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ABSTRACT
We show in this paper how several proposed Physical Un-
clonable Functions (PUFs) can be broken by numerical mod-
eling attacks. Given a set of challenge-response pairs (CRPs)
of a PUF, our attacks construct a computer algorithm which
behaves indistinguishably from the original PUF on almost
all CRPs. This algorithm can subsequently impersonate the
PUF, and can be cloned and distributed arbitrarily. This
breaks the security of essentially all applications and proto-
cols that are based on the respective PUF.

The PUFs we attacked successfully include standard Arbiter
PUFs and Ring Oscillator PUFs of arbitrary sizes, and XOR
Arbiter PUFs, Lightweight Secure PUFs, and Feed-Forward
Arbiter PUFs of up to a given size and complexity. Our
attacks are based upon various machine learning techniques,
including Logistic Regression and Evolution Strategies. Our
work will be useful to PUF designers and attackers alike.

Keywords
Physical Unclonable Functions, Machine Learning, Crypt-
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1. INTRODUCTION
1.1 Motivation and Background
Electronic devices are now pervasive in our everyday life.
They are an accessible target for adversaries, which raises a
host of security and privacy issues. Classical cryptography
offers several measures against these problems, but they all
rest on the concept of a secret binary key. Classical cryp-
tography presupposes that the devices can contain a piece of
information that is, and remains, unknown to the adversary.
Unfortunately, it can be difficult to uphold this requirement
in practice: Physical attacks such as invasive, semi-invasive,

or side-channel attacks, as well as software attacks like API-
attacks and viruses, can lead to key exposure and full secu-
rity breaks. The fact that the devices should be inexpensive,
mobile, and cross-linked obviously aggravates the problem.

The described situation was one motivation that led to the
development of Physical Unclonable Functions (PUFs). A
PUF is a (partly) disordered physical system S that can be
challenged with so-called external stimuli or challenges Ci,
upon which it reacts with corresponding responses termed
RCi

. Contrary to standard digital systems, a PUF’s re-
sponses shall depend on the nanoscale structural disorder
present in the PUF. This disorder cannot be cloned or re-
produced exactly, not even by its original manufacturer, and
is unique to each PUF. Assuming the stability of the PUF’s
responses, any PUF S hence implements an individual func-
tion FS that maps challenges Ci to responses RCi

of the
PUF.

Due to its complex and disordered structure, a PUF can
avoid some of the shortcomings associated with digital keys.
It is usually harder to read out, predict, or derive its re-
sponses than to obtain the values of digital keys stored in
non-volatile memory. This fact has been exploited for vari-
ous PUF-based security protocols. Prominent examples in-
cluding schemes for identification and authentication [1], key
exchange or digital rights management purposes [2].

1.2 Strong PUFs, Controlled PUFs, and Weak
PUFs

There are several subtypes of PUFs, each with its own ap-
plications and security features. Three major types, which
must explicitly be distinguished in this paper, are Strong
PUFs [1, 3, 4] 1, Controlled PUFs [2], and Weak PUFs [4],
initially termed Physically Obfuscated Keys (POKs) [5].

1.2.1 Strong PUFs
Strong PUFs are disordered physical systems with a complex
challenge-response behavior and very many possible chal-
lenges. Their security features are: (i) It must be impossible
to physically clone a Strong PUF, i.e., to fabricate a sec-

1Strong PUFs have also been referred to as Physical Ran-
dom Functions [5], or Physical One-Way Functions [6].



ond system which behaves indistinguishably from the origi-
nal PUF in its challenge-response behavior. This restriction
shall hold even for the original manufacturer of the PUF.
(ii) A complete determination/measurement of all challenge-
response pairs (CRPs) within a limited time frame (such as
several days or even weeks) must be impossible, even if one
can challenge the PUF freely and has unrestricted access to
its responses. This property is usually met by the large num-
ber of possible challenges and the finite read-out speed of a
Strong PUF. (iii) It must be difficult to numerically predict
the response RC of a Strong PUF to a randomly selected
challenge C, even if many other CRPs are known.

Typical applications of Strong PUFs are key establishment
[1, 7], identification [1] and authentication [3], where they
can achieve secure protocols without the usual, standard
computational assumptions. The currently known electrical,
circuit-based candidates for Strong PUFs are described in [8,
9, 10, 11, 12].

1.2.2 Controlled PUFs
A Controlled PUF as described in [2] uses a Strong PUF as
a building block, but adds control logic that surrounds the
PUF. The logic prevents challenges from being applied freely
to the PUF, and hinders direct read-out of its responses.
This logic can be used to thwart modeling attacks. However,
if the outputs of the embedded Strong PUF can be directly
probed, then it may be possible to model the Strong PUF
and break the Controlled PUF protocol.

1.2.3 Weak PUFs
Weak PUFs, finally, may have very few challenges — in the
extreme case just one, fixed challenge. Their response(s)
RCi

are used to derive a standard secret key, which is sub-
sequently processed by the embedding system in the usual
fashion, e.g. as a secret input for some cryptoscheme. Con-
trary to Strong PUFs, the responses of a Weak PUF are
never meant to be given directly to the outside world.

Weak PUFs essentially are a special form of non-volatile
key storage. Their advantage is that they may be harder
to read out invasively than non-volatile memory like EEP-
ROM. Typical examples include the SRAM PUF [4], But-
terfly PUF [13] and Coating PUF [14]. Integrated Strong
PUFs have been suggested to build Weak PUFs or Physi-
cally Obfuscated Keys (POKs), in which case only a small
subset of all possible challenges is used [5, 8].

1.3 Numerical Modeling Attacks on PUFs
Numerical modeling attacks on PUFs presume that an ad-
versary Eve has collected a subset of all CRPs of the PUF,
and tries to derive a numerical model from this data, i.e.,
a computer algorithm which correctly predicts the PUF’s
responses to arbitrary challenges with high probability. If
successful, this breaks the security of the PUF and of any
protocols built on it. It is known from earlier work that ma-
chine learning (ML) techniques are a natural and powerful
tool for such modeling attacks [5] [15] [16] [17]. How the re-
quired CRPs can be collected depends on the type of PUF
under attack.

Strong PUFs. Strong PUFs usually have no protection me-
chanisms that prevent Eve from challenging them and read-
ing out their responses [1, 8, 9, 10, 11, 12]. Most electrical
Strong PUFs operate at high frequencies (e.g., 100 MHz
[11]), whence even short access periods enable the read-out
of many CRPs. Two other potential CRP sources are sim-
ple protocol eavesdropping, for example on standard Strong
PUF-based identification protocols, where the CRPs are sent
in the clear [1], or virus attacks on the PUF-embedding hard-
ware.

Controlled PUFs. For any adversary that is restricted to
non-invasive CRP measurement, modeling attacks can be
successfully disabled if one uses a secure one-way hash over
the outputs of the PUF to create a Controlled PUF. We note
that this requires error correction of the PUF outputs which
are inherently noisy [2]. Successful application of our tech-
niques only becomes possible if Eve can probe the internal,
digital response signals of the underlying Strong PUF on
their way to the control logic. Even though this is a signif-
icant assumption, probing digital signals is still easier than
measuring continuous analog parameters within the under-
lying Strong PUF, for example determining its delay values.

Weak PUFs. Weak PUFs are only susceptible to model
building attacks if a Strong PUF, embedded in some hard-
ware system, is used to derive the physically obfuscated key.
This method has been suggested in [5, 8]. In this case, the
internal digital response signals of the Strong PUF to in-
jected challenges have to be probed.

Purely numerical modeling attacks are not relevant for Weak
PUFs with just one challenge (such as the Coating PUF,
SRAM PUF, or Butterfly PUF). Other strategies could be
applied, including invasive, side-channel and virus attacks.
For example, probing the output of the SRAM cell prior
to storing the value in a register can break the security of
the cryptographic protocol that uses these outputs as a key.
Weak PUFs also require error correction of the PUF output.

1.4 Our Contributions and Related Work
We describe successful modeling attacks on all known elec-
trical candidates for Strong PUFs, including Arbiter PUFs,
XOR Arbiter PUFs, Feed-Forward Arbiter PUFs, Light-
weight Secure PUFs, and Ring Oscillator PUFs. Our at-
tacks work for PUFs of up to a given size and complexity;
the prediction rates of our models significantly exceed the
known or derived stability of the respective PUFs in silicon
in these ranges.

Our attacks are very feasible on the CRP side. They require
an amount of CRPs that grows only linearly or log-linearly
in the relevant structural parameters of the attacked PUFs,
such as their numbers of stages, XORs, feed-forward loops,
or ring oscillators. The computation times needed to de-
rive the models (i.e., to train the employed ML algorithms)
are low-degree polynomial, with one exception: The com-
putation times for attacking XOR Arbiter and Lightweight
Secure PUFs are super-polynomial in the number of their
XORs. The instability of these PUFs also increases expo-
nentially in their number of XORs, whence this parameter



cannot be raised at will in practical applications. However,
the number of stages in the PUFs can be raised without
significant effect on instability.

Our results break the security of any Strong PUF-type pro-
tocol that is based on one of the broken PUFs. This includes
any identification, authentication, key exchange or digital
rights management protocols, such as the ones described in
[1, 6, 7, 10, 3]. Under the assumptions and attack scenarios
described in Section 1.3, our findings also restrict the use
of the broken Strong PUF architectures within Controlled
PUFs and as Weak PUFs, if we assume that digital values
can be probed.

Related Work. Earlier work, such as [10] [15] [16], described
successful ML attacks on standard Arbiter PUFs and on
Feed-Forward Arbiter PUFs with one loop. But these ap-
proaches did not generalize to Feed-Forward Arbiter PUFs
with more than two loops. The XOR Arbiter PUF, Light-
weight PUF, Feed-Forward Arbiter PUF with more than
two Feed-Forward Loops, and Ring Oscillator PUF have not
been cryptanalyzed thus far. No scalability analyses of the
required CRPs and computation times had been performed
in previous works.

1.5 Organization of the Paper
The paper is organized as follows. We describe the method-
ology of our ML experiments in Section 2. In Sections 3
to 7, we present our results for various Strong PUF candi-
dates. They deal with Arbiter PUFs, XOR Arbiter PUFs,
Lightweight Arbiter PUFs, Feed-Forward Arbiter PUFs and
Ring Oscillator PUFs, in sequence. We conclude with a sum-
mary and discussion of our results in Section 8.

2. METHODOLOGY SECTION

2.1 Employed Machine Learning Methods

2.1.1 Logistic Regression
Logistic Regression (LR) is a well-investigated supervised
machine learning framework, which has been described, for
example, in [18]. In its application to PUFs with single-bit
outputs, each challenge C = b1 · · · bk is assigned a proba-
bility p (C, t | ~w) that it generates a output t ∈ {−1, 1} (for
technical reasons, one makes the convention that t ∈ {−1, 1}
instead of {0, 1}). The vector ~w thereby encodes the relevant
internal parameters, for example the particular runtime de-
lays, of the individual PUF. The probability is given by the
logistic sigmoid acting on a function f(~w) parametrized by
the vector ~w as p (C, t | ~w) = σ(tf) = (1+ e−tf )−1. Thereby
f determines through f = 0 a decision boundary of equal
output probabilities. For a given training set M of CRPs
the boundary is positioned by choosing the parameter vector
~w in such a way that the likelihood of observing this set is
maximal, respectively the negative log-likelihood is minimal:

~̂w = argmin~wl(M, ~w) = argmin~w

∑

(C, t)∈M

−ln (σ (tf(~w, C)))

(1)
As there is no analytical solution to determine the optimal

parameter vector ~̂w, it has to be optimized iteratively, e.g.,

using the gradient information

∇l(M, ~w) =
∑

(C, t)∈M

t(σ(tf(~w, C)) − 1)∇f(~w, C) (2)

From the different optimization methods which we tested
in our ML experiments (standard gradient descent, iterative
reweighted least squares, RProp [18] [19]), RProp gradient
descent performed best. need not be (approximately) lin-
early separable in feature space, as is required for successful
application of SVMs, but merely differentiable.

In our ML experiments, we used an implementation of LR
with RProp programmed in our group, which has been put
online under [20]. The iteration is continued until we reach
a point of convergence, i.e., until the averaged prediction
rate of two consecutive blocks of five consecutive iterations
does not increase anymore for the first time. If the reached
performance after convergence on the training set is not suf-
ficient, the process is started anew. After convergence to
a good solution on the training set, the prediction error is
evaluated on the test set.

The whole process is similar to training an Artificial Neural
Network (ANN) [18]. The model of the PUF resembles the
network with the run time delays resembling the weights of
an ANN. Similar to ANNs, we found that RProp makes a
very big difference in convergence speed and stability of the
LR (several XOR-PUFs were only learnable with RProp).
But even with RProp the delay set can end up in a region
of the search space where no helpful gradient information is
available (local minimum). In such a case we encounter the
above described situation of converging on a not sufficiently
accurate solution and have to restart the process.

2.1.2 Evolution Strategies
Evolution Strategies (ES) [21, 22] belong to an ML subfield
known as population-based heuristics. They are inspired by
the evolutionary adaptation of a population of individuals
to certain environmental conditions. In our case, one indi-
vidual in the population is given by a concrete instantiation
of the runtime delays in a PUF, i.e., by a concrete instanti-
ation of the vector ~w appearing in Eqns. (1) and (2). The
environmental fitness of the individual is determined by how
well it (re-)produces the correct CRPs of the target PUF
on a fixed training set of CRPs. ES runs through several
evolutionary cycles or so-called generations. With a grow-
ing number of generations, the challenge-response behavior
of the best individuals in the population better and better
approximates the target PUF. ES is a randomized method
that neither requires an (approximately) linearly separable
problem (like Support Vector Machines), nor a differentiable
model (such as LR with gradient descent); a merely param-
eterizable model suffices. Since all known electrical PUFs
are easily parameterizable, ES is a very well suited attack
method.

We employed an in-house implementation of ES that is avail-
able from our machine learning library PyBrain [23]. The
meta-parameters in all applications of ES throughout this
paper are (6,36)-selection and a global mutation operator of
τ = 1√

n
. In some cases, we furthermore used a technique

called Lazy Evaluation (LE). LE means that not all CRPs



of the trainings set are used to evaluate an individual’s en-
vironmental fitness; instead, only a randomly chosen subset
is used for evaluation. If LE was employed, it is indicated
in the caption of our tables.

2.2 Employed Computational Resources
We used two hardware systems to carry out our experi-
ments: A stand-alone, consumer INTEL Quadcore Q9300
worth less than 1,000 Euros. Experiments run on this sys-
tem are marked with the term “HW ⋆”. Secondly, a 30-
node cluster of AMD Opteron Quadcores, which represents
a worth of around 30,000 Euros. Results that were obtained
by this hardware are indicated by the term “HW �”. All
computation times are calculated for one core of one proces-
sor of the corresponding hardware.

2.3 PUF Descriptions and Models

Arbiter PUFs. Arbiter PUFs (Arb-PUFs) were first intro-
duced in [10] [11] [8]. They consist of a sequence of k stages,
for example multiplexers. Two electrical signals race simul-
taneously and in parallel through these stages. Their ex-
act paths are determined by a sequence of k external bits
b1 · · · bk applied to the stages, whereby the i-th bit is applied
at the i-th stage. After the last stage, an “arbiter element”
consisting of a latch determines whether the upper or lower
signal arrived first and correspondingly outputs a zero or a
one. The external bits are usually regarded as the challenge
C of this PUF, i.e., C = b1 · · · bk, and the output of the
arbiter element is interpreted as their response R. See [10]
[11] [8] for details.

It has become standard to describe the functionality of Arb-
PUFs via an additive linear delay model [15] [9] [16]. The
overall delays of the signals are modeled as the sum of the
delays in the stages. In this model, one can express the final
delay difference ∆ between the upper and the lower path
in a k-bit Arb-PUF as ∆ = ~wT ~Φ, where ~w and ~Φ are of
dimension k+1. The parameter vector ~w encodes the delays
for the subcomponents in the Arb-PUF stages, whereas the
feature vector ~Φ is solely a function of the applied k−bit
challenge C [15] [9] [16].

The output t of the Arb-PUF is then determined by the sign
of the propagation delay difference ∆, making the technical
convention of saying that t = −1 when the Arb-PUF output
is actually 0, and t = 1 when the Arb-PUF output is 1:

t = sgn(∆) = sgn(~wT ~Φ). (3)

Eqn. 3 shows that the vector ~w via ~wT ~Φ = 0 determines a
separating hyperplane in the space of all feature vectors ~Φ.
Any challenges C that have their feature vector located on
the one side of that plane give response t = −1, those with
feature vectors on the other side t = 1. Determination of
this hyperplane allows prediction of the PUF.

XOR Arbiter PUFs. One possibility to strengthen the re-
silience of arbiter architectures against machine learning,
which has been suggested in [8], is to employ l individual
Arb-PUFs in parallel, each with k stages. The same chal-
lenge C is applied to all of them, and their individual outputs

ti are XORed in order to produce a global response tXOR.
We denote such an architecture as l-XOR Arb-PUF.

A formal model for the XOR Arb-PUF can be derived as
follows. Making the convention ti ∈ {−1, 1} as earlier, it

holds that tXOR =
∏l

i=1 ti. This leads with equation (3) to
a parametric model of an l-XOR Arb-PUF:

tXOR =
l∏

i=1

sgn(~wT
i

~Φi) = sgn(
l∏

i=1

~wT
i

~Φi) (4)

= sgn(
l⊗

i=1

~wT
i

︸ ︷︷ ︸

~wXOR

l⊗

i=1

~Φi

︸ ︷︷ ︸

~ΦXOR

) = sgn(~wT
XOR

~ΦXOR). (5)

Whereas (4) gives a non-linear decision boundary with l(k+
1) parameters, (5) defines a linear decision boundary by a
separating hyperplane ~wXOR which is of dimension (k +1)l.

Lightweight Secure PUFs. Another type of PUF, which
we term Lightweight Secure PUF or Lightweight PUF for
short, has been introduced in [9]. It is similar to the XOR
Arb-PUF of the last section. At its heart are l individual
standard Arb-PUFs arranged in parallel, each with k stages,
which produce individual responses/outputs r1, . . . , rl. These
individual outputs are XORed to produce a multi-bit output
o1, ..., om of the Lightweight PUF, according to the formula

oj =
⊕

i=1,...,x

r(j+s+i) mod l for j = 1, . . . , m. (6)

Thereby the values for m (the number of output bits of the
Lightweight PUF), x (the number of values rj that influence
each single output bit) and s (the circular shift in choosing
the x values rj) are variable design parameters.

Another difference to the XOR Arb-PUFs lies in the l in-
puts C1 = b1

1 · · · b
1
k, C2 = b2

1 · · · b
2
k, . . . , Cl = bl

1 · · · b
l
k which

are applied to the l individual Arb-PUFs. Contrary to XOR
Arb-PUFs, it does not hold that C1 = C2 = . . . = Cl = C,
but a more complicated input mapping that derives the in-
dividual inputs Ci from the global input C is applied. This
input mapping constitutes the most significant difference be-
tween the Lightweight PUF and the XOR Arb PUF. We
refer the reader to [9] for further details.

In order to predict the whole output of the Lightweight PUF,
one can apply similar models and ML techniques as in the
last section to predict its single output bits oj . While the
probability to predict the full output of course decreases
exponentially in the misclassification rate of a single bit,
the stability of the full output of the Lightweight PUF also
decreases exponentially in the same parameters. It therefore
seems fair to attack it in the described manner; in any case,
our results challenge the bit security of the Lightweight PUF.

Feed Forward Arbiter PUFs. Feed Forward Arbiter PUFs
(FF Arb-PUFs) were introduced in [10] [11] [15] and further
discussed in [16]. Some of their multiplexers are not switched
in dependence of an external challenge bit, but as a function
of the delay differences accumulated in earlier parts of the



circuit. Additional arbiter components evaluate these delay
differences, and their output bit is fed into said multiplexers
in a “feed-forward loop” (FF-loop). The number of loops as
well as the starting and end point of the FF-loops are vari-
able design parameters. Please note that a FF Arb-PUF
with k-bit challenges C = b1 · · · bk and l loops has s = k + l
multiplexers or stages.

The described dependency makes natural architecture mod-
els of FF Arb-PUFs no longer differentiable. Consequently,
FF Arb-PUFs cannot be attacked generically with ML meth-
ods that require linearly separable or differentiable mod-
els (like SVMs or LR), even though such models can be
found in special cases, for example for small numbers of
non-overlapping loops, etc.

Ring Oscillator PUFs. Ring Oscillator PUFs (RO-PUFs)
were discussed in [8]. They are based on the influence of
fabrication variations on the frequency of several, identi-
cally designed ring oscillators. While [8] describes the use of
Ring Oscillator PUFs in the context of Controlled PUFs and
limited-count authentication, it is worth analyzing them as
candidate Strong PUFs. A RO-PUF consists of k such oscil-
lators, each of which has its own, unique frequency caused by
manufacturing tolerances. The input of a RO-PUF consists
of a tuple (i, j), which selects two of the k oscillators. Their
frequencies are compared, and the output of the RO-PUF
is “0” if the former oscillates faster than the latter, and “1”
else. A ring oscillator can be modeled in a straightforward
fashion by a tuple of frequencies (f1, . . . , fk). Its output on
input (i, j) is “0” if fi > fj , and “1” else.

2.4 CRP Generation and Prediction Error
Given a concrete PUF-architecture that should be examined,
the challenge-response pairs (CRPs) we used in our ML ex-
periments were generated pseudo-randomly in the following
fashion: (i) The delay values of the given PUF were chosen
randomly according to a standard normal distribution. (ii)
A set of challenges was selected uniformly at random from all
possible challenges. (iii) The corresponding responses were
calculated by use of the delays selected in step (i), and by
application of a linear additive delay model [12]. The gen-
erated CRPs are subsequently used for training and testing
the ML algorithm. 5/6 of the CRPs were used as training
set, the rest as test set. For XOR and Lightweight PUFs, a
fixed number of 10,000 CRPs were used for testing.

We will use the following definitions throughout the paper:
NTrSet is the number of CRPs in the training set. NTeSet

is the number of CRPs in the test set. NCRP is the total
number of employed CRPs, so NCRP = NTrSet + NTeSet.
The prediction error is the ratio of incorrect responses of
the trained ML algorithm when evaluated on the test set.
In other words, it is the number of incorrect responses of the
trained model on the test set divided by number of CRPs in
the test set.

3. ARBITER PUFS
3.1 Machine Learning Results
To determine the separating hyperplane ~wT ~Φ = 0 we ap-
plied SVMs, LR and ES. LR achieved the best results, which

are shown in Table 1. We chose three different prediction
rates as targets: 95% is roughly the environmental stabil-
ity of a 64-bit Arbiter PUF when exposed to a temperature
variation of 45C and voltage variation of ±2% 2. The val-
ues 99% and 99.9%, respectively, represent benchmarks for
optimized ML results. All figures in Table 1 were obtained
by averaging over 5 different training sets. Accuracies were
estimated using test sets of 10,000 CRPs.

ML No. of Prediction CRPs Training
Method Stages Rate Time

LR 64
95% 640 0.01 sec
99% 2,555 0.13 sec

99.9% 18,050 0.60 sec

LR 128
95% 1,350 0.06 sec
99% 5,570 0.51 sec

99.9% 39,200 2.10 sec

Table 1: LR on Arb PUFs with 64 and 128 stages.
We used HW ⋆.

3.2 Scalability
We also executed scalability experiments with LR, which
are displayed in Fig. 1 and Fig. 2. They show that the
relevant parameters – the required number of CRPs and
the computational complexity, i.e. number of basic opera-
tions – grow both linearly or low-degree polynomially in the
misclassification rate ǫ and the length k of the Arb PUF.
Theoretical considerations (dimension of the feature space,
Vapnik-Chervonenkis dimension) suggest that the minimal
number of CRPs NCRP that is necessary to model a k-stage
arbiter with a misclassification rate of ǫ should obey the
relation

NCRP = O (k/ǫ). (7)

This was confirmed by our experimental results.

In practical PUF applications, it is essential to know the
concrete number of CRPs that may become known before
the PUF-security breaks down. Assuming an approximate
linear functional dependency y = ax + c in the double loga-
rithmic plot of Fig. 1 with a slope of a = −1, we obtained
the following empirical formula (8). It gives the approximate
number of CRPs NCRP that is required to learn a k-stage
arbiter PUF with error rate ǫ:

NCRP ≈ 0.5 ·
k + 1

ǫ
(8)

Our experiments also showed that the training time of the
ML algorithms, measured in the number of basic operations
NBOP , grows slowly. It is determined by the following two
factors: (i) The evaluation of the current model’s likelihood
(1) and its gradient (2), and (ii) the number of iterations of
the optimization procedure before convergence occurs (see
section 2.1.1). The former is both a sum over a function of

the feature vectors ~Φ for all NCRP , and therefore has com-
plexity O (k · NCRP ). On the basis of the data shown in

2The exact figures reported in [15] are: 4.57% CRP variation
for a temperature variation of 45C, and 2.16% for a voltage
variation of ±2%.



Figure 1: Double logarithmic plot of misclassifica-
tion rate ǫ on the ratio of training CRPs NTrSet and
dim(Φ) = k + 1.

Figure 2: No. of iterations of the LR algorithm un-
til “convergence” occurs (see section 2), plotted in
dependence of the training set size NTrSet.

Figure 2, we may further estimate that the numbers of iter-
ations increases proportional to the logarithm of the number
of CRPs NCRP . Together, this yields an overall complexity
of

NBOP = O

(
k2

ǫ
· log

k

ǫ

)

. (9)

4. XOR ARBITER PUFS
4.1 Machine Learning Results
In the application of SVMs and ES to XOR Arb-PUFs, we
were able to break small instances, for example XOR Arb-
PUFs with 2 or 3 XORs and 64 stages. LR significantly
outperformed the other two methods. The key observation
is that instead of determining the linear decision boundary
(5), one can also specify the non-linear boundary (4). This is

done by setting the LR decision boundary f =
∏l

i=1 ~wT
i

~Φi.
The results are displayed in Table 2.

4.2 Performance on Error-Inflicted CRPs

ML No. of Pred. No. of CRPs Training
Method Stages Rate XORs Time

LR 64 99%
4 12,000 3:42 min
5 80,000 2:08 hrs
6 200,000 31:01 hrs

LR 128 99%
4 24,000 2:52 hrs
5 500,000 16:36 hrs

Table 2: LR on XOR Arbiter PUFs. Training times
are averaged over different PUF-instances. HW ⋆.

The CRPs used in Section 4.1 have been generated pseudo-
randomly via an additive, linear delay model of the PUF.
This deviates from reality in two aspects: First of all, the
CRPs obtained from real PUFs are subject to noise and
random errors. Secondly, the linear model matches the phe-
nomena on a real circuit very closely [15], but not perfectly.
This leads to a deviation of any real system from the linear
model on a small percentage of all CRPs.

In order to mimic this situation, we investigated the ML
performance if a small error had been injected artificially
into the training sets. A given percentage of responses in the
training set were chosen randomly, and their bit values were
flipped. Afterwards, the ML performance on the unaltered,
error-free test sets was evaluated. The results are displayed
in Tables 3 and 4. They show that LR can cope very well
with errors, provided that around 3 to 4 times more CRPs
are used. The required convergence times on error inflicted
training sets did not change substantially compared to error
free training sets of the same sizes.

CRPs Percentage of error afflicted CRPs
(×103) 0% 2% 5% 10%

24

Best Pred. 98.76 92.83 88.05 -
Aver. Pred. 98.62 91.37 88.05 -
Trial Succ. 0.6% 0.8% 0.2% 0.0%
Instances 40.0% 25.0% 5.0% 0.0%

50

Best Pred. 99.49 95.17 92.67 89.89
Aver. Pred. 99.37 94.39 91.62 88.20
Trial Succ. 12.4% 13.9% 10.0% 4.6%
Instances 100.0% 62.5% 50.0% 20.0%

200

Best 99.88 97.74 96.01 94.61
Aver. Pred. 99.78 97.34 95.69 93.75
Trial Succ. 100.0% 87.0% 87.0% 71.4%
Instances 100.0% 100.0% 100.0% 100.0%

Table 3: LR on 128 bit, 4 XOR Arb PUFs with dif-
ferent amounts of error in the training set. We show
the best and average of 40 independent trials, and
the percentage of trials and instances that converged
to a sufficient optimum. We used HW �.

4.3 Scalability
Figures 4 and 5 display the results of our scaling experi-
ments with LR. Again, the smallest number of CRPs needed
to achieve predictions with a misclassification rate ǫ scales
linearly with the number of parameters of the problem (the
product of the number of stages k and the number of XORed



CRPs Percentage of error afflicted CRPs
(x103) 0% 2% 5% 10%

500

Best Pred. 99.90 97.55 96.48 93.12
Aver. Pred. 99.84 97.33 95.84 93.12
Trial Succ. 7.0% 2.9% 0.9% 0.7%
Instances 20.0% 20.0% 10.0% 5.0%

Table 4: LR on 128 Bit, 5 XOR Arb PUFs with
different amounts of error in the training set. Rest
as in the caption of Table 3. HW �.

Figure 3: Graphical illustration of the effect of error
on LR in the training set, with chosen data points
from Tables 3 and 4. HW �.

Arb-PUFs l):

NCRP ∼
(k + 1) · l

ǫ
. (10)

But, in contrast to (standard) Arb-PUFs, optimizing the
non-linear decision boundary (4) on the training set now
is a non-convex problem, so that the LR algorithm is not
guaranteed to find the global optimum in its first trial. It
needs to be iteratively restarted Ntrial times. Ntrial thereby
can be expected to not only depend on k and l, but also on
the size NTrSet of the employed training set.

As it is argued in greater detail in [17], the success rate of
obtaining the global optimum is indeed determined by the
ratio of dimensions gradient information exists for (∝ NCRP

as the gradient is a linear combination of the feature vector)
and the dimension dΦ in which the problem is linear separa-
ble. The dimension dΦ is thereby the number of independent
dimensions of ~ΦXOR.

As the tensor product of l vectors consists of all possible
products between their vector components, the independent
dimensions are given by the number of different products
Φi1

1 · Φi2
2 · . . . Φ

il

l for i1, i2, . . . , ik ∈ {1, 2, . . . , k + 1}. For
XOR Arb-PUFs, we have an equal mapping Φi

j = Φi
j′ . Since

a repetition of one component does not affect the product
regardless of its value Φr ·Φr = ±1 · ±1 = 1, the uniqueness
of a l-tuple with a repetition is solely determined by its un-
repeated components. Therefore the number of independent
dimensions is given as the number of l-tuple without repe-
tition, (l − 2)-tuple without repetition (corresponding to all
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Figure 4: Double logarithmic plot of misclassification
rate ǫ on the ratio of training CRPs NTrSet and prob-
lem size dim(Φ) = (k + 1) · l. We used HW �.
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Figure 5: Average rate of success of the LR algorithm
plotted in dependence of the ratio dΦ (see Eqn. (11))
to NCRP . We used HW �.

distinguishable l-tuple with 1 repetition), (l − 4)-tuple with-
out repetition (corresponding to all distinguishable l-tuple
with 2 repetitions), etc.

The number of unique products dΦ is therefore given as:

dΦ =

(

k + 1

l

)

+

(

k + 1

l − 2

)

+

(

k + 1

l − 4

)

+. . . ≈
(k + 1)l

l!
. (11)

All in all, this leads to a number Ntrial of the expected num-
ber of restarts of the optimization procedure until a decision
boundary is obtained, of

Ntrial = O

(
(k + 1)l

NTrSet · l!

)

. (12)

This equation governs the computational complexity of our
approach. One trial has the computational complexity of

Ttrial = O ( (k + 1) · l · NTrSet ) . (13)



As explained above, NTrSet is the size of the employed train-
ing set. Although a (minimal) training set size NTrSet on
the order of (k + 1) · l is sufficient to learn the XOR Arb-
PUF with prediction rate 99%, Eqn. 12 indicates a positive
trade-off between Ntrial and NTrSet. Due to Eqn. 13 it ap-
pears however that the overall complexity is independent
of NTrSet. Still, NTrSet needs to be large enough for the
process to converge at all. Due to the constant factors in-
volved we find in practice that there is an optimal NTrSet

that optimizes runtime. This optimum lies near the point
that Eqn. 11 gives an approximate number of trials of 1.

5. LIGHTWEIGHT SECURE PUFS
5.1 Machine Learning Results
In order to test the influence of the specific input mapping
of the Lightweight PUF on its machine-learnability (see Sec.
2.3), we examined architectures with the following parame-
ters: Variable l, m = 1, x = l, and arbitrary s.We focused on
LR right from the start, since this method was best in class
for XOR Arb-PUFs, and obtained the results shown in Ta-
ble 5. The specific design of the Lightweight PUF improves
its ML resilience by a notable quantitative factor, especially
with respect to the training times.

No. of Pred. No. of CRPs Training
Stages Rate XORs Time

64 99%
3 6,000 8.9 sec
4 12,000 1:28 hrs
5 300,000 13:06 hrs

128 99%
3 15,000 40 sec
4 500,000 59:42 min
5 106 267 days

Table 5: LR on Lightweight PUFs. Prediction rate
refers to single output bits. Training times were
averaged over different PUF instances. HW ⋆.

5.2 Scalability
Some theoretical consideration [17] shows the underlying ML
problem for the Lightweight PUF and the XOR Arb PUF are
qualitatively identical, and differ only quantitatively. This
means that the asymptotic formulas on NCRP and Ntrial

that were given for the XOR Arb PUF (Eqns. 12 and 13 of
Sec. 4.3) also hold for the Lightweight PUF.

This was confirmed by our scalability experiments. We also
observed in agreement with Sec. 5.1 that the involved con-
stants differ: With the same ratio CRPs/dΦ the LR algo-
rithm will have a longer runtime for the Lightweight PUF
than for the XOR Arb-PUF. For example, while with a train-
ing set size of 12, 000 for the 64 Bit 4 XOR Arb-PUF on
average about 5 trials were sufficient, for the corresponding
Lightweight PUF 100 trials were necessary. In principle, this
effect can be compensated by using larger training sets.

6. FEED FORWARD ARBITER PUFS
6.1 Machine Learning Results
We experimented with SVMs and LR on FF Arb-PUFs, us-
ing different models and input representations, but could

only break special cases with small numbers of non-overlapp-
ing FF loops, such as l = 1, 2. This is in agreement with
earlier results reported in [16].

The application of ES finally allowed us to tackle much more
complex FF-architectures with up to 8 FF-loops. All loops
have equal length, and are distributed regularly over the
PUF, with overlapping start- and endpoints of successive
loops. Table 6 shows the results we obtained. Please note
for comparison that in-silicon implementations of 64-bit FF
Arb-PUFs with 7 FF-loops are known to have an environ-
mental stability of 90.16% [15].

No. of FF- Pred. Rate CRPs Training
Stages loops Best Run Time

64
6 97.72% 50,000 27:20 hrs
7 97.37% 50,000 27:20 hrs
8 95.46% 50,000 27:20 hrs

Table 6: ES on Feed-Forward Arbiter PUFs. Pre-
diction rates are for the best of a total of 40 trials.
Training times are for a single trials. We applied
Lazy Evaluation with 2,000 CRPs, and used HW �.

6.2 Results on Error-Inflicted CRPs
For the same reasons as in Section 4.2, we evaluated the
performance on error-inflicted CRPs with respect to ES and
FF Arb PUFs. The results are shown in Table 7 and Fig. 6.
ES possess an extremely high tolerance against the inflicted
errors; its performance is hardly changed at all.

CRPs Percentage of error afflicted CRPs
(×103) 0% 2% 5% 10%

50
Best Pred. 98.29 97.78 98.33 97.68
Aver. Pred. 89.94 88.75 89.09 87.91
Trial Succ. 42.5% 37.5% 35.0% 32.5%

Table 7: ES on 64 bit, 6 FF Arb PUFs with differ-
ent levels of error in the training set. The results
are the best and average over 40 independent trials.
The table also shows the percentage of trials that
converged to 10% or better. We used HW �.

6.3 Scalability
We started by empirically investigating the CRP growth as
a function of the number of challenge bits, examining archi-
tectures of varying bitlength that all have 6 FF-loops. The
loops are distributed as described in Section 6.1. The cor-
responding results are shown in Figure 7. Every data point
corresponds to the averaged prediction error of 10 trials on
the same, random PUF-instance, whereby the prediction er-
ror for each denotes the difference between the test and the
training set. The given number of CRPs is the sum of the
sizes of both sets.

Secondly, we investigated the CRP requirements as a func-
tion of a growing number of FF-loops, examining architec-
tures with 64 bits. Again, the FF-loops are distributed in
a standard manner. The corresponding results are depicted



Figure 6: Graphical illustration of the tolerance of
ES to errors. We show the best result of 40 inde-
pendent trials for varying error levels in the training
set. The results hardly differ. We used HW �.

in Figure 8. Each data point shows the averaged prediction
error of 10 trials, and the shown numbers of CRPs are again
the added sizes of the test and the training set.

In contrast to the former sections 4.3 and 5.2, it is much
more difficult to derive reliable scalability formulas from the
ES data. Firstly, the structure of ES provides less theoretical
footing for formal derivations. Secondly, also an empirical
derivation of formulas is intricate, since the inherently ran-
dom nature of ES produces a very large variance in the data
points. Thirdly, we observed an interesting effect when com-
paring the performance of ES vs. SVM/LR on the Arb PUF:
While the supervised ML methods SVM and LR showed a
linear relationship between the aspired prediction error ǫ and
the required CRPs even for very small ǫ, ES proved more
CRP hungry in these regions, clearly showing a superlin-
ear growth. The same effect can be expected for the more
complicated FF architectures, meaning that one consistent
formula for extreme values of ǫ may be difficult to obtain,
at least empirically.

Even though there is a large variation, it is possible to con-
clude from the data points in Figs. 7 and 8 that the growth
in CRPs is about linear, and that the computation time
grows polynomially. Nevertheless, we would like to remain
conservative here, and present the upcoming empirical for-
mulas only in the status of a conjecture.

The data gathered in our experiments is best explained by
assuming qualitative relation of the form

NCRP = O(s/ǫc) (14)

for some constant 0 < c < 1. Concrete estimation from our
data points leads to an approximate formula of the form

NCRP ≈ 9 ·
s + 1

ǫ3/4
. (15)

The computation time required by ES is determined by the
following factors: (i) The computation of the vector product

~wT ~Φ, which grows linearly with s. (ii) The evolution applied
to this product, which is negligible compared to the other

Figure 7: Results of 10 trials per data point with
ES for different lengths of FF Arbiter PUFs and the
hyperbola fit. HW �.

Figure 8: Results of 10 trials per data point with ES
for different numbers of FF-loops and the hyperbola
fit. HW �.

steps. (iii) The number of iterations or “generations” in ES
until a small misclassification rate is achieved. We conjec-
ture that this grows linearly with the number of multiplexers
s. (iv) The number of CRPs that are used to evaluate the
individuals per iteration. If Eqn. 15 is valid, then NCRP is
on the order of O(s/ǫc).

Assuming the correctness of the conjectures made in this
derivation, this would lead to a polynomial growth of the
computation time in terms of the relevant parameters k, l
and s. It could be hypothesized that the number of basic
computational operations NBOP obeys

NBOP = O(s3/ǫc) (16)

for some constant 0 < c < 1. Due to the special nature of
ES, the multiplicative constant implicit in the O-notation
is much larger than in earlier formulas, which is reflected
in the large absolute computation times of ES reported in
Table 6.



7. RING OSCILLATOR PUFS
7.1 Possible Attacks
There are several strategies to attack a RO-PUF. The most
straightforward attempt is a simple read out of all CRPs.
This is easy, since there are just k(k − 1)/2 = O(k2) CRPs
of interest.

If Eve is able to choose the CRPs adaptively, she can employ
a standard sorting algorithm to sort the RO-PUF’s frequen-
cies (f1, . . . , fk) in ascending order. This strategy subse-
quently allows her to predict all outputs with 100% correct-
ness, without knowing the exact frequencies fi themselves.
The time and CRP complexities of the respective sorting al-
gorithms are well known [24]; for example, there are several
algorithms with average and even worst case CRP complex-
ity of NCRP = O(k · log k). Their running times are also
low-degree polynomial.

The most interesting case for our investigations is when Eve
cannot adaptively choose the CRPs she obtains, but still
wants to achieve optimal prediction rates. This case occurs
in practice whenever Eve obtains her CRPs from protocol
eavesdropping, for example. We carried out experiments for
this case, in which we applied Quick Sort (QS) to randomly
drawn CRPs. The results are shown in Table 8. The esti-
mated required number of CRPs is given by

NCRP ≈
k(k − 1)(1 − 2ǫ)

2 + ǫ(k − 1)
, (17)

and the training times are low-degree polynomial. Eqn. 17
quantifies limited-count authentication capabilities of RO-
PUFs.

Method No. of Pred. Rate CRPs
Oscill. average

QS
256 99% 99.9% 14,060 28,891
512 99% 99.9% 36,062 103,986
1024 99% 99.9% 83,941 345,834

Table 8: Quick Sort applied to the Ring Oscillator
PUF. The given CRPs are averaged over various tri-
als. We used HW �.

8. SUMMARY AND DISCUSSION
We investigated the resilience of electrical Strong PUFs against
modeling attacks. To that end, we applied various ma-
chine learning techniques to challenge-response data gener-
ated pseudo-randomly via an additive delay model. Some of
our main results are summarized in Table 9.

We found that all examined Strong PUF candidates under a
given size could be machine learned with success rates above
their in-silicon stability. The attacks require a number of
CRPs that grows only linearly or log-linearly in the inter-
nal parameters of the PUFs, such as their number of stages,
XORs, feed-forward loops or ring oscillators. Apart from
XOR Arbiter PUFs and Lightweight PUFs (whose training
times grew super-polynomially in their number of XORs),
the training times of the applied machine learning algo-
rithms are low-degree polynomial, too. These results sug-
gest that XOR-based architectures are a favorable approach
for PUF design. But one observation is that not only the

PUF XORs/ ML No.of Pred. CRPs Train.
Type Loops Met. Stag. Rate (×103) Time
Arb - LR 128 99.9% 39.2 2.10 sec
XOR 5 LR 128 99.0% 500 16:36 hrs
Light 5 LR 128 99.0% 1000 267 days
FF 8 ES 64 95.5% 50 46 days

Table 9: Some of our main results.

machine learning resilience, but also the instability of the
XOR-based approaches increases exponentially in the num-
ber of XORs l. Therefore, there is a limit on l [25]. On
the other hand, the number of stages in the PUF k is a pa-
rameter that the PUF-designer can increase to increase the
computational effort of the adversary; for a large l, increas-
ing k significantly results in a strongly increased effort for
the adversary.

Our results prohibit the use of the broken architectures as
Strong PUFs or in Strong-PUF based protocols. Under the
assumption that digital signals can be probed, they also af-
fect the applicability of the cryptanalyzed PUFs as build-
ing blocks in Controlled PUFs and Weak PUFs. While we
have presented results only on pseudo-random CRP data
generated in the additive delay model, experiments with sili-
con implementations [15] have shown that the additive delay
model achieves high accuracy. We also found that the stabil-
ity of our results against random errors in the CRP data is
high. This shows that our approach is robust against some
inaccuracies in the model and against measurement noise,
which is important in the case where CRP data is collected
from silicon PUF chips.

Two directions of future work arise from our results. On
the side of the PUF designers, avenues to improve the re-
silience of delay-based PUFs against modeling attacks must
be examined. Possibilities include increasing the length of
the PUF, adding nonlinearity (for example, AND and OR
gates that correspond to MAX and MIN operators [15]). An-
other option is the combination of Feed-Forward and XOR
architectures, since they were susceptible only to different
ML techniques, respectively. Moving away from delay-based
PUFs, by exploitation of the dynamic characteristics of cur-
rent and voltage seems promising. The behavior of certain
analog circuits (e.g., Cellular Non-linear Networks) is know
to be stable, but nevertheless is guided by complex differen-
tial equations. Machine learning the output of such a circuit
could prove to be difficult.

On the cryptanalytic side, improving the presented attacks
through optimized implementations and new ML methods
is a worthwhile future study. Information obtained from di-
rect physical PUF measurements might be exploited, and
could be combined with numerical ML techniques. For ex-
ample, applying the same challenge multiple times gives an
indication of the noise level of a response bit. Information
about which bits are noisy can conceivably improve the suc-
cess and convergence rates of ML methods, though we have
not exploited this in this paper.
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