This is a necessary requirement for exptpitie extra
power of two provers over one single prover. This is somewkmailar to the situation with super-bad PUFs: If real-time comimation
between the (super-bad) PUF and a malicious party is allopegthin security features break down naturally.



In the following, we present an extremely simple definitiarhich still suffices for certain security proofs.
It focuses on a single PUF, and does not require worst-cageige(or min-entropy conditions), such as the
definition of Brzuska et al. [7]. The reason is that many éxisPUF-candidates do not fulfill such worst-case
conditions, since they have strong correlations betweenioeselected CRPS. Nevertheless, such correlations
of a few specific CRPs do not hinder a PUF's applicability ipitgl protocols, in particular if it is used with
randomly selected challenges. This motivates to merelyirethe weaker feature of average-case unpredictability
in definitions.

Definition 1 (PUFs and Associated Functiong) PUF P is a physical object that can be stimulated by challenges
c from a challenge spac€p, by which it reacts with corresponding responsgeffom a response spacep. We
model P by a associated functiopr : Cr — R p that maps the challengesto responses = gp(c). The pairs

(¢, gp(c)) are called challenge-response pairs (CRPs) of the PUF.

Whenever the PUIP is clear from the context, we will often drop the index andtev@, R or g. Definition
1 assumes that suitable error correction techniques haredggplied to the PUF, leading to a stable PUF output.
The definition can easily be adjusted to the case of noisy Ridisuts by replacing»(c) by a random variable,
but we will not follow this route in this work.

In this paper, we will almost exclusively consider the cas#€ = R = {0,1}*, with X being the security
parameter. In order to achieve output length\afi practice, fuzzy extraction of several consecutive resps can
be applied, or the concatenation of theesponses of independent hardware instantiations of a PUF to the same
challenge can be used (as discussed in [7, 8]).

Definition 2 (e-Unpredictability with respect to PartiesjVe model the ability of a partyl to predict the output
of a PUF P by a random variabled p, which maps challenges € C to responses € R according to some
probability distributionD 4 p. We call a PUFP e-unpredictable with respect to a parg if

Prob..c[Ap(c) = gp(c)] <e.
Thereby the probability is taken over the random varialland the uniformly random choice ofe C.

Since we consider PUFs with challenge and response leniithhis paper, please note that the probabitity
might (for a well-designed or ideal PUF) be as low2as'. Again, we will sometimes drop the indeR if it is
clear from the context.

Definition 2 is astonishingly simple, but suffices for the oming security arguments of Protocols 4, 8 and 9.
Our framework is to some extent inspired by the work of Pael¢§84]. Instead of quantifying over all possible
(and infinitely many) Turing machines or adversaries thatetattack a PUF, we focus on the concrete capabilities
of a single adversary. We use the assumption that a giverrsatyecannot predict a PUF as a premise in our
security proofs, which are then led relative to this aduwsrstyou like.

3.2 Oblivious Transfer
3.2.1 Interactive Hashing with Constant Rounds in a PUF-S¢ing

One basic tool in our upcoming constructions is interadii@shing [44]. Ding, Harnik, Rosen and Shaltiel [4]
showed how to achieve secure protocols with only four rounds

Lemma 3 (Interactive Hashing [4]) Lets > 2 + log A. There exists a 4 messaigeractive hashing (IHprotocol
between Alice with no input and Bob with input striig € {0, 1}* that outputs to both player§V,, W) €
{0,1}* x {0,1}*, satisfying the following:

Correctness: If both players are honest, thdiy, # W, and there exists & € {0,1} such thatip, = W.
Furthermore, the distribution dfi; _  is 2~*-close to uniform on all string$0, 1}*\{W} not equal tol¥’.

3As an example, consider the well-known Arbiter PUF [24, 45]pfFing the first (leftmost) input bit will not change the outpwith a
probability close to 1, as the resulting delay change is datethby the accumulated delays in the rest of the structurehedsame time,
flipping the rightmost input bit will almost certainly chandeetPUF’s output, as the two signal paths are exchanged. Tlassrtbat there
are CRPs with strong positive or negative correlation. fRelaonsiderations hold for the Arbiter PUF variants Feedwsard Arbiter PUF and
XOR Arbiter PUF.



Security for Bob: If Bob is honest, then (for every unbounded strategy by Alicg # W, and there exists a
D € {0,1} such thatVp = W. If Bob choose$V uniformly at random, the® is uniform and independent
of Alice’s view.

Security for Alice: If Alice is honest, then (for every unbounded strategy by) Botevery subsef C {0,1}*,

A2°

|S| <2° = Pr[W, eSandW; € §] <10- o

Note that interactive hashing is unconditionally secur¢him sense that it does not require additional set-up or
computational assumptions. The above IH protocol by Dingj.aises a so-calledu-almostt-wise independent
permutation spacefrom which Alice uniformly selects a member. Since the s@deconly affects Alice’s own
security, interactive hashing does not need any pre-pobtmreement by Alice and Bob. l.e., no set-up assump-
tions are needed; the interactive hashing protocol is utitionally secure. We will use the lemma to construct
constant round OT and BC protocols solely based on PUFs isetyeel.

3.2.2 Oblivious Transfer Protocol

Following the PUF-based OT-protocols by Ruhrmair [38] amduBka et al. [7], we provide another PUF-based
OT-protocol in this section. Our motivation for giving ahet protocol is as follows: Compared to the original
protocol of Ruhrmair, the protocol below has been simpljfeatl also has a reduced round complexity due to its
new interactive hashing step. In comparison to the OT-padtof Brzuska et al., our approach does not allow the
same type of quadratic attack that is described in AppendifBe to the interactive hashing step, the security
proof Protocol 4 does not require conditions on the mutudib(mation-theoretic or computational) independence
of more than one CRP of the PUF, such as in [7]. The averagedigpability of single CRPs (see Def. 2) suffices.

Let P be a PUF withgp : {0,1}* — {0,1}*. Let the employed interactive hashing scheme be the four
message IH scheme of Ding et al. [4], whose security is desdiin Lemma 3. We assume that the sender’s input
are two stringssg, s; € {0, 1}* and the receiver’s input is a choice bit {0, 1}. The receiver intially holds the
PUF.

Protocol 4: PUFBASED 1-O0UT-OF-2 OBLIVIOUS TRANSFER WITHINTERACTIVE HASHING
1. The receiver chooses a challergeiformly at random. He appliesto the PUF, and obtains a respomse
2. The receiver transfers the PUF to sender.

3. The sender and receiver execute an |H protocol, wherestigiver has input. Both get outputy, ¢;. Lets
be the value where, = c.

The receiver sends := b @ ¢ to the sender.
The sender applies the challengggndc, to the PUF, obtaining responsasandr .

The sender send$, := so @ rp,y andS; := s; @ r1_y to the receiver.

N oo o &

The receiver recovers the stripgthat depends on his choice biasS, &r = s, Erpay BT = SpET; BT =
Sp.

We will now prove the security of Protocol 4 in the stand-&pgood PUF model using Lemma 3.
Lemma 5. Protocol 4 is secure for the receiver, i.e., the sender dagdaarn the receiver’s choice bt

Proof. From Lemma 3 it follows that the valugis uniform and unknown to the sender. Baloes not give any
information about whether = ¢y or ¢ = ¢;. Therefore, the sender has no idea whether the receiversnoor
r1, which means that the sender does not know whether s; has been revealed. O

Lemma 6. Suppose tha2* > 160\% and let2=* < e < 1/(10)). If after step 2 in Protocol 4, the used PUF
is e-unpredictable with respect to the receiver and if the IH &sé&d on parametes = A + log 1/€¢/(10)\), then
Protocol 4 is secure for the sender in that the receiver ieabl correctly guess both bit stringg and s; with
probability at most/40\e.



Proof. Let S, be the set of challenges for which the receiver is able taectyr guess responses with probability
at leasp (notice that; € S,). By Definition 2, a lower bound onis given by|S,|p/2* < e. This yields an upper
bound on the cardinality of;,,

|Sp| < e2*/p. 1)

In a standard run of Protocol 4, the receiver reconstrugsttings; by using his knowledge of = r;. In
order to also reconstruet _;, he needs to guess_;. Let ¢ be the probability that the receiver is able to guess
r;_1. By the definition ofS,,

q < Prob(ci—; € Sp) + Prob(ci—1 & Sp)p < Prob(ci—; € Sp) + p. 2

Notice that the receiver is able to predigtwith probability 1, therefore > 2-*. Together witl2* > 1603
this impliess > 2+ log A for s defined in the lemma. This means that Lemma 3 is applicable:pfobability that
r1_; corresponds to a challenge_; in S, is by Lemma 3 at most0 - A25—* if |S,| < 2°. Together with (1) this
proves

€2*/p < 2% = Prob(ci_; € S,) < 10A2°7*

Combined with (2) this gives
2 p < 2° = ¢ <1025 4 p.

Letp = €2*~%, which is< 1 if 10\e < 1 for s defined in the lemma. Then, far= X + log \/€/(10)),
g < 10A257* + €22 = V/40)e. O

Comments and Discussion. We remark once more that depending on the PUF and the adyersaay be as
small as2—*. Furthermore, please note thag /¢/(10)\) < 0, whences < A for the parameter choice of Lemma
6.

The security of Protocol 4 can be amplified by using a wellvkinaoesult by Damgard, Kilian and Savail (see
Lemma 3 of [11]):

Theorem 7 (OT-Amplification [11]) Let (p,q)-WOT be a 1-2-OT protocol where the sender with probability
learns the choice bit and the receiver with probability learns the other bib, _.. Assume thap + ¢ < 1. Then
the probabilitiesp and ¢ can be reduced by runninig(p, ¢)-WOT-protocols to obtain 1 — (1 — p)*, ¢*)-WOT
protocol.

In the case of our OT-Protocol 4 it holds that 0, whence the technique of Damgard et al. leads to an efficient
security amplification, and to @, ¢*)-WOT protocol. The PUF does not need to be transfekréiches, but one
PUF-transfer suffices.

Please note that the security guarantee of Lemma 6 contaiqsase root, but is otherwise very different from
the quadratic attack described in Appendix B. This quadttack breaks the OT-protocol of Brzuska et al. with
probability 1 if an adversary is able to read @dt? CRPs. The attack is independent of the cryptographic hasdne
and unpredictability of the PUF, and even holds for an ideatfectly random PUF. No probability amplification
by the technique of Damgard et al. is possible any more dfteattack. In addition to the quadratic attack, also
“normal” attacks on the employed PUF (for example modelittigcks [42]) can be mounted.

To the contrary, our protocol only allows modeling attackstioe employed PUF. Depending on the crypto-
graphic hardness of the PUF, our protocol can remain se€@¥3 CRPs (or even more) have been read out,
as long as a large fraction of the remainig— 2*/2 ~ 2* other CRPs remains relatively hard to predict. The
protocol security can then be amplified exponentially bylgpg the technique of Damgard et al.

Security in the PAM and the bad PUF model. Protocol 8 is not secure in the PAM or the bad PUF model.
A malicious receiver with posterior access to the PUF camlbath stringssy ands;, and the same holds for a
malicious receiver employing a simulatable PUF. The attak very similar to the attacks in Appendices C and
D. The details are straightforward and omitted for spaceaes.
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3.3 Bit Commitment

It is also possible to devise a BC protocol based on PUFs dadhittive hashing. Our upcoming protocol is the
first direct BC-construction that relies on the unpreditighof the PUF alone. Earlier approaches utilized the
non-invertability of Physical One-Way Functions [32], educed BC to OT [7, 8].

Let P be a PUF withyp : {0,1}* — {0,1}*. Letthe employed interactive hashing scheme be the fousages
IH scheme of Ding et al. [4], whose security is described imhea 3. We assume that the sender (=committer)
initially holds a bitb and the PUF. Our protocol works as follows.

Protocol 8: PUF-BASED BIT COMMITMENT IN THE STAND-ALONE, GOOD PUF SETTING

Commit Phase:
1. The sender uniformly chooses a random challergad applies it to the PUF, obtaining the response
2. The sender transfers the PUF to the receiver.

3. The sender and receiver execute an IH protocol, whereethdes has input. Both get outputg, ¢;. Leti
be the value where; = c.

4. The sender sends= b @ i to the receiver.

Reveal Phase:
1. The sender sendsr to receiver.

2. The receiver challenges the PUF withand verifies if the response he obtains is equal to

Security in the Stand-Alone, Good PUF Model. The security analysis of the BC-Protocol 8 in the stand-@lon
good PUF model is very similar to Protocol 4, whence we onbtakit. The perfect concealing property follows
from a proof similar to that of Lemma 5: Lemma 3 implies thalues is uniform and unknown to the receiver.
So,b’ does not give away any information about whether 0 orb = 1.

With respect to the binding property: If the sender wantsaimmit to bothb = 0 andb = 1, then he must be
able to guess bothy andr;. However, the PUF is not in the sender’s possession in thadpl af the protocol.
Therefore, the proof of Lemma 6 is applicable and the bingiraperty holds with probability> 1 — +/40\e for
the parameter selection in Lemma 6.

Security in the PAM and the bad PUF model. We observe that Protocol 4 is still secure in the PAM, i.e., if
the sender and receiver can only access the PUF after thacplstend (=after the end of the reveal phase). The
reason is that nothing needs to remain secret in a BC pro#dtad the reveal phase. The protocol is no longer
secure if the sender can access the PUF before the revea (thasinding property gets lost), but this access
during the protocol is not allowed in the PAM. Furthermore, the igdproperty vanishes if the sender uses a
simulatable PUF. The details of the attacks are relativishjlar to the attacks in Appendices C and D, and are
omitted for space reasons. General impossibility proadds ittclude the insecurity of the above protocols in the
PAM and bad PUF model are presented in Section 5.

3.4 Key Exchange

Let us finally give a protocol for PUF-based key exchange éngtand-alone setting. Generally, PUF-based KE
protocols have been around as folklore in the community fotegsome time. The earliest mentioning of “key
establishment” as a PUF-application to our knowledge wasentyy Pappu et al. in 2002 [33]. The first concrete
protocol for PUF-based KE was probably given by van Dijk i©02Q12]. Brzuska et al. describe a similar KE
protocol in a UC-setting in 2011 [7]. The protocol that wepde below slightly deviates from earlier approaches,
as it does not assume an authenticated physical channed precisely, we assume the following communication
channels between Alice and Bob:

1. A binary channel, which is authenticated.
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2. A physical channel, over which the PUF is transferreds #ssumed to be insecurin the following sense:

— In the good PUF model, the PUF be accessed by the adversa@Ri® measurements or exchanged
against another good PUF by him.

— In the bad PUF model, the adversary is potentially allowetianly to access the PUF, but also to
manipulate it arbitrarily or to exchange it against a bad PUF

Now, let P be a PUF withgp : {0,1}* — {0,1}*, which is originally held by Alice. Our key exchange protbco
works as follows.

Protocol 9: PUFBASED KEY EXCHANGE IN THE STAND-ALONE, GooD PUF SETTING

1. Alice chooses two challengesndc* uniformly at random, and measures the two correspondirmprees
randr*,

. Alice sends the PUP to Bob.
. When Bob receives a PUF, he sends a message “Got it!” ovéirthey channel.

. Upon receipt of this message, Alice sefds’), ¢* to Bob.

a A W0 DN

. Bob applies the challengego the PUF he received in Step 3. If the obtained responseeiguat tor, he
aborts.

6. (Applies only in the super-bad PUF modeBob shields the PUF from any external communication for the
rest of the protocol.

7. Bob applies the challengg to the PUF, obtaining responsé.

8. Alice and Bob derive a key from the respom$ewhich is now known to both of them.

The security in the stand alone, good PUF model follows atimasediately: The adversary can only predict
r* with probability e. Furthermore, he can only exchange the PUF against anotiuet BUF without being
detected with equally small probability.

It is relatively easy to see that the protocol is no longeusem the PAM: An adversary eavesdrops the binary
communication in the protocol and leareis He applies* in his posterior access phase to the PUF, obtains
and derives the same key.

Interestingly, the protocol is still secure in the standral, bad PUF model. To see this, convince yourself that
Alice and Bob will not benefit from using bad PUFs in this s&jtiThey fight a joint adversary, and the PUF will
not be re-used by other parties in the stand-alone settihg. atlversary cannot replace the PUF against a new,
possibly bad PUF due to the authentication step. Pleaseatsai¢hat a standard challenge-logging PUF will not
help the adversary, since he will not have access any motet®t)F and hence cannot read out the challenge
logger (recall that we are in the stand alone model). If siyaer PUFs are allowed, the adversary could attempt
the following strategy: He might add a PUF-response trattiemivhich does not change the input-output behavior
of the PUF, but transmits wirelessly all responses obtafrad the PUF by other parties to the malicious party.
However, this is prevented by the shielding step 6.

4 Formal Foundations for the Upcoming Impossibility Proofs

We now turn to the second part of the paper, in which we proveraber of impossibility results for protocols
whose security is solely based on PUFs. Before we can lead fireofs in Section 5, we will lay the mathematical
foundations in this Section 4. The main observation behindrapossibility proofs is that ideal PUFs with multi-
bit outputs (such as the PUFs used in [7, 8] and in this pajgan) some similarity with random oracles. It is long

4Please note that insecure physical channel, for exampleogitility to exchange PUFs, marks one difference betweeprtocol and
the protocol of Brzuska et al. [7]. In the latter, it is assuntieat also the physical channel is authenticated, and tleaPthF is somehow
certified.
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known that the power of the latter for implementing cryptggic protocols is limited, as stated in the well-known
result of Impagliazzo and Rudich [22].

Before this observation can lead to a formal impossibilitygs, several non-trivial problems need to be solved,
however. First, the mathematical concepts relevant to thx wf Impagliazzo and Rudich need to be adapted to
PUFs, which is a subtle and tricky task. It involves a claaificn of questions like: What is the view of a player in
a PUF-protocol? While the knowledge of players in binary grots continuously increases (they can record and
store all bit strings they have ever seen), the knowledgitityaof players in PUF protocols may decrease once
they give away the PUFs they previously held in possessiamv ¢&n this property of the view in PUF-protocols
be modeled?

Another central problem in the application of Impagliazzodich to PUFs is that a random oracle can be
accessed by all parties continuously throughout a protogblle a PUF can only be accessed by the player
who currently holds possession of it. This issue seems sereeat first sight that it prevents the application
of Impagliazzo-Rudich to PUFs at all. We circumvent it by\yaing the impossibility of PUF-protocols in a semi-
honest setting, and by exploiting the specific properties of our two attaadeis: Both in the bad PUF model
and in the PAM, we eventually arrive in a situation where dhlyaccumulated knowledge and access to the PUFs
at the end of the protocas relevant, and where the adversary has got free accesis actumulated knowledge
(details follow below). Nevertheless, this proof stratatjlf requires a formal definition of semi-honest behavior
in the context of PUFs and of several other formal notionscvis the purpose of this section.

4.1 Physical Unclonable Functions and Random Oracles

Meaningful cryptographic protocols that use PUFs shoulttast be secure if the employed PUFs have ideal
input-output complexity and randomness. This case oc€ureiinput and output behavior of the PUF is per-
fectly random, or similar to a random permutation oracley Anpossibility proofs which hold for such idealized
PUFs (as the proofs in the upcoming sections) carry over teasonable and possibly weaker PUF-definitions,
since these definitions will include PUFs with perfect ramdess as special cases. This motivates the following
mathematical model for “ideal” PUFs.

Definition 10 (PUF-Families) We say that?? = (My)xen is a PUF-family if eachMy, = {P},..., P } isa
finite set of PUFs, each of which has challenge{get }*.

Definition 11 (Ideal PUF Model) A family of PUFSZ? = (M) en is called an ideal family of PUFs if:

1. Forall A € N, each PUF in)M,, has challenge and response $8t1}*.

2. For any probabilistic polynomial time (in) algorithm D, and for sufficiently large\, the advantage by
which D can distinguish between a random permutation oracle andranle for the functioryp», where
P> is uniformly drawn from all PUFs iVl is negligible in\.

We would like to comment that it is necessary to work with ayngstotic treatment here, since Impagliazzo-
Rudich is formulated in such a manner. This poses no restmith our results.

4.2 Physical Unclonable Functions in Protocols

In this section, we need to clarify a few notions that areteeldo the use of PUFs in cryptographic protocols. They
include the concept of a protocol that is solely based on Pthiesviews of the parties in PUF protocols, and the
meaning of semi-honest behavior in a PUF-protocol.

Definition 12 (PUF-Protocols) A two-party protocoll is called a two-party PUF-protocol if the parties have a
binary channel and a physical channel (over which they caimamge physical objects) at their disposal, and if at
least one of the parties at least once has a PUF in his possesiiring the protocol.

A two-party protocoll is solely based on a family of PUE# = (M) en (for the securiy parametex) if

(i) Itis a PUF-protocaol,

SPlease note that this is no restriction: If a PUF-protocallisady provably impossible when the parties behave seméstignit is even
more so when the parties may act fully dishonestly.
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(ii) the parties can draw PUFs uniformly at random from thé &&,, where) is the security parameter, and

(i) no other ideal functionality or computational assutigm (like, e.g., trapdoor one-way permutations) and no
other set-up assumptions (such as an initial common reéerstring) are used.

We note that we will often leave away the explicit refereréhie security parametey, and will simply write
that a protocofis solely based on a family of PUF$?” .

As discussed at the beginning of Section 4, we require a tiefindf semi-honest behavior in the context of
PUFs for our impossibility proofs. It is perhaps interegtio start by having a look at the standard definition
of semi-honest behavior in the deterministic case from @adth [19], which is given in Appendix A. In this
standard semi-honest model without transfer of physicgatb (where the adversary follows the protocol with
the exception that it keeps the values of all its intermedi@imputations), the joint views of the adversary and the
honest player must be close to a simulated view in the idedeind herefore, it is not important at what time the
adversary knew a value, but only that he knows it in the end.

In PUF-protocols, however, we are not only interested in idyfsaknowledge of (digital) values, but also
in indirect knowledge of values that a party can obtain byrging PUFs while they are in the party’s physical
possession. Therefore, a party’s view does not only corathiknown digital values but also knowledge on the
PUFs in his possession. Since PUFs are transfered betwa@smhiring a protocol, the possible knowledge that
can be acquired by the adversary at a given point in time @®sented by his view) may decrease. This is in
strong opposition to the semi-honest model without PUReesa party can always keep a copy of any binary string
that is transfered. This implies that in protocols wheregitgl objects such as PUFs are transfered, the adversary’s
final view of what he could have computed using the PUFs dutiegimes they were in his possession is most
relevant.

The following Definition 13 stipulates a notation for recioiglwhich physical objects (PUFs) each party pos-
sesses at each point in time. This leads to an extended wefioitthe view of each party in the definition. By
using the extended definition of views, the knowledge eacty mauld possibly acquire while in possession of
physical objects can then be put down in Definition 14.

Definition 13 (Re-defining the view in PUF-protocols) et IT be a PUF-protocol solely based on a familiy of
PUFs £2. The distribution of PUFs during the executionldfon input(z, y) is represented as follows: Lég be
the time at which the execution Bfon (z, y) starts. We partition the time axis for the first (resp., sefquarty

in intervals[to, t1], [t1,t2], - ., [tn-1,tn = o0), Wheret; corresponds to the time of theth transmission of a
message by the first (resp., second) party to the second (fesp party. LetS; C {1,2,...,kx}, 1 < i < n,
represent the indices of the PUFs My, = {P}, ... ,P,jA} that were at one time or another available to the first

(resp., second) party during the time interval ,, ¢;].%

Letsetl;, 1 < i < n, represent the challenge-response pairs collected duhiagprotocol execution in interval
[ti—1,t;] by the first (resp., second) party . Sgtcontains triples(j, ¢, g;(c)), where we write for simplicity;
instead ofgp».

Without loss of generality, we assume that#ie messagen;, 1 < i < n, received by the first (resp., second)
party is in interval[t;_1,t;] (herem; or m, may equal the empty message). The finatw of the first (resp.,
second) party is redefined as ew!! = (z,7,my, S1, T4, ..., My, Sn, T),) (resp.vi ews = (y,7,mq, 51, Ty, ...,
mn, Sn, T},)), Wherer represents the outcome of the first (resp., second) partiesrial coin tosses.

By S'(z, y) we denote the set of indices corresponding to the actualigdiysbjects used in the execution of
Mon(z,y).8

We will now define into what extent parties can extract knalgke from the physical objects that are in their
possession. We say that a semi-honest party still complits avprotocolll that involves transfer of physi-
cal objects if he queries physical objects that are in his@asion in order to gain extra knowledge. Since a

6Since one protocol execution may interfere (be executedriallp§ with other protocol executions by the same and otlagtigs, a PUF
may at one time or another be in possession of both the first @settond party during an intenfaj_1, ¢;]. If there is no interference with
other protocol executions, they for the first party is disjoint front; for the second party.

"The final view needs to record all the challenge-responsssatére queried before, since a physical object that wasegLieray not be
accessible after the end of the protocol execution.

8Since each party may at one time or another have possessiopsiéalrobjects that are not used during the executidi,afetsS; are not
necessarily subsets 6t (z, ). We notice that PUFs in the PAM are accessible by both paatigiee end of the protocol execution in which
caseS"(x,y) C Sy, for both parties.
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party’s internal coin tosses can be computed before theddtarotocolll, the first (resp., second) party can use
the physical objects ir; to compute new challenge response pairs base@conmq,T1,...,m;,T;) (resp.,
(y,r,my,T1,...,m;,T3)). Forl < i < n, let z; denote the set of challenge response pairs gathered up to
the time right beforen; has been received. Let = (. Notice thatz;_; C z andT; C z. Based on
(x,7,mq,...,m;, S, zi—1) (resp.,(y,r,m1,...,m;,S;, z;—1)) the first (resp., second) party may use a proba-
bilistic polynomial time algorithmd; with oracle access tfg; };cs, to compute and add new challenge-response
pairs toz;. This leads to the following definition.

Definition 14 (Knowledge extraction)Let My = {P}, ..., P,j)} be a set of PUFs with set of associated functions
G={g,---,9x, }- ° Aprobabilistic polynomial time algorithmk; with oracle access tg, denotedKlg, is called

a knowledge extraction algorithm for the first party if it ismaposed of algorithmd, A, etc., such that on input
vi ew!(z,y) = (z,7,m1,S1,T1,...,Mn, Sp, T, S) ititerates, forl <i < nandz, = 0,

{g5}ies;
Zz<_AZ ’(x,r,ml,...,thi,zi,l)Uzi,l uT;

and outputgx, v, my, ..., my, z,). In a similar way, we define knowledge extraction algorithiasfor the second
party.

Based on knowledge extraction, we are now able to define Bermast behavior with transfer of physical ob-
jects. The definition is subtle in that it almost resemblesdéfinition of privacy in the semi-honest model without
transfer of physical objects for oracle-aided protocoée(8ppendix A). The difference is that computational in-
distinguishability is now defined with respect to how knoslde can be extracted from a view: A machibahat
distinguishes a simulated view from a real view does not lzeaess to all functionalities i@, it may only use
knowledge extractors. We model this by first explicitly sorming a real view by using a knowledge extractor
after which D proceeds its computation without accessjto(The simulator algorithms do have accessitm
order to obtain challenge-response pairs that cannot biaglisshed from the ones recorded in the views.)

Definition 15 (Privacy w.r.t. semi honest behavior in the deterministieeewith PUFs)Let f : {0,1}*x{0,1}* —
{0,1}* x {0,1}* be a deterministic functionality, and denote the first (respcond) output of (x, y) by f1(z,y)
(resp.,f2(x,y)). Letll be a two-party protocol for computinfyduring which PUFs from a s€t/,, with associated
functions in a seg are transferred.

We say thatl privately computeg if there exist probabilistic polynomial time algorithmsrbtedS; and Ss,
such that, for all knowledge extraction algorithms for thstfand second part{), denoteds’; and K5,

{Slg(xa fl (.CE, y))}m,ye{o,l}*
{S2g (1‘, fQ(xv y))}m,yE{O,l}*

{Klg (VI evvlf(x, y))}ﬁ,ye{o,l}*
{K2g (VI erQ_[(LU, y))}r,yG{O,l}*

Mo e

where|z| = |y|.

Based on these definitions, we have laid the foundation ftipossibility results in the next section.

5 Impossibility Results

In this section, we will prove impossibility results for t&in two-party protocols in the posterior access and bad
PUF models. They apply to a semi-honest behavior in thesartedels. Please note that this is no restriction: If
a protocol is impossible already if the parties behave demkstly, it is even more so in the case the parties are
fully malicious.

5.1 Impossibility of OT and KE in the Posterior Access Model

In the semi-honest model, we model posterior access bygach party access to all the used Pldffer each
execution of a protocol (or protocol (sub-)session, if ¢hare any):

9As in Definition 13, we writey; instead Ofgpa.
10Here, computational indistinguishability is defined witspect to machines that do not have oracle acce§s to
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Definition 16 (Privacy w.r.t. the posterior access moddlpet IT be a two-party protocol solely based on a family
of PUFs & for privately computingf. LetII’ be the protocol which on inpyt:, y) executedl after which all the
PUFs corresponding t&™ (z, y) are made physically accessible to the first party and thersgparty. We sayl
privately computeg solely based or” in the posterior access model if protod® privately computeg.

The following lemma reduces protocols that use PUFs in tHd RAprotocols that use a random oracle.

Lemma 17. LetII be a two-party protocol solely based on a family of PU#sfor privately computingf. If II
privately computeg in the posterior access model, then prototiglwhere each query to a PUF is replaced by a
call to a random oracle, privately computgs

Proof. Let \ be the security paremeter, and (et= {¢1, . .., gx, } be the set of associated functions to the set of
PUFsM, of &. Let Ay, A,, ..., define a knowledge extraction algorithih Since the PUFs that are usedlin
are uniformly drawn from\/,, and since outputs of different PUFs are uncorrelated, wenestrict A;'s oracle
access td g, }jes, to oracle access to the subsej } ;< s-, whereS? represents the PUFs B) that were actually
used in the protocol execution.

Sincell privately computeg with respect to PUFs in the PAM, we assume that, without Ibgeperality, for
all inputs(z, y), a protocol executioil on (x, %) has the property tha'!(z, y) is a subset of,, in the view of
the first party as well as a subset$f in the view of the second party, henc, C S,,. Therefore, without loss
of generality, the knowledge extraction algoritfthmay postpone all the computations4n, As, to A, till
the very end in4,,. In other words K effectively takes as input a non-extended vigwyr, m+, ..., m,) (resp.,
(y,r,mq,...,my), re-computes all the challenge-response géirs. . ., T;, that were used during the protocol
execution, and computes the new challenge-response paigsbly using oracle access & = S'(z,y). Since
outputs of different PUFs are uncorrelated, we may as wedl fi oracle access to all ¢f (since this will not help
a machine that attempts to distinguish simulated views fireahviews).

The non-extended viewz,r,m1, ..., m,) (resp.,(y,r,my,...,m,)) are the views of a protocdll’ that
proceeds as il but without transfer of physical objects and where quereghysical objects are replaced by
oracle access t§. So, Definition 15 holds for any probabilistic polynomiaing algorithmsk; and K5 with
oracle access t6 wherevi ew!! (z, y) andvi ew] (z, y) are replaced byi ew!" (z, ) andvi ewd! (z, y). Now,
we may discard{; and K, if we allow the distinguisher oracle accesgtoThis corresponds to Definition 13 for
an oracle-aided protocol with access to ordagléccording to the PUF modef; cannot be distinguished from the
random oracle, which proves the lemma. O

The Impagliazzo-Rudich result says that there are no backimplementations of OT and KE from the
random permutation oracdfe[22, 14]. Together with the previous lemma this proves:

Theorem 18. There does not exist a two-party protocol for privately cotimy oblivious transfer (OT) solely
based on an ideal family of PUFs in the posterior access model

We notice that the parties in KE collaborate in order to abtashared key; they will execute the KE protocol
without cheating. Therefore, since this section assunmasisenest behavior by the parties that execute protocols
between themselves, the analysis in this section does pbt epKE.

In KE we consider a third party: the adversary, who is intpticgy and resending the communication between
the two honest parties. In the PAM the adversary has accdbe tased PUFs after the protocol execution. So,
in the semi-honest model with transfer of physical objegenéralized in the natural way to multiple parties) the
views of the honest parties and the adversary are the sammetlas KE protocol where all queries to PUFs are
replaced by calls to a random oracle (a detailed proof ofsfaitement is similar to the proof of Lemma 17). Since
this is impossible by Impagliazzo-Rudich, we obtain

Theorem 19. There is no secure two-party key exchange (KE) protocolysbsed on an ideal family of PUFs
in the posterior access model.

We notice without proof that KE based on so-called erasabllesH41] in the posterior access model is possi-
ble: An erasable PUF [41] is a PUF that allows its owner toctlely erase responses to single challenges without
affecting the responses to the other challengésSince an erasable PUF changes its input-output behavior ove

11see [14, 35, 6] for KE protocols based on OT.
12pgain note the similarity with an established concept insitzs cryptography here, namely with the idea of a reusabienoon reference
string with erasing parties [10].
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time, it does not satisfy Definition 11 and is therefore notered by the theorem. KE based on an erasable PUF
P can be constructed in a straightforward way as follows. F@naom challenge, Alice obtains a response
from P. Alice transmitsP to Bob, who acknowledges receipt Bf Once the acknowledgement is received, Alice
transmitsc to Bob, who obtaing: from P and erases the challenge-response (air) from P. An adversary
only knowsc at the end of the protocol wheh is not in his possession, after the protocol execution theradry
may gain access t&, however, has been erased in the meantime. Similarly, OT based onbégd®dFs in the
posterior access model is possible, too.

5.2 Impossibility of OT in the Stand-Alone, Bad PUF Model

We continue by showing a general impossibility result on @Thie stand-alone, bad PUF model: If malicious
parties are allowed to use bad PUFs that are simulatabletaibioge-logging at the same time, then there are
no protocols that securely implement OT by using at ndddbg A\) different PUFs. The proof even applies to the
stand-alone setting, which is strictly weaker than a stechd&C-setting.

Our argument works as follows. We say that a two-party patbcprivately computeg even if it is based on
a family of bad PUFs if (1)1 can be solely based on a family of (proper) PUFs and privatetyputef, and (2)
1T still privately computed if the parties use bad PUFs. More specifically, we consideearial behavior of the
following form: The adversary always follow$ as the honest player; but instead of honestly producing Phi-s
always chooses a random one-way permutagiand produces a bad PUF that implemenend has at the same
time a challenge-logger as described in Section 2. Whenevgets a PUF back, he reads out all the challenges
from the logger. Whenever the PUF is not in his possessiontjlhbas access to the input-output functionality of
the PUF, as he knowg Let the set of all adversaries of this form Hde

We now change protocal in the following way:

a) If a PUF always ends up on the side of the party who create@tH-, then we replace the PUF by queries.
So instead of sending the PUF to the other party, this othey pands the challenges he wants to learn to
the creator of the PUF, who responds with the correspondifigriesponse.

b) If a PUF always ends up on the party’s side who did not crigatee replace the PUF by a random oracle.
This means that both parties have an oracle implementingdhee function as the PUF already at the
beginning of the protocol, and do not need to transfer the. PUF

Let this modified protocol bél’.

Lemma 20. LetII be a two-party protocol solely based on an ideal family of BUWF for privately computingf.
If II privately computeg solely based o7 in the bad PUF model and if every PUF usedlinalways ends up
on the same side, thdll privately reduce¥ f to the random oracle.

A detailed proof is given below. We first provide a sketch: Mmséonest adversary in the random permutation
oracle model follows the protocol, but may ask some addifigneries to the permutation oracle before outputting
his view. We want to show that for any such adversdryhere exists an adversasdy € A for the protocolll such
that the joint views of the adversary and the honest partydarical in both settings.

e For the PUFs replaced in step a): For all PUFs where the aalyeis not the creator, the two settings are
identical. For the PUFs where the adversary is the credtavill learn the queries of the other party to the
PUF. But since we assume that he always gets the PUF backatritetmstalled a logged’ will eventually
also learn the queries.

e For the PUFs replaced in step b):may ask the permutation oracle some extra queries duringtbe &nd
of the protocol. But sincel’ always has a copy of the PUF at the end of the protocol, he midnea&nd of
the protocol ask the same queries/as

Therefore, the views of the two parties at the end of the paitare the same in both settings, which implies the
statement.

13we refer to Appendix A for a formal definition of privately rezing a function to an oracle.
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Proof. In order to prove thall’ privately reduceg to the random permutation oracle, we show that its views are
identical to those ofI in which each PUF is replaced by a bad PUF. Then, sihqeivately computeg even if
based on a family of bad PUFs, the lemma follows.

Let P! (resp.,P?) be the set of bad PUFs created by the first (resp., secon)ipdi. Let D! C P! (resp.,
D? C P?) be the subset of bad PUFs that ends up at the second (restp pdirty. Notice that, since the PUFs are
simulatable, both parties have access to the functioeslitf D! U D? at the end of protocdIl.

The bad PUFs itP! \ D! end up at the first party and are replaced by queries in prbidca.e., the second
party replaces the PUF queries by queries to the first patg. view of the second party does not change due to
this substitution; for any knowledge extraction algoritti,

Ky(vi ewd) = Ky (vi ewd)), 3)

wherell” is the protocol where the second party replaces the PUFeguer! \ D! by queries to the first party.

The view of the first party does change. However, since thefdagy has access tB' \ D!, a knowledge
extraction algorithm can access the corresponding clylEggers at the end of the protocol by using the secret bit
strings (access challenges) for accessing the loggessigthbssible because, these secret bit strings are recorded
in the view of the first party). This means that such a knowdeglgraction algorithm reproduces the queries made
by the second party. So, for such key extraction algoritiins

Kl(Vi evvlf) = Kl(Vi erlT’). (4)

By a similar argument, for all knowledge extraction algamits K; and K, that access the loggersit \ D*
and P2\ D? resp., equations (3-4) hold féf” defined as protocdll where the second party replaces the PUF
queries toP! \ D! by queries to the first party and where the first party repléte$ UF queries té? \ D? by
gueries to the second party. Therefore, sifigerivately computeg even if based on a family of bad PUFs, also
II” privately computeg even if based on a family of bad PUFs.

Notice that, at the end of protoctl”, S™ (z,y) = D' U D? since the PUFs itP! \ D! and P? \ D? are
replaced by queries. Since both parties have access tortbtidialities of D' U D? at the end of protocdll”, I1”
also privately computeg if solely based on PUFs in the PAM. Hence, we may apply Lemmdid which the
lemma follows. O

Lemma 20 does not cover a third kind of PUFs, however: PUFe/fach it is not known at the beginning of
the protocol on which side the PUF will end up. In order to eltdss gap, we change protodalin the following
way:

Suppose thall uses a fixed number @ (log \) PUFs. For simplicity, we assume that both the first and
second party draw/create PUFs each* Then, for all inputs(z,y) and every protocol executidi on (z, y),
|S"(z,y)| = 2m = O(log \). We usdl to obtain a protocall* whose aim is to evaluatgfor some random input
(hence IT* does not take any input itself, the random input is constdibly the two parties during the execution
of IT*):

a) By coin tossing, the two parties create= poly(\) random inputs(x;, y;) }1<i<». FOr each random input
they execute protocdll where each PUF challenge is replaced by a call to a randonteorBeiring the
protocol execution they track for the first (resp., secoratfypwhere thei-th PUF drawn/created by the
first (resp., second) party would have ended up. Since théepdollow the protocol honestly and since
proper PUFs cannot be distinguished from random permutgtihe distribution among the two parties of
the2m "tracked PUFs" at the end of the execution has the sametistmas the distribution of PUFs i for
random inputs. Sincegm = O(log \), then = poly(\) executions are sufficient to estimate the most likely
distribution; at least a distributioP that occurs with probability(D) > (1/22™)/2 = 1/0(poly()\)) can
be estimated.

b) LetII’ be the protocol as defined before by assumingD, the likely distribution of PUFs computed as
a result of the previous phase. Again, the two parties createpoly(A) random inputs{(z;, y;) }1<i<n-
For each random input they now execute protddal During the execution ofl’ they again track for
the first (resp., second) party where thth PUF drawn/created by the first (resp., second) party avoul

141f for some protocol executions less thanPUFs are drawn/created by one of the parties, then we simpbratto the protocol additional
steps during which the parties draw/create extra PUFs.
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have ended up. If the resulting distribution equalsfor some input(z;,y;), then the parties conclude
the protocol with outputa;, f1(x;,y;)) for the first party andy;, f2(x;,y;)) for the second party. Since
p(D) = 1/0(poly()\)), the protocol will find such an inputz;, v;) with high probability.

The above protocoll* is a probabilisticpoly(A) time protocol using a random oracle (and no PUFs) that
evaluatesf for some random input, in other wordH," computesrandomizedf. Since the parties followI*
honestly, Lemma 20 proves:

Lemma 21. LetII be a two-party protocol solely based on an ideal family of BUF for privately computing
f. If II privately computeg solely based o in the bad PUF model by using at mastlog \) different PUFs
during each protocol execution, thék privately reduces randomizefito the random permutation oracle.

We notice that [5] proves: ifl* privately reduces randomized OT to the random permutatiadcl®, then there
exists a protocol that privately reduces OT to the randomrmpiation oracle. The Impagliazzo-Rudich result says
that there are no black-box implementations of OT from thneloen permutation oracle [22, 14]. Together with
the previous lemma this proves:

Theorem 22. There does not exist a two-party protocol solely based ordealifamily of PUFs in the bad PUF
model for privately computing oblivious transfer (OT) byngsat mostO(log A) different PUFs in each protocol
execution.

We notice that randomized KE is equivalent to KE (since thipuiuof randomized KE can be used as the
agreed upon key). The parties in KE collaborate in order tainla shared key, therefore, they will execute the KE
protocol without cheating. It does not make sense for theganties to create and use bad PUFs, and if they do,
they will use the challenge-loggers to achieve KE more tlyetherefore, since this section assumes semi-honest
behavior by the parties that execute protocols betweendbkes, the analysis in this section does not apply to
KE. In KE we consider a third party: the adversary, who isricgpting and resending the communication between
the two parties. KE in a stand-alone, bad PUF model thus resysscure, since the parties have no incentive to
use bad PUFs. KE with posterior access (i.e., in multiplaisatial protocol executions) and with bad PUFs is
impossible, since KE is already impossible in the postexemess model alone (as shown in the previous section).

6 The Case of Bit Commitment

We now turn to the third part of the paper, in which we analydé&ased bit commitment in several scenarios. It
turns out that BC is special in a number of aspects. One raagbat at the end of a BC protocaol (i.e., at the end
of the reveal phase), nothing needs to remain secret. In @ K&mprotocols, to the opposite, certain information
must be kept secret forever: The “other” string , and the choice bii in OT, and the exchanged key in KE. This
allows secure BC protocols in circumstances where securandKE are provably impossible.

For space reasons, we merely sketch our constructions andtgearguments in this section. In particular, we
would like to stress that we assume that a random one-wayifuncan be derived from the unpredictability of
the PUF without giving an explicit construction to this erdethods how to achieve this may be given in future
versions of this paper.

6.1 Impossibility of BC in the Bad PUF Model with Access before tk Reveal Phase

We start by showing that there are also scenarios in which 8&&d solely on PUFs is provably impossible.
This holds, for example, if malicious parties are allowedise simulatable and challenge-logging PUFs, and if
they have access to all employed PUFs before the reveal plsasglar as in the proofs in Section 5, we may
then replace each challenge to a PUF by a challenge to thewha created the PURE® The resulting protocol
achieves BC without access to a random oracle, without arnyppsassumption and without access to any other
ideal functionality. This means that the resulting protoachieves BC unconditionally, which is not possible
according to [13].

15Since the PUF is accessible after each message transmisgigrarty who created the PUF is able to read out the challengger. So,
replacing each challenge to a PUF by a challenge to the pdmtyoneated the PUF keeps the views of both parties identichbt ofI1.
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Theorem 23. There does not exist a two-party protocol for privately cotigg bit commitment solely based on
an ideal family of PUFsZ in the bad PUF model if the malicious party has got access eauded PUFs before
the reveal phase.

6.2 Secure Bit Commitment in the Posterior Access, Bad PUF Model

We present below a BC scheme that is secure in the postedessdad PUF model. More precisely, it is secure
under the following presumptions:

e Bad PUFs (including SIM- and CL-PUFs) may be used be by thécioak players, but no super-bad PUFs
are allowed. That is, the input-output behavior of the PUssnot be remotely accessed and altered, the
challenges applied to the PUF are not communicated rem@telyto parties without physical access to the
PUF), and the CRP-behavior of the PUF does not change autathaafter some time interval.

e The malicious party can physically access the PUF afteratieal phase (i.e., after the end of a protocol
(sub-)session), as standard in the PAM), but not beforettiveaf the reveal phase.

The scheme is the first PUF protocol in literature which eihji uses two PUFs. The scheme shows that we
are not helplessly extradited to bad PUFs. If careful pratdesign and reasonable hardware assumptions come
together, security can still be guaranteed. Due to the du&ltRansfer, it mainly has theoretical value; we leave it
as an open question if there are protocols whose securityak/dased on PUFs, which are secure in the bad PUF
model, and which require only one PUF transfer.

We assume that the sender holds a FJ&nd the receiver a PUR at the beginning of the protocol, and denote by
S(-) andR(-) the one-way permutations corresponding to these two Pl#fesré@nark at the beginning of Section
6). We assume that the sender wishes to commit & bit

Protocol 24: BIT COMMITMENT IN THE POSTERIORACCESS BAD PUF MODEL
Commit Phase:

1. The sender chooses at random a challerayel obtainsS(c) by measurement.

2. The sender transmits the PIRo the receiver. The receiver keef$n his possession until the reveal phase
has been completed.

3. The receiver chooses challengsgs. .., c; at random and useR to measure corresponding responses
ry,...,r,. He transmitsk to the sender.

4. The sender obtain&(c) by measurement and chooses a randpne {0,1}*. The sender computes
(y,S(c) ® R(c),ba (y,c)) and transmits this triple to the receiver. The sender kéepshis possession
until the start of the reveal phase.

Reveal phase:

1. The sender transfe(s, c¢) and R to the receiver.

2. The receiver applies the challenggs. .., ¢, to R and obtains responses, ..., r;. He compares these
responses to those measured in step 3 of the commit phasdeintorverify thatR has not been exchanged
against a bad PUF with collisions.

3. The receiver obtains by measuremgiit) ¢ R(c) and checks this against what he received before. The
receiver extracts bii.

With respect to the concealing property of Protocol 24, ribé R is not in the receiver’s possession before
the reveal phase, so any potential challenge-logging immality cannot yet be used. Since we are in the bad
PUF model, we need to assume that the receiver did designlsgdnality of R such that he can easily compute
inverses as well, however.
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SinceS(+) is a random function$(c) & R(c) randomizesk(c) completely. This means that everif.) is an
easy to invert function constructed maliciously by the nezeS(c) @ R(c) does not reveal any information about
c. Therefore(y, ¢) randomized, sincec is random, and, is with overwhelming probability unequal tb The
concealing property of the scheme follows.

Interestingly, the concealing property does even holdefghrties are allowed “super-bad PUFs”, i.e., if they
may use “PUFs” whose challenge-response behavior can lgeditermined in real-time by wireless communi-
cation by the PUF-creator and the PUF. Such super-bad PURstdaven need to possess response consistency;
their responses can be adjusted on the fly by their creatavividess communication. Nevertheless, Protocol 24
maintains its concealing property even in the presencepersbiad PUFs. The reason is that the sender will always
use a random permutatighto guarantee the concealing property in his own interese. fabt thatS is a random
permutation alone already suffices to make the scheme dorgea

With respect to the binding property of the scheme: If thedeenvants to be able to commit to battor 1,
then he must be able to generate two different challengasdc, such that:

S(e1) @ R(cr) = S(c2) @ R(e),

that is,
S(Cl) D S(CQ) = R(Cl) (&) R(Cg).

The sender committed himself to the functionalitySobefore having possession Bf So, we may assume without
harming the security of the scheme that by using a bad PUFefwhisimulatable) the sender can easily invert
We may even assume that, for all vectors {0, 1}, the sender can easily compute two valaggindc, such
thatS(cy) @ S(c2) = v.

However, this does not help the sender: két) = s(z1,22) = S(x1) @ S(z2) andr(z) = r(z1,22) =
R(z1) ® R(x2), both be functions from0, 1}2* to {0, 1}*.

Sincer(z) looks random in the sender’s view, computing a collisiqn) = r(z) is as hard as choosing a vector
y = s(x) in {0,1}* and then choosing a random vectofrepresenting:(x)) in {0,1}* and repeat this process
until y = z. Sincez is randomy = z with probability2=*. Hence, the sender cannot open the commitment to
both0 and1. The binding property of the scheme follows.

We notice that the above analysis only holds if PEEoes not change its challenge-response behavior over
time. If S is super-bad, then the sender could open the commitmenttmveays. Furthermore, it would
automatically (without wireless communication as in a st PUF) change its input-output behavior after
some time interval, then the sender could flip his commitnbgrintroducing some delay to the start of the reveal
phase.

6.3 Bit Commitment in the Good PUF Model with Access between Comit and Reveal
Phase

We conclude with a construction for a PUF-based bit commitraeheme which remains secure even if the sender
gains access to the PUF before the reveal phase. We assuntigetisander holds a PU% with challenges and
responses of lengtk, and denote by : {0,1}* — {0,1}* the one-way permutation derived frasn(see remark

at the beginning of Section 6). Our construction is remigg®f the well-known Goldreich-Levin approach [20],
and of an earlier bit commitment protocol by Pappu (see ae&i3 of [32]).

Protocol 25: BIT COMMITMENT WITH ACCESS BETWEENCOMMIT AND REVEAL PHASE

Commit Phase:

1. The sender holds the PUFand a bith. He chooses a random vectpie {0, 1}* and a random challenge
ce{0,1}*.

2. The sender transmits the PUWFtogether with the informatioriy, S(c),b & (y,c)) to Bob (where(:, -)
denotes the scalar product).
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Reveal Phase:

1. The sender senddo the receiver.

2. The receiver verifies that the information sent to him @ps2 of the the commit phase was correct: Denoting
the tuple which he received ky, e, f), he verifies that = S(c) by measurement on the PUF, and extracts
b= f @ (d,c). Ifthis is the case, he accepts the reveal phase.

Protocol 25 is concealing even in the PAM, because a receiter has got access to the PUF before the
reveal phase and who wants to recolvenust recovely, ¢) giveny andS(c). This means that recoverirbgwith
probability greater thai/2 is as hard as inverting the random functi®f) derived from the PUF. The protocol is
binding since it is hard to produce two differegtandc; such thatS(c;) = S(c2). This once more follows from
the assumption thef(-) is a random function.

The protocol is not secure in the bad PUF model, however. €hdes could create a simulatable PUF such
that he knows a paity, ¢; for which the responses andr; collide. As an alternative scheme, the next subsection
discusses the security of Protocol 24 which is secure in &ldeFiJF model.

7 Summary and Conclusions

We examined the use of Physical Unclonable Functions (PloFajvanced cryptographic protocols, considering
the same type of PUFs that was investigated most earlier wotlis topic (e.g. [33, 32, 39, 7, 8]): Namely
PUFs with a large (preferably exponential) number of CRR®sg challenge-response interface is accessible by
everyone who holds physical possession of the PUF. Such Rallesssometimes been referred to as Strong PUFs
or Physical Random Functions in the literature.

In the first part of the paper, we presented partly new prdsdoo OT, KE and BC, which have certain practi-
cality and security advantages over existing schemes. ¥empgle, our OT-protocol has constant rounds due to a
new interactive hashing step compared to an earlier schéRéhvmair [38], or does not allow quadratic attacks
such as the scheme of Brzuska et al. [7]. We gave a new anivedtasimple PUF-definition, which focuses
on single PUFs, average case security, and unpredicyabilibh respect to one CRP only. We showed that this
definition is useful in leading security proofs for our prongs.

In the second part of the paper, we introduced two new andstieahttack models, the so-called posterior
access model (PAM) and the bad PUF model. Both models cotestitable and hard-to-prevent attack strategies
in practice, so we argued, and are close to practical PUFeusaf observed that the recently suggested PUF-
protocols of Ruhrmair and Brzuska et al. [7, 8, 38] for oldivé transfer (OT), bit commitment (BC) and key
exchange (KE) can be attacked in these two new and realistitels. This posed the question if there might be
other PUF-protocols that can withstand the PAM and bad Ptelkg. Our main contribution here is a collection
of impossibility results. First, no secure protocols for Kitd OT exist in the posterior access model. In a nutshell,
the reason is that the responses of the employed PUFs rentagasible in unaltered form and can be read out at
later points in time. This highlights an important diffecenbetween PUFs and other alternative approaches like
the bounded storage model (BSM) [29, 3] or noise-based @gypphy [49, 15, 30]. The latter also exploit natural
and uncontrollable randomness for cryptographic progmdalit differ from PUFs as some form of information
loss is implicit (e.g., part of the broadcast bitstream ifVBiS inevitably lost forever). Our results indicate that
such information loss is essential for achieving secu8gcondly, we moved away from the PAM and considered
a stand alone model for protocol execution. Are there sguat®cols for PUF-based OT at least in this restricted
setting? We proved that this is not the case if the adversaadlawed to use “bad PUFs” that are simulatable and
challenge-logging at the same time. Our findings in the bal Pddel stress that PUFs are not easily controllable
binary strings, but complex hardware that may possess uedadditional properties. In a typical two-party
protocol such as OT, a PUF originating from a malicious partyothing else than an untrusted piece of hardware
that stems from the adversary.

In the third and final part of the paper, we dealt with PUF-DaBE, which is special in a number of aspects.
One reasons is that in opposition to OT and KE, at the end of @®@col, nothing needs to remain secret We
showed that no secure protocol for BC exist if challenge ilog@nd simulatable bad PUFs are allowed, and if the
malicious party has got access to the PUF between the comuhithe reveal phase. Furthermore, we provided
a construction for BC that is secure in the PAM even if bad PbkMesallowed, and a construction for BC that is
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secure in the good PUF model, even if the adversary has gessita the PUF between the commit and the reveal
phase.

Our impossibility results illustrate that in order to be kpgble as a general cryptographic tool, PUFs require
new hardware properties: The responses of the PUFs mustdatiwdy erasable, which is a concept introduced
under the name “erasable PUF” in [41]. Secondly, mechanfemBUF-certification must be developed which
should work offline and detect bad PUFs, including bad PUBshhve been created by maliciously adding extra
hardware to a proper PUF. This consequence of our resulésp@sv challenges to the PUF hardware community.
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A The Semi-Honest Model Without Transfer of Physical Objects

We quote the standard definition of semi-honest behavidrdmeterministic case (without the transfer of physical
objects) from [19]:

Definition 26 (Privacy w.r.t. semi-honest behavior in the deterministise [19]) Let f : {0,1}* x {0,1}* —
{0,1}* x {0, 1}* be a deterministic functionality, and denote the first (respcond) output of (x, y) by f1(z,y)
(resp.,f2(x,y)). Letll be a two-party protocol for computing Thevi ewof the first (resp., second) party during
execution ofT on(z, ), denoted/i ewd!(z, ) (resp.vi ewWd (2, %)), is (z, 7, m1, ..., m¢) (resp.(y, 7, m1, . .., ms)),
wherer represents the outcome of the first (resp., second) parttésrial coin tosses, aneh; represents the-th
message it has received.

We say thatl privately computeg if there exist probabilistic polynomial time algorithmsrbtedS; and Ss,
such that®

{Vi eV\}l_I(Ivy)}Lye{O,l}* (5)
{Vi ewgl(xvy)}m,ye{O,l}* (6)

{Sl (l’, fl(l’7 y))}z,ye{o,l}*
{S2(2, fa(z,9)) Y2 ye 0.1}~

Mo o

where|z| = |y|.
An oracle-aided protocdll using oracle-functionality) is said to privately computg if there exist probabilis-
tic polynomial time algorithms'; and S, satisfying (5-6), where the corresponding views of the @kat of the

16Here,= denotes computational indistinguishability by non-unifidamilies of polynomial-size circuits such that indistingfuability also
holds with respect to probabilistic polynomial-time machittest obtain (non-uniform) auxiliary inputs.
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oracle-aided protocol are defined in the natural manHeAn oracle-aided protocdil is said to privately reduce
f 10O, if it privately computeg’ when using the oracle-functionaliy (this is also called a black-box reduction).

B A Quadratic Attack

In this appendix, we will describe a quadratic attack on tfie &d BC-protocols of Brzuska et al. [7]. It works
fully in their own communication model, i.e., it does not@s® new attack models such as the PAM or the bad
PUF model. As discussed in detail in the upcoming Section B3as the practical effect that the protocol is
insecure when used with optical PUFs a la Pappu [33, 32] atideléctrical PUFs that have medium challenge
length of 64 bit, say. This is of particular relevance, siBceuska et al. had explicitly suggested the use of optical
PUFs in connection with their protocols (Section 8 of [8]ur@ttack is regardless of the cryptographic hardness
and unpredictability of the PUF, and only relates to the neind$ possible challenges a PUF possesses.

The attack has been described for the first time by Rihrmalvan Dijk in [40]. Since this document is in
submission and currently not publicly available, we extégm it in this appendix.

B.1 The OT- and BC-Protocol of Brzuska et al.

We start by describing the two protocols by Brzuska et alrdeoto achieve a self contained treatment. To keep
our exposition simple, we will not use the full UC-notatioh[d], and will present the schemes mostly without
error correction mechanisms, since the latter play no rothe context of our attack.

The protocols use two communication channels between tmentmication partners: A binary channel, over
which all digital communication is handled. It is assumeat this channel is non-confidential, but authenticated.
And secondly an insecure physical channel, over which theiBgent. It is assumed that adversaries can measure
adaptively selected CRPs of the PUF while it is in transitwar this channel.

B.1.1 Oblivious Transfer

The OT protocol of [7] implements one-out-of-two stringigldus transfer. It is assumed that in each subsession
the sendef?; initially holds two (fresh) bitstringsg, s; € {0,1}*, and that the receiveP; holds a (fresh) choice
bit b.

Brzuska et al. generally assume in their treatment that after correction and the application of fuzzy ex-
tractors, a PUF can be modeled as a funcBbiF : {0,1}* — {0,1}79(V). In the subsequent protocol of Brzuska
etal., itis furthermore assumed thagt\) = ), i.e., that the PUF implements a functiBoF : {0,1}* — {0,1}*

[7, 8]. Please note that we used this model throughout thismp#oo.

Protocol 27:  PUF-BASED OBLIVIOUS TRANSFER([7], SLIGHTLY SIMPLIFIED DESCRIPTION

External Parameters: The protocol has a number of external parameters, incluti@gecurity parametey, the
session identifiesid, a numberN that specifies how many subsessions are allowed, and a gcdisg PUF-
family P, from which all PUFs which are used in the protocol must bevdra

Initialization Phase: Execute once with fixed session identifsrd:

1. The receiver holds a PUF which has been drawn from the yamil

2. The receiver measurésandomly chosen CRPs, 1, ..., ¢, r; from the PUF, and puts them in a list
[, = (Cl, r,...,Cl, T‘l).

3. The receiver sends the PUF to the sender.

17].e., the view of the first (resp., second) party also recatidsueries by the first (resp., second) partyxoComputational indistinguisha-
bility is now defined with respect to machines that have oractess t@. This allows such machines to extract from the first (resgose)
view information about: andy (more than what can be constructed from the inp@tesp.,y) and output(z, f1(z,y)) (resp..(y, f2(z,v)))
alone) that needs oracle accessan order to interpret the view. Also the simulator algorith$is and Se have access t@® in order to
simulate the recorded oracle queries by the views. Summayizingtreated as a black-box accessible to all algorithms andeots.
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Subsession PhaseRepeat at mosV times with fresh subsession identifiesid:
. The sender’s input are two strings s; € {0,1}*, and the receiver’s input is a Hitc {0,1}.

. The receiver chooses a CREr) from the list£ at random.

1
2
3. The sender chooses two random bitstringsr; € {0,1}* and sends:, z; to the receiver.
4. The receiver returns the value= ¢ @ z, to the sender.

5

. The sender measures the respongesdr, of the PUF that correspond to the challenggs= v ¢ zo and
c1:=vdx].

»

. The sender sets the valugs:= sy @ ro andS; := s; @ rq1, and sends$, S; to the receiver.

7. The receiver recovers the striggthat depends on his choice bidss, = S, @ r. He erases the pajr, r)
from the listL.

Comments. The protocol implicitly assumes that the sender and receie interrogate the PUF whenever they
have access to it, i.e., that the PUF’s challenge-respariedace is publicly accessible and not protected. This
implies that the employed PUF must possess a large numbdB$ QJsing a PUF with just a few challenges does
not make sense: The receiver could then create a full loctadle for all CRPs of such a PUF before sending it
away in Step 3 of the Initialization Phase. This would sulbisedly allow him to recover both stringg ands; in
Step 6 of the protocol subsession, as he could obtaandr; from his look-up table. Similar observations hold
for the upcoming protocol 28. Indeed, all protocols disedsis this paper require PUFs with a large number of
challenges and publicly accessible challenge-respotsdanes. These PUFs have sometimes been referred to as
Physical Random Functior® also asStrong PUFsn the literature [21, 43, 42].

Furthermore, please note that the PUF is not transferreidglthie subsessions. According to the model of
Brzuska et al., an adversary only has access to it duringnitialization phase, but not between the subsessions.
This protocol use has some similarities with a stand-al@age of the PUF, in which exactly one PUF-transfer
occurs between the parties.

B.1.2 Bit Commitment

The second protocol of [7] implements PUF-based Bit CommithiBC) by a generic reduction to PUF-based OT.
The BC-sender initially holds a bit When the OT-Protocol is called as a subprotocol, the rol¢iseo§ender and
receiver are reversed: The BC-sender acts as the OT-recangthe BC-receiver as the OT-sender. The details
are as follows.

Protocol 28: PUF-BASED BIT COMMITMENT VIA PUF-BASED OBLIVIOUS TRANSFER ([7], SLIGHTLY
SIMPLIFIED DESCRIPTION

Commit Phase:
1. The BC-sender and the BC-receiver jointly run an OT-prok¢for example Protocol 27).

(&) In this OT-protocol, the BC-sender acts as OT-receinersses his bib as the choice bit of the OT-
protocol.

(b) The BC-receiver acts as OT-sender. He chooses two sting; € {0,1}* at random, and uses them
as his inputsg, s; to the OT-protocol.

2. When the OT-protocol is completed, The BC-sender hasdeatire string) := s;. This closes the commit
phase.

Reveal Phase:

1. In order to reveal bit, the BC-sender sends the strifigv) (with v = s;) to the BC-receiver.
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Comments. The security of the BC-protocol is inherited from the ungiedy OT-protocol. Once this protocol is
broken, also the security of the BC-protocol is lost. Thi8 lag relevant in the upcoming sections.

B.2 A Quadratic Attack on Protocols 27 and 28

We will now discuss a cheating strategy in Protocols 27 andz28npared to an attacker who exhaustively queries
the PUF for all of itsm possible challenges, we describe an attack on Protocol$i@2& which reduces this
number to,/m. As we will argue later in Section B.3, this has a particylattong effect on the protocol’s security
if an optical PUF is used (as has been explicitly suggeste@pyor if electrical PUFs with medium challenge
lengths of 64 bits are used.

Our attack rests on the following lemma.

Lemma 29. Consider the vector spadg0, 1}*, @), A > 2, with basisB = {ay, .. ., ajr/2] b1, .., bray2 ). Let
A be equal to the linear subspace generated by the vectd?s ie {as, ..., a|,/2)} and letB the linear subspace
generated by the vectors g = {b1,...,bry/21}. DefineS := AU B. Then it holds that:

(i) Anyvectorz € {0,1}* can be expressed as= a @ b witha, b € S, and this expression (i.e., the vectarand
b) can be found efficiently (i.e., in at mastly(\) steps).

(ii) For all distinct vectorsrg, z;,v € {0,1}* there is an equal number of combinations of linear subspates
and B as defined above for whicky v € Aandz, ®v € B.

(i) S has cardinality|S| < 2-2*/2],

Proof. (i) Notice that any vector € {0,1}* can be expressed as a linear combination of all basis vectots
duia; + Y vbj,i.e.,z =a@bwitha € Aandb € B. This expression is found efficiently by using Gaussian
elimination.

(ii) Without loss of generality, sincey, x; andv are distinct vectors, we may choosg = xo ® v # 0 and
b1 = x1 ® v # 0. The number of combinations of linear subspadeand B is independent of the choieg and
b1. (Notice that ifzy # x1 butv = z(, then the number of combinations is twice as large.)

(iii) The bound follows from the construction ¢f and the cardinalities ot and B, which are|A| = 2L*/2]
and|B| = 2/*/21, O

An Example. Let us give an example in order to illustrate the principléemma 29. Consider the vector space
({0,1}*, @) for an even\, and choose as subbadgs, = {e1,. .., ex/2} andBp, = {ex/241,---,ex}, Wheree;

is the unit vector of length that has a one in positianand zeros in all other positions. Then the bd$ig spans
the subspace, that contains all vectors of lengthwhose second half is all zero, alf, spans the subspace
By that comprises all vectors of lengthwhose first half is all zero. It then follows immediately tleaery vector

z € {0,1}* can be expressed as= a @ b with a € Ay andb € By, or, saying this differently, witla, b € S and

S := Ay U By. It also immediate tha$ has cardinalityS| < 2 - 2*/2,

Relevance for PUFs. The lemma translates into a PUF context as follows. Suppueteat malicious and an
honest player play the following game. The malicious playets access to a PUF with challenge lenytin an
initialization period, in which he can query CRPs of his adeofrom the PUF. After that, the PUF is taken away
from him. Then, the honest player chooses a veeter{0, 1}* and sends it to the malicious player. The malicious
player wins the game if he can present the correct PUF-raggon andr; to two arbitrary challenges, andc;
which have the property that ® ¢; = z. Our lemma shows that in order to win the game with certaithy,
malicious player does not need to read out the entire CRReggfabe PUF in the initialization phase; he merely
needs to know the responses to all challenges in th€ sét_emma 29, which has a quadratically reduced size
compared to the entire CRP space. This observation is attre df the attack described below.

In order to make the attack hard to detect for the honest playg necessary that the attacker chooses random
subspaces! and B, and does not use the above trivial choicksand By all the time. This fact motivates the
random choice ofA and B in Lemma 29. The further details are as follows.
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The Attack. As in [7, 8], we assume that the PUF has got a challenge sg1,0ft*. Given Lemma 29, the
OT-receiver (who initially holds the PUF) can achieve a qatid advantage in Protocol 27 as described below.
First, he chooses uniformly random linear subspatesdB, and constructs the st as described in Lemma
29. While he holds possession of the PUF before the start opttbcol, he reads out the responses to all
challenges ir5. Since|S| < 2-2[*/21 this is a quadratic improvement over reading out all respsmf the PUF.
Next, he starts the protocol as normal. When he receives ihedinesr, andz; in Step 3 of the protocol, he
computes two challengeg andcj both in setS such that

* *
T1 DT =cyDcy.

According to Lemma 29(i), this can be done efficiently (ive poly(\) operations). Notice that, since the receiver
knows all the responses corresponding to challeng&s e in particular knows the two responsg¢sandr; that
correspond to the challengeg$andc;.

Next, the receiver deviates from the protocol and sendsdhev := ¢ ¢ z( in Step 4. For this choice af,
the two challengeg, andc; that the sender uses in Step 5 satisfy

co = ch D xo B ro =

and
* * * *
ClL:=CcDroDr1=0CoDCcyDcr =cy.

By Lemma 29(ii), Alice cannot distinguish the received waiuin Step 4 from any random vector In other
words, Alice cannot distinguish Bob’s malicious behavia.( fabricating a specialwith suitable properties) from
honest behavior. As a consequence, Alice continues with &&nd transmit$, = sg & r§ andS; = s; & ri.
Since Bob knows bothj andr}, he can recover botky, ands;. This breaks the security of the protocol.

Please note the presented attack is simple and effectifedlyltvorks within the original communication model
of Brzuska et al. [7, 8]. Furthermore, it does not requiretadus computations of many days on the side of the
attacker (as certain modeling attacks on PUFs do [42]). lllyirdue to the special construction we proposed, the
honest players will not notice the special choice of the @aluas the latter shows no difference from a randomly
chosen value.

Effect on Bit Commitment (Protocol 28). Due to the reductionist construction of Protocol 28, ouackton

the oblivious transfer scheme of Protocol 27 directly egrover to the bit commitment scheme of Protocol 28 if

Protocol 27 is used in it as a subprotocol. By using the at@okalicious sender can open the commitment in both
ways by reading out onlg - 2[*/21 responses (instead of ait responses) of the PUF. On the other hand it can be
observed easily that the hiding property of the BC-Prot@&is unconditional, and is not affected by our attack.

B.3 Practical Consequences of the Attack

What are the practical consequences of our quadratic atteckhow relevant is it in real-world applications?
The situation can perhaps be illustrated via a compariscfassical cryptography. What effect would a quadratic
attack have on schemes like RSA, DES and SHA-1? To start v, Bhe effect of a quadratic attack here is rather
mild: The length of the modulus must be doubled. This wildéalonger computation times, but restore security
without further ado. In the case of single-round DES, howes@uadratic attack would destroy its security, and
the same holds for SHA-1. The actual effect of our attack ofr#Blsed OT and BC has some similarities with
DES or SHA-1: PUFs are finite objects, which cannot be scalesize indefinitely due to area requirements,
arising costs, and stability problems. This will also beeapparent in our subsequent discussion.

B.3.1 Electrical Integrated PUFs

We start our dicussion by electrical integrated PUFs, ake tiae well-known Arbiter PUF as an example. It has
been discussed in theory and realized in silicon mainly fadlenge lengths of 64 bits up to this date [17, 18, 24,
45]. Our attack on such a 64-bit implementation requiresee-out of2 - 232 = 8.58 - 10° CRPs by the receiver.
This read-out can be executed before the protocol, not guhie protocol, and will hence not be noticed by the
sender. Assuming a MHz CRP read-out rate [24] of the ArbitéfF,Rhe read-out take®58 - 103 sec, or less than
144 min.
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Please note that the attack is independent of the cryptbigrdqardness of the PUF, such as its resilience
against machine learning attacks. For example, a 64-BQB-Arbiter PUF (i.e., an Arbiter PUF with eight
parallel standard 64-bit Arbiter PUFs whose single respsmase XORed at the end of the structure) is considered
secure in practice against all currently known machineniegrtechniques [42]. Nevertheless, this type of PUF
would still allow the above attack /2 min.

Our attacks therefore enforce the use of PUFs with a chalitgength of 128 bits or more in Protocols 27
and 28. Since much research currently focuses on 64-biteimghtations of electrical PUFs, publication and
dissemination of the attack seems important to avoid trsarim Protocols 27 and 28. Another aspect of our attack
is that it motivates the search for OT- and BC-protocols #naimmune, and which can safely be used with 64-bit
implementations. The reason is that the usage of 128-bitsRldbles the area consumption of the PUF and
negatively affects costs.

B.3.2 Optical PUFs

Let us now discuss the practical effect of our attack on tleoftical PUF introduced by Pappu [32] and Pappu
et al. [33]. The authors use a cuboid-shaped plastic tokesizefl cm x 1 cm x 2.5 mm, in which thousands

of light scattering small spheres are distributed randoriilyey analyze the number of applicable, decorrelated
challenge-response pairs in their set-up, arriving at adigfi2.37 - 10'° [33]. Brzuska et al. assume that these
challenges are encoded in a set of the fdiml}*, in which case\ = [log, 2.37 - 10°] = 35. If this number

of 2% is reduced quadratically by virtue of Lemma 29, we obtainfendrder of2 - 218 = 5.2 - 10> CRPs that
must be read out by an adversary in order to cheat. It is dediieven dedicated measurement set-ups for optical
PUFs cannot realize the MHz rates of the electrical exanmptié last section. But even assuming mild read-out
rates of 10 CRPs or 100 CRPs per second, we still arrive at seaal-out times 06.2 - 10* sec or 5.2 - 10® sec,
respectively. This is betweelnt.4 hours (for 10 CRPs per second)& minutes (for 100 CRPs per second). If a
malicious receiver holds the PUF for such a time frame betfogeprotocol starts (which is impossible to control
or prevent for the honest players), he can break the prososturity.

Can the situation be cleared by simply scaling the opticat RlJarger sizes? Unfortunately, also an asymptotic
analysis of the situation shows the same picture. All végiglarameters of the optical PUF [33, 32] are ihg-
coordinate of the incident laser beam and the spatial apglader which the laser hits the token. This leads to a
merely cubic complexity in the three-dimensional diametef the cuboid scattering tokeA® Given our attack,
this implies that the adversary must only read 0t !-°) challenges in order to cheat in Protocols 27 and 28. If
only the independent challenges are considered, the pidwyet more drastic: As shown in [46], the PUF has at
most a quadratic number ofdependenthallenges ini. This reduces to a merelinear number of CRPs which
the adversary must read out in our attack. Finally, we rentlzak scaling up the size of the PUF also quickly
reaches its limits under practical aspects: The token densil by Pappu et al. [33, 32] has an area of 1Lcth
cm. In order to slow down the quadratic attack merely by aofaof 10, a token of area 10 cx 10 cm would
have to be used. Such a token is too large to even fit onto a saralt

Overall, this leads to the conclusion that optical PUFstileeones discussed in [32, 33] cannot be used safely
with the Protocols 27 and 28 in the face of our attack. Dueea thw-degree polynomial CRP complexity, and due
to practical size constraints, simple scaling of the PUFsstitutes no efficient countermeasure. This distinguishes
the optical approach from the electrical case of the lagt@®ecThis observation has a particular relevance, since
Brzuska et al. had explicitly suggested optical PUFs forithiglementation of their protocols (see Section 8 of

[8))-

B.4 Are There Counter Measures?

Let us quickly consider potential countermeasures againsattacks and their practical feasibility in this section
One first idea is: Can we bind the time in which the maliciousypt has got access to the PUF? The current
Protocols 27 and 28 obviously are unsuited to this end; buiddtvere be modifications of theirs which have this
property? A simple approach would be to introduce one aaftiti PUF transfer from the sender to the receiver
in the initialization phase. This assumes that the sendéalip holds the PUF, transfers it to the receiver, and

18please note in this context that the claim of [8] that the numatbeCRPs of an optical PUF is super-polynomial must have beeremad
erroneously or by mistake; our above brief analysis showsitieat mostly cubic. The low-degree polynomial amount of Eraes of the
optical PUF is indeed confirmed by the entire literature ortdipéc, most prominently [33, 32, 46].
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measures the time frame by which the receiver returns the Phd-period in which the receiver had access to
the PUF gives a bound on the number of CRPs he knows. This caseokin the protocols to guarantee security.
Please note that a long and uncontrolled access time foettdes is no problem for the protocol’s security, so we
only need to bind the access time of the receiver by the abgwerach.

On closer inspection, however, there are some problemsthightechnique. The first and foremost problem
is its mediocre practicality. In general, each PUF-transfea protocol is very costly. If executed via physical,
postal delivery over long distances between arbitraryiggrit might cost days. Having two such transfers in one
protocol is devastating for the protocol’s practicality.

A second issue is that binding the adversarial access tirdigit manner by the suggested procedure is very
difficult. How long will the physical transfer take? 1 day? Wifahe adversary or someone else can do it faster,
and the adversary uses the gained time for executing measnote on the PUF? What if the adversary executes
the physical transfer himself, and can measure the PUF vtliglén transit? Obtaining a tight and short bound on
the adversary’s access time seems impossible here.

In summary, there are only very, very few circumstances e/baforcing a time bound on the receiver’s access
time is possible in a realistic setting. The above idea isbémeresting for future PUF-protocol design, but cannot
be considered a general countermeasure.

C Behavior of Known PUF-Protocols in the PAM

We will now illustrate how several known two-party PUF-pyobls behave in the posterior access model (PAM),
i.e., under the assumption that the adversary gains acoeabe tPUF after a subsession of the protocols. For
space reasons, we will carry out only one exemplary analgsizely for the OT- and BC-protocol of Brzuska et
al. The other cases (Brzuska's KE protocol and Rihrmairp@tocol) are somewhat similar. The well-known
CRP-based PUF-identification protocol [32, 33] is not atfdcin the PAM. In order to achieve a self-contained
treatment, the OT- and BC-protocol of Brzuska et al. haven ldescribed as Protocols 27 and 28 in Section B.1.1.

C.1 Brzuskaetal.'s OT and BC Protocol in the PAM

Let us start by describing an attack on the OT-protocol ofuBka et al. (which was described as Protocol 27 in
Section B.1) in the PAM. In terms of notation, we relate totéreninology of Protocol 27 in our attack. The attack
rests on the followingissumptions

1. The initialization phase of the OT-Protocol 27 is cared between the sender and the receiver.

2. Later, different subsessions of the protocol are run. ¥¢eime that there is a subsesstarid with the
following properties:

e Eve was able to eavesdrop the binary communication betweesender and the receiver in the sub-
sessiorssid.

e Eve can read-out CRPs from the PUF after the end of the subsessi 4, for example before a new
subsessiossid’ is started.

Under these provisions, Eve can learn both bitands; used by the sender in subsessigrid. This breaks the
security of this subsession. The attack works as follows:

1. When the subsessiasid is run, Eve eavesdrops the messages in Steps 3, 4 and 6. &ferhéearns the
valueszg, z1,v (= c® ap), S0 (:= so ® 1) andS; (:= s; ®r1), hencey andr; are the responses to the
challenges(:= v @ x¢) andcy (= v & z1).

2. When Eve has got physical access to the PUF after the sidisessd, she computes the challenggs.=
v @ xg ande; := v @ 1 herself. She applies these challenges to the PUF, and slitemesponses and
1.

3. Eve derivesy ands; by computing the valueS, ®ry = so® 1o ®ro = so andS;@ry = s1®r1 dry = s1.
This breaks the security of the subsessiend.
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Please note that an attacker cannot learn the receiverisechi b by a similar attack, since the secrecy of the
choice bit is unconditional and does not rely on the empldygé.

Consequences for Bit Commitment. Since Protocol 28 is a direct reduction of BC to OT, the abadvack
directly affects Protocol 28 whenever it employs Protocba2 a subprotocol. A BC-sender who acts as adversary
in Protocol 28 learns botky, ands; by applying our above attack, under the provision that he getess to the
PUF between the commit phase and the reveal phase, or siftgiyttee commit phase in the case that the reveal
phase is never executed. Knowledgesgfands; enable him to open his commitment in both ways: to open the
value “0”, he sendg0, so) in the reveal phase, and to open the value “1”, he s¢hds ). Note that the hiding
property of the BC-Protocol 28 is not affected by our attadkee it is unconditional and independent of the PUF.
Furthermore, we comment that the attack does not work ifdvergary or malicious players get access to the PUF
only after the end of the reveal phase. In this case, the B@pol remains secure.

Relevance for the OT-Protocol of Rihrmair [38]. Please note that the above attack strategy directly carries
over to the OT-protocol of Riuhrmair [38], which consequendl also not secure in the PAM. The details are
straightforward and left to the reader for space reasonstdasons of fairness, we would also like to remark that
the protocol of RUhrmair was merely suggested in a standeadetting from the start. Nevertheless, our attack
indicates that the picture drastically changes in the PAM.

C.2 Conclusions

The security of many currently known PUF-protocols, inahgpthe protocols of Brzuska et al., is not maintained
in PAM. We stressthat these protocols were not designed for the PAM, and ligatdrresponding security proofs
do not assume posterior access. On the other hand, the PAdlitotes a practically very viable attack scenario
in most PUF applications, as argued in detail in Section #hdfprotocols of Brzuska et al. or of Riihrmair were
used in these applications, they would likely be faced withattacks. This makes the behavior of the protocols
in the PAM a relevant issue.

D Behavior of Known PUF-Protocols in the Bad PUF Model

We now briefly investigate the behavior of known PUF-protedn the bad PUF model. Exemplarily, we will
examine the security of the OT- and BC-protocol of Brzuskal €ff7] under the assumption that the players may
generate and use simulatable PUFs. In order to achieve-as#Hined treatment, the OT- and BC-protocol of
Brzuska et al. have been described as Protocols 27 and 28tioiSB.1.1.

D.1 Brzuska etal.'s OT- and BC-Protocol and Simulatable PUFs

We start by the attack on the OT-protocol of Brzuska et al. tteck makes the following single assumption:

1. The receiver hands over a simulatable bad PUF instead of@epPUF in the initialization phase, and
furthermore possesses a simulation algorithm for this PUF.

The attack itself works as follows:

1. The receiver follows Protocol 27 as specified, and caoigs subsessiosid.

2. When the subsession is completed, the receiver competdsdtchallenges, := v @ zg andey := v P 1.
He can do so since he knowsz, andzx; from earlier protocol steps.

3. The receiver uses his simulation algorithm in order topota the two responseg andr; which correspond
to the challengeg, andc; .

4. The receiver derives both valugs and s, by computingSy @ rg = so ®ro ®rg = sp andS; & r; =
s1 P r1 ®ry = s;. He can do so since he knoug, S; from step 6 of the OT-protocol. This breaks the
security of the protocol.
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Consequences for the Bit Commitment Protocol of [7]. The BC-protocol of Brzuska et al. is a direct reduction
of BC to OT. The above attack on their OT-protocol hence feasdo their BC-protocol if the OT-protocol is used
as a subprotocol therein. The BC-sender will be able to opeodmmitment in two ways. The hiding property of
the BC-protocol is not affected; it is unconditional andepéndent of the used PUF.

Relevance for the OT-Protocol of RUhrmair [38]. Please note that the above attack strategy directly carries
over to the OT-protocol of Riihrmair [38], which consequgrtlalso not secure in the bad PUF model. The details
are straightforward and left to the reader for space reasons

D.2 Conclusions

The security of the OT- and BC-protocol of Brzuska et al. is maintained under the use of simulatable PUFs.
We stressthat these protocols are not designed for such use, andhthaitresponding security proofs do not
assume simulatable PUFs. On the other hand, simulatable B&JEonstitute a practically viable attack scenario
in many PUF applications: Physical authentication of P$Riifficult and very laborious in practical settings, and
bad PUFs introduced by the parties in two-party protocatsparticularly difficult to detect, as we argued in all
detail in Section 2. If the protocols of Brzuska et al. weredig practice, they would likely be faced with this
class of attacks.

Please note that the previous discussion does not conbigl@ffect of challenge-logging PUFs. The corre-
sponding attacks are somewhat similar, but require thengstson that the PUFs are re-used in protocols with
other players. The details are left to the readers for speasons.

E Two Further Implementations of Simulatable Bad PUFs

In Section 2 we argued that a straightforward implementatiosimulatable PUFs is the use of a pseudorandom
number generator with a seadhat is known to the malicious party. We present two othebigiaonstructions

in this section to interested readers. They use existing-&&#igns and modify them in such a way that the PUF-
manufacturer can machine learn and hence simulate them.exttee wires which allow this machine learning
option are disabled before the PUF is released to the fieldnmg that other parties will not be able to use them.
The details are described in the next sections.

E.1 Simulatable PUFs by XOR Arbiter PUFs with Extra Wires

Currently, the most compact and secure electrical StrorigiRlplementation probably are XOR Arbiter PUFs. In
these constructions, several of the well-known Arbiter BUI7, 18, 24, 45] are used in parallel, and their outputs
are XORed in order to obtain the output. Such XOR-consioasthave explicitly been described and examined in
[25, 45, 27].

Arbiter PUFs were tested for their security against mackeaening-based modeling attacks in a number of
publications, including [25, 28, 42]. In these attacks, dwesisary collects a large set of CRPs of the PUF, and
feeds them into a machine learning algorithm. The algorithes to derive a numeric simulation model of the
PUF. If successful, the PUF-responses can afterwards biictge numerically by this algorithm. The results of
[25, 42] were as follows: (i) A single Arbiter PUF can be leadrand predicted very efficiently (i.e., with very few
CRPs and with very small computation times). (ii) The XOR ®feral single Arbiter PUF is increasingly hard to
learn. Constructions which employ more than six single tarbPUFs and XOR their single outputs in order to
create a single bit as the overall output cannot be macharade efficiently with current methods.

PUF designers whose aim is the construction of secure PUBswiiil make sure that the adversary cannot
access the outputs of the single Arbiter PUFs before thexX@ied. Otherwise, an adversary could collect the
CRPs from the single Arbiter PUFs, and so machine learn thavier of each single Arbiter PUF. And once she
can predict each single Arbiter PUF, she can also predick@® of all single Arbiter PUFs.

This situation on the forefront of electrical Strong PUF lempentations leads to a very simple strategy for the
fabrication of simulatable PUFs. The malicious party useX@R Arbiter PUF with, for example, eight single
Arbiter PUFs, but with a little twist: There are extra wirekioh transfer the responses of the single Arbiter PUFs
to the outside before they are fed into the XOR-operatioranlimitial phase after fabrication, the malicious party
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uses these extra wires in order to collect CRPs from eacleshriter PUF, allowing her to machine learn the
behavior of each single Arbiter PUF. This enables the n@algiparty to create a simulation algorithm for the
responses of the entire XOR Arbiter PUF. Once this algoritta® been created, the extra wires are permanently
disabled. The situation is depicted schematically in Fédur

One advantage of this XOR-based implementation of simbl@tBUFs is the following: The resulting PUF
hasexactlythe same output as a “normal” XOR Arbiter PUF, since the ewiras have no effect on this output.
The simulatable XOR Arbiter PUF hence cannot be distingegddhom a normal XOR Arbiter PUF by the honest
party via mere CRP measurement, while the malicious pattyshesimulation algorithm for it.

E.2 Optical Simulatable Bad PUFs

An interesting question is whether there are optical sitable PUFs. For example: Is there a simulatable version
of Pappu’s optical PUF [33]? Currently, it seems imposdiblanswer this question with definiteness. Speculating
about future developments, it may well be possible to aedhg scattering centers of Pappu’s PUF in a way that
simplifies the output. For example, using very few scattpdenters may lead to a simplified or even trivial input-
output behavior. Current protocols do not test or excluéeghssibility: In Protocols 27, 28 and 9, the malicious
party could even use a plastic token that does not contairs@atyering centers at all (and which produces trivial
outputs) without being detected, and could use this to ch@aenerally, the question whether optical PUFs a la
Pappu [33] can be made simulatable seems undecided.

On the other hand, integrated optical PUFs are known to kelatble by machine learning methods in certain
settings. This has been shown first in [37], which descrilitatks on a real optical system in the appendix of
[37]. Integrated optical PUFs could hence in principle bedisy malicious parties as simulatable PUFs.

Let us elaborate on this in more detail. Figure 2 shows a satiemxample of an integrated optical PUF. The
input and output of challenges and responses is in digitah.fd37] proved that on the basis of a large number
of plain scattering images (i.e., those images that havgetdieen processed by some image transformation), the
input-output behavior can be machine learned and simulsitddvery high accuracy. This can be exploited by a
malicious party can to build an optical simulatable PUF itraightforward fashion: She builds on option to read
out the CCD images directly into the PUF. Once the PUF has beshine learned and the simulation algorithm
has been constructed, this option is permanently disabBleadlar to the electrical construction based on XOR
Arbiter PUFs. The adversary then possesses a simulatioelmabthe PUF and can use this to break protocols in
which this PUF is used. For further details on the machinmlag of integrated optical PUFs we refer the reader
to [37].
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Malicious party collects responses of
the single Arbiter PUFs in order to
create a simulation algorithm.

Afterwards, the red wires are disabled.
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Figure 1: A schematic illustration of an XOR Arbiter PUFs dise create a simulatable PUF.
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Malicious party directly collects these
images (before the image transformation)
in order to create a simulation algorithm.

Afterwards, connection is disabled.

A
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Challenge ‘ % ® * - Response
% * % & % [|M| (e.g. Gabor Hash)
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Diode array with n Sensor array, for example CCD, that
(phase-locked) diodes Transparent medium with records interference images.
Challenges C determines randomly distributed light The malicious party will directly use
which diodes are scattering elements these images to machine learn the
switched on and off PUF and build a simulation algorithm.

Figure 2: A schematic illustration of an integrated optieblF that is used to create a simulatable PUF.
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