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1 Abstract

This paper discusses the practical implementation of a novel security tool termed SIMPL system,
which was introduced in [1]. SIMPL systems can be regarded as a public key version of physical
unclonable functions (PUFs). Like the latter, a SIMPL system S is physically unique and non-
reproducible, and implements an individual function FS . In opposition to a PUF, however, a SIMPL
system S possesses a publicly known numerical description, which allows its digital simulation and
prediction. At the same time, any such simulation must work at a detectably lower speed than the
real-time behavior of S. As argued in [1], SIMPL systems have certain practicality and security
advantages in comparison to PUFs, certificates of authenticity, physically obfuscated keys, and also
to standard mathematical cryptotechniques.

In [1], definitions, protocols, and optical implementations of SIMPL systems were presented.
This manuscript focuses on concrete electrical, integrated realizations of SIMPL systems, and
proposes two potential candidates: SIMPL systems derived from special SRAM-architectures (so-
called “skew designs” of SRAM cells), and implementations based on Cellular Non-Linear Networks
(CNNs).

2 Introduction

Physical Unclonable Functions (PUFs) are a relatively young, emerging cryptographic primitive
[2, 3, 4, 5, 6, 7]. However, one potential downside of PUF-based protocols is that they usually
require a previously shared piece of information (typically some challenge-response-pairs) that was
established in a joint set-up phase between the communicants. Alternatively, an online connection
to a trusted authority at the time of the protocol execution must be employed. In this particular
structural aspect, PUFs are resemblant of classical private key systems.

In this paper, we are concerned with an alternative security tool called SIMPL systems, which is
a public key version of standard PUFs. SIMPL systems have been introduced in [1]. The acronym
SIMPL stands for “SIMulation Possible, but Laborious”, and hints at the critical security feature of
these structures. A physical system S is called a SIMPL system if the following holds:

1. It is possible for everyone to numerically simulate and, thus, to predict the physical behaviour
of S with very high accuracy. The basis of the simulation is an individual description D(S)
of S, and a generic simulation algorithm Sim, which are both publicly known.
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2. Any sufficiently accurate numerical simulation — as well as any arbitrary physical emulation
of S — is slower than the real-time behavior of S. Determining the system’s behavior by
an actual measurement on the original system S works detectably quicker than any other
approach.

3. It is difficult to physically reproduce or clone S.

Put together in one sentence, the holder of a SIMPL system S can compute a publicly known,
publicly computable individual function FS faster than anyone else. Applying the familiar public
key terminology to this situation, one could state that the numeric description D(S) essentially
serves as a public key, while the physical system S constitutes an equivalent to a private key. This
“private key”, however, is a physically irreproducible structure, which contains no secret information
at all. This leads to several significant security advantages, which have been discussed in [1].

One critical question is certainly how SIMPL systems can be implemented in practice. We sug-
gest two variants based on integrated electrical circuits in this publication: Firstly, special SRAM-
memories based on a newly developed “skew” design, which leads to fuzzy memory cell behavior at
quickly varied operational voltages. Secondly, we propose analog circuits known as Cellular Non-
Linear Networks (CNN), whose cells evolve over time in an analog, highly parallel fashion. This
can help them to outperform classical architectures on certain computational tasks, as is required
from SIMPL systems.

The rest of this manuscript is organized as follows: In section 3 we cite and discuss the formal
definition of SIMPL systems of [1]. Section 4 provides one example protocol and briefly discusses
applications and advantages of SIMPL systems. In section 5 we treat the implementation of SIMPL
systems by Cellular Non-Linear Networks. Section 6 introduces SIMPL systems based on special
SRAM architectures. We conclude the paper in section 7.

3 Definition of SIMPL Systems

The following definition of SIMPL systems has been provided in [1].

Definition 3.1 ((tC , tPh, ε)-SIMPL Systems). Let S be a physical system mapping challenges Ci

to responses Ri, with C denoting the finite set of all possible challenges. Let furthermore tmax be
the maximum time (over all challenges Ci ∈ C) which it takes until the system has generated the
corresponding response Ri. S is called a (tC , tPh, ε)-SIMPL system if there is a numerical string
D(S), called the description of S, and a generic computer algorithm Sim such that the following
conditions are met:

1. For all challenges Ci ∈ C, the algorithm Sim on input
(
Ci, D(S)

)

outputs Ri in feasible time.

2. Any cryptographic adversary Eve, who is bound to practically feasible probabilistic Turing
computations and practically feasible physical actions, will succeed in the following security
experiment with a probability of at most ε:

(a) Eve is given the numerical description D(S) and the code of the algorithm Sim for a time
period of length tC .
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(b) Within the above time period tC , Eve is given physical access to the system S at adaptively
chosen time points, and for adaptively chosen time periods. The only restriction is that
her access times must add up to a total of at most tPh. After the access times have ended,
she does not have physical access to S anymore.

(c) After period tC has expired, Eve is presented with a challenge Ci0 that was chosen uni-
formly at random from the set C, and must output a value VEve.

We say that Eve succeeded in the above experiment if the following conditions are met:

(i) VEve = Ri0.

(ii) The time that Eve needed to output VEve after she was presented with Ci0 is at most
2 · tmax.

Please note that the said probability of ε is taken over the uniformly random choice of Ci0 ∈ C,
and the random choices or actions that Eve might take in steps 2a, 2b and 2c.

Some remarks on the definition are in order.

Security Model. Let us start by briefly discussing the security model of the definition. In
practice, an adversary Eve can gather information about S in essentially two ways. Firstly compu-
tationally, by analyzing challenge-response-pairs (Ci, Ri) and by analyzing the algorithm Sim and
the description D(S). The CRPs may either stem from eavesdropping on protocols, or they may
be computed by the adversary hinself via the algorithm Sim and the description D(S). These pos-
sibilities are reflected in item 2a of the definition. Secondly, Eve may physically measure arbitrary
features of the system S at some point. For example, she might try to obtain some physical char-
acteristics or internal parameters of the system which are not easily deducable from knowing many
CRPs, but which could speed up her simulation. This possibility is covered in item 2b. The model
tries to reflect real-world situations, for example if S was used in mobile systems for identification
purposes.

Immunity against Full Read-Out. It follows from Definition 3.1 that for any SIMPL system
S, it must be impossible to measure the values Ri for all possible parameters Ci ∈ C within
the timeframe tPh. Otherwise, Eve could create an exhaustive lookup-table for all possible values
Ri during step 2b, which would enable her to succeed in the described experiment. Hence, for
any SIMPL system either the set of possible measurement parameters C must be very large (for
example exponential in some system parameter) and/or successive read-outs can only be carried
out relatively slowly.

Immunity Against Cloning. Please note further that Definition 3.1 implies that previous phys-
ical access and a number of known Challenge-Response-Pairs of S must not enable Eve to do one
of the following:

1. Build an exact physical clone S′ of the system S, for which

Ri = R′
i for (almost) all Ci ∈ C,

and for which the evaluation of the R′
i works comparably quickly as by an experiment on S.
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2. Build a functional physical clone S′ of S, which may be a physical system of a possibly very
different structure or different lengthscales than S, that enables Eve to determine the values
Ri for (almost) all Ci ∈ C correctly and comparably quickly as by experiment on S.

3. Build a digital clone, which is a computer algorithm Alg that numerically computes the values

Alg(Ci) = Ri

for (almost) all Ci ∈ C comparably quickly as by an experiment on S.

The inability for digital cloning implies a number of non-trivial requirements: Firstly, it logically
includes the immunity against full read-out that we discussed earlier. Secondly, it implies that the
behaviour of S cannot be learned by a machine learning algorithm that has a very rapid prediction
phase, which works on a comparable timescales as the real-time behavior of S. Thirdly, and most
generally, it implies that the simulation of S on the basis of D(S) cannot be split into a possibly
laborious precomputation phase independent of a concrete challenge, and a specific computation
phase that very rapidly determines Ri once Ci is given.

In the sequel, we will sometimes refer to the immunity of S against cloning also as the unrepro-
ducibility or the uniqueness of S.

Different Adversarial Scenarios. The definition leaves to some extent open which specific
resources Eve may employ during her attack. There are several meaningful scenarios, leading to
different security notions.

1. Consumer Security: Eve is assumed to be a private person, possibly very educated in
cryptographic and security matters, but with a budget not exceeding one million dollars.

2. Organization Security: Eve is an organization with very strong financial resources, possi-
bly up to billions of Dollars, but with some significant constraints concerning impending legal
prosecution.

3. Technological Security: We assume that Eve is allowed to use basically unlimited fin-
cancial resources, and faces no restrictions other than those induced by current technology.

When we say that a SIMPL system is secure in one of the above scenarios, we mean that it
remains secure in the sense of Definition 3.1 if Eve is allowed the described resources. Which type
of security we seek strongly depends on the intended application. A SIMPL system that is not
technologically secure, but consumer secure might still find very fruitful applications in the con-
sumer market. One should have this fact in mind, and not aim for technological security only when
designing SIMPL systems.

For a full discussion of the definition and the underlying adversarial model, see [1]. In particular, we
argue in this reference why the usual distinction between polynomial and exponential time should not
be applied in the definition of SIMPL systems, which only allows us to employ seemingly handwaving
notions like “practically feasible” or “infeasible”. In particular, there is no formal “computational”
model at hand which could help us to formalize Eve’s physical actions during her physical access
periods tPh.
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4 Protocols and Applications

We will now quote one exemplary protocol that can be realized by SIMPL systems in order to
illustrate their working principle [1]. A few applications and the advantages of SIMPL systems are
briefly discussed, too.

4.1 Identification by SIMPL Systems

We assume that Alice, who holds an individual SIMPL system S, has put D(S), Sim, tmax and a
description of C in a public register (we will not discuss PKI-related problems such as [10] here).
Now, she can prove her identity to an arbitrary second party Bob as follows [1]:

Protocol 4.1: Identification of Entities by SIMPL Systems

1. Bob obtains the information D(S), Sim, tmax, and C associated with Alice from the public
register.

2. Bob sends a number of randomly chosen challenges C1, . . . , Ck ∈ C to Alice.

3. Alice determines the corresponding responses R1, . . . , Rk by experiment on her SIMPL system
S, and returns them immediately to Bob.

4. Bob receives values V1, . . . , Vk, and measures Alice’s response time (i.e. the time between the
two events of sending C1, . . . , Ck and receiving V1, . . . , Vk). If this time is above the threshold
2 · tmax, he aborts the protocol.

5. Bob checks through simulation by the algorithm Sim if for all i = 1, . . . , k,

Vi = Ri.

If this is the case, Bob believes Alice’s identity, otherwise not.

Security. As usual, k is the security parameter of the protocol. In a nutshell, the protocol works
because Eve is unable to determine the values Ri for randomly chosen Ci comparably quickly as
Alice, provided that: (i) The lifetime of the system S (and the period since D(S) was made public)
does not exceed tC , and (ii) Eve’s accumulated physical access times to S do not exceed tPh. In
that case, Eve’s probability to succeed in the protocol without possessing S are less or equal to εk.

Practicality. Bob can improve his computational efficiency by verifying the correctness of the
responses Ri merely for a randomly chosen, smaller subset of {1, . . . , k}. If necessary, possible
network and transmission delays can be compensated for in advance by amplifying the absolute time
gap between Eve and S through feedback loops (see discussion in section 3). Also the asymmetry
between checking a solution and computing a solution may be exploited in future protocols (see
section 6.3 of [1]).
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4.2 Applications and Advantages of SIMPL Systems

Straightforward applications of the above identification protcol include the following [1]:

(i) Identification of hardware and computer systems.

(ii) Secure labeling of valuable items, such as branded products, pharmaceuticals, passports, bank
notes, credit cards, and the like.

(iii) Unclonable (copy protected) representations of digital content and software, digital rights
management.

(iv) Tamper sensitive hardware environments.

The upside of using SIMPL systems in these situations over standard mathematical cryptotech-
niques or alternative approaches such as certificates of authenticity [12] or PUFs has been discussed
in detail in [1]. It includes: (i) SIMPL systems do neither contain nor constitute any sort of se-
cret binary information. This makes them naturally immune against any side channel, invasive or
malware attack. (ii) They allow protocols that are independent of the standard, unproven number
theoretic assumptions (factoring, discrete log). (iii) They have strong practicality advantages over
COAs and PUFs, since structurally they are a public key version of PUFs. They allow new DRM
in connection with TPMs, or labels that can be read out digitally over long distances, and can be
verified offline at the same time [1].

These assets make them a worthwhile target for future investigations. In particular, it would be
important to find electrical, integrated implementations, an issue which was left open in [1]. Over
the next sections, we will discuss two promising candidates.

5 Cellular Non-Linear Networks

5.1 Introduction and General Idea

A first electrical and on-chip candidate for SIMPL systems are Cellular Non-Linear Networks (CNNs)
[22]. If successfully implemented, they would result in a technologically secure SIMPL system (see
page 4).

CNNs are analog computing arrays with a regular, periodic, cellular structure. The cells are
characterized by a dynamical state variable, and their time evolution depends on their own internal
state and on the inputs from their neighbouring cells. On an abstract level, their behavior is given
and determined by so-called templates, which in the simpliest case are real-valued matrices. On
a circuit level, it is given by the transistor architecture of a cell, which implements the behavior
specified by the templates.

More specifically, each cell is characterized by a dynamical state variable x, which obeys the
following, ordinary differential equation (ODE):

ẋij = −xij +
∑

k,l

Ai,j,k,lykl +
∑

k,l

Bi,j,k,lukl + zij

i.e. the time derivative of the state variable (for the cell with i, j indices) depends on the y
output of the neighboring cells (denoted by the k, l indices) via a the A cloning templates. Each
cell has a bias (z) and inputs, which are coupled by the B template to the equation.

As a mathematical model, CNNs are very general; for example, cellular automata [14] can be
interpreted as a special CNN which operates on discrete variables in discrete time (and where rules
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replace the ODE-based description). CNNs are also known to be Turing-complete [15]. CNNs often
have multiple layers, and these layers are also coupled to each other via B templates.

Due to their analog and highly parallel architecture, CNNs have a remarkable computing power
and efficiency. Already in 2004, a state-of-the-art programmable, commercially available CNN in
a 0.35-µm standard CMOS technology exhibited peak computing figures of 330 GOPS [23] (or 3.6
GOPS/mm2 and 82.5 GOPS/W in terms of area and power consumption). These numbers are yet
excelled by non-programmable CNNs, which we propose for use as SIMPL systems. In specialized
tasks, it is known that CNNs can outperform digital computers by a factor of up to 1,000 [24, 25].
CNNs are the largest analog circuits, with the CNN referred to above [23] containing 3.75 million
transistors.

A further important property of CNNs is that their functionality is especially sensitive to the
inevitable variations in the fabrication process, unless special countermeasures are taken. This
can make the function FS computed by a CNN S truly unique. At the same time, since CNNs are
integrated electrical systems, dedicated on-chip measurement circuitry can determine the fabrication
mismatches, and deliver a sufficiently detailed description D(S) to simulate FS . Such types of self-
measuring cells are already today in standard use for calibration purposes [26]. Furthermore, it is
known that there is a stable regime where the fabrication mismatches determine the CNN behavior,
and where they override circuit noise and temperature variations [27, 28]. Altogether, said properties
makes CNNs quite interesting candidates for SIMPL systems.

5.2 Implementation

We propose two concrete candidates for CNN-based SIMPL systems. Firstly, CNNs employed for
image processing tasks [25, 30], which are known to outperform classical architectures by a factor of
10 – 100. Another attractive option is a template and circuit-design that has been recently devised
in our group [29]. It is inspired by the high internal complexity of optical PUFs [2], in whose time
evolution many internal scattering components interact in parallel, leading to a high computational
complexity and to laborious simulatability. Our template has the remarkable property that it
effectively transfers optical behavior onto a CNN (i.e. onto an electrical integrated circuit), which
then behaves quasi-optical, that is, similar to an optical system. In particular, the electrical current
flowing through a certain reference point in each CNN-cell is equivalent to the local light intensity
in an optical interference reference system.

The upcoming figures provide the templates and cell architecture of this 3-layer CNN, as well
as simulation results that confirm the quasi-optical behavior. Figure 1 shows the templates and the
interaction structure of the proposed 3-layer CNN. Figure 2 illustrates the circuit-level design. Figure
3 provides simulation data which shows the quasi-optical interference patterns in the linear (left)
and non-linear/mismatched case (right). Figure 4 illustrates that local changes in the structure
propagate globally. This further illustrates the quasi-optical nature and the high computational
complexity of the structure: Its evolution involves many interacting subunits in parallel.

The described CNN-design seems particularly suited as SIMPL system because its quasi-optical
behavior fosters pairwise interaction between the cells throughout the structure. This leads to
a particularly strong, inherent parallelism, which will be costly to simulate on digital architec-
tures. Furthermore, as we could show in simulations, the behavior of the quasi-optical SIMPL
automatically shifts into a non-linear, highly complex regime through the occurring manufacturing
mismatches, which can be exploited even better for our purposes. In opposition to three-dimensional
optical PUFs, its description D(S) can be determined by in-built on chip measurement circuitry.

Another very important characteristics of our circuit that its behavior is sensitive, but is not
chaotic. Chaotic circuits are well known [16] and several CNN templates are known to realize
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Figure 1: Templates and interaction structure of our 3-layer CNN-SIMPL system.
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Figure 2: Circuit level design of our proposed CNN-SIMPL system.
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Figure 3: Simulated behavior of the CNN-SIMPL system. The brightness levels illustrate the
currents at a fixed reference point in each cell within a 100 × 100 cell structure. Left: Linear case,
without fabrication mismatches, and with two excitation sources. Right: Non-linear case, resulting
from fabrication mismatches, again two excitation sources. Both pictures nicely show the quasi-
optical interference behavior. The non-linear case obviously provides a much more complex and
much richer regime, which is suited best for our purposes.

Figure 4: Globale sensitivity of the proposed CNN design to a local change of the template. Chang-
ing only a single template at a particular position (denoted by B in the figure), even far away
from the input exciting the structure (marked as In), will alter the global behavior of the circuit
detectably. The figure shows a difference map of the values E1

z and E2
z obtained by two simulations,

one for the original value of the templates, the other for one template value in position B altered.
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chaos [17, 18, 19]. The time trajectories of a chaotic system are irreproducible in a real physical
environment and are hence unsuited as a SIMPL system.

Security Aspects. A 100 × 100 cell CNN with our architecture leads to the following specific
numbers: It requires a description D(S) containing about 104 · 19 template values, which is about
100 kB of information. In order to simulate the real-time evolution which the CNN undergoes in a
few microsecond time frame, 104 coupled differential equations need to be solved (i.e., one for each
cell).

Non-programmable CNNs require about 10 times less transistors per cell than programmable
CNNs, and they operate faster due to the simple, resistive interconnections of their cells. By in-
creasing the size of our non-programmable CNN, we can easily shift into regions where commercially
programmable CNNs are no longer available.

6 SIMPL Systems from Special SRAM Memories

6.1 Introduction and General Idea

One practical and stable, but at most consumer secure SIMPL candidate will be presented in this
section. It is based on a special design of SRAM memories, which we call “skew design”. Its basic
idea is to design the SRAM-cells such that they exhibit varying behavior in different operational
voltage regions. Some of the cells (cells of type 1) will function properly over the whole operational
voltage range. Others, of type 2, will possess stable read operations, but exhibit (intended) write
failures whenever the operational voltage V DD is above a certain threshold. This means that in
these V DD regions, the content of the cell is not changed or affected by write procedures. Below
the threshold, however, the write operation in cells of type 2 functions properly. Finally, there are
cells of type 3, which contain a fixed bit value (0 or 1). It has been hardwired into them already in
their fabrication, and their content cannot be changed by any write operation at all, regardless of
the applied operational voltage.

Now, imagine an SRAM-memory M where cells of the described three types are randomly dis-
tributed or mixed. We call such a memory a “skew memory”. Imagine further that on the basis
of M , we build a larger hardware system S, which repeats the following feedback loop l times at
maximal operational speed.

Feedback loop, iteration i:

1. Write bitvalues bi
1, . . . , b

i
k into the addresses WRi

1, . . . , WRi
k of M

2. Read out the bit values Bi
1, . . . , B

i
m from the addresses READi

1, . . . , READi
m

3. Switch to operational voltage V DD(i)

4. Determine the parameters necessary for the next iteration, namely bi+1
1 , . . . , bi+1

k , WRi+1
1 , . . . ,

WRi+1
k , READi+1

1 , . . . , READi+1
m , V DD(i + 1), as a pseudo-random function of the values

Bi
1, . . . , B

i
m obtained in step 2.

S is depicted schematically in Fig. 5. In order to associate a global input and a global output
with S, we may say that the values b0

1, . . . , b
0
k, WR0

1, . . . , WR0
k, READ0

1, . . . , READ0
m, V DD(0)

that are necessary to start the loop, constitute its global input. After the last of the l iterations,
the values Bl

1, . . . , B
l
m can serve as the global output of S. Alternatively, one may define the
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global output to be a function (e.g. a hash function) of the values Bl−q+1
1 , . . . , Bl−q+1

m , Bl−q+2
1 , . . . ,

Bl−q+2
m , . . . , Bl

1, . . . , B
l
m that occured in the last q iterations of the loop. In this sense, we can

interpret the behavior of S as a function FS mapping global inputs to outputs.

SIMPL System S

Skew Memory

Feedback Loop, repeated l times

Global Input IGlobal Output

Figure 5: Schematic illustration of the input–output behavior of S and of the function FS .

Then, FS has the following properties:

(i) FS can be individualized by changing the design of the memory M . To that aim, for example
memory cells of type 3 (fixed bitvalues) can be distributed randomly over the memory in a
final fabrication step.

(ii) If the distribution of the cells of type 1, 2 and 3 is known, the function FS can be simulated
digitally.

(iii) The simulation of FS on a standard architecture will be slower than the real-time computation
of FS by S. Also configurable hardware or ASICs that are not based on a skew design will have
a speed disadvantage. In both cases, the speed gap will only be a constant factor, however.

(iv) If the special skew design of SRAM cells is legally protected, then an adversary needs his own
chip foundry to produce a hardware system that implements FS comparably quickly, since
ordering ASICs with a skew design will be legally prohibited.

The above properties qualify S as a consumer secure SIMPL system. We will discuss the practical
implementation over the next section.

6.2 Implementation

A concrete skew design developed in our group [13] is illustrated in Fig. 1a), with width and length
specified beside each transistor. The functionality of the design based on TSMC 0.18 µm technology
has been succssfully verified with Spectre [31] simulations. The corresponding results are illustrated
in Figure 7. In our case, V DDmin = 1.4V, V DDmax = 1.7V , and V DDfuncmin = 1.58 V .

The memories, which will all share the same layout, can be individualized towards the end of
manufacturing by fixing the content of some individually chosen cells to certain values. This means
that the resulting structure will not be manufacturer resistant in the sense of [4], but will at least
require a fraudster to possess its own chip foundry. The common SRAM-cell arragement will be
contained in the general simulation algorithm Sim, and the individual description D(S) consists of
the cells that have been fixed to certain values. Please note that the described individualization
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Figure 6: (a) The SRAM cell layout. (b) The basic operation cycle of the SRAM-SIMPL system.

can be carried out on the basis of a pseudorandom number sequence, which means that a short,
few-hundred bit long random seed s suffices as D(S).

The basic implementation of the feedback-loop is sketched in Fig. 1b). The implementation
of the pseudo-random generator is carried out by an LSFR, since that PRNG works very quickly.
Computationally laborious PRNGs might be implemented more quickly by a fraudster, who would
thereby regain some of his speed disadvantage. Please note that we do not require a PRNG with
cryptographic security in this application, but merely a PRNG with a long periodicity, such that as
many memory cells as possible are at least once written to or read from in the feedback loop.

The relative speed advantage of the real system can be further amplified by activating and
writing into multiple word lines during one write cycle. Due to the skew design, the same value
written in several lines will not necessarily result in the same cell content. Based on the simulation
data we obtained, we estimate that the relative speed advantage of a SIMPL SRAM memory will
be a factor on the order of 10, even compared to dedicated, configurable hardware such as FPGAs.
At the same time, since all operations on the SRAM-memory are fully digital and well-defined, the
content of the memory can be precisely simulated and predicted.

Compared to optical SIMPLs [1] and CNN-SIMPLs, the great advantage of the SRAM-variant
is its practicality and stability. It can be implemented relatively cheaply, integrated in existing
systems, and requires only very short descriptions D(S). This comes at the cost of losing their
technological security, and exchanging it against consumer security (see page 4). Nevertheless, this
seems acceptable in many applications. Please note that for integrated PUFs and SIMPLs, some level
of manufacturer trust will always be required: It is difficult to prevent that a fraudulent manufacturer
implements a PRNG with a seed known to him and distributes it to innocent customers, instead of
producing a real, manufacturer resistant PUF.

Security Aspects. Let us very briefly discuss a few security relevant aspects. A fraudster who
wants to imitate the skew SIMPL systems without a skew architecture has a number of basic
possibilities.

First of all, he may try to implement the feedback loop in full logic, that is, without any memory
cells at all. His hope may be that pure logic operations work faster than memory read and write
steps, and that he can so outperform (or at least match) the speed of the original SIMPL. However,
if the memory is sufficiently large, then the construction of such a pure logic will be prohibited by
size and complexity constraints.

This means that the faker needs to employ some sort of memory in his attempts. SRAM
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Figure 7: Spectre Simulations confirm the desired behavior: Write failures occur at certain voltages,
meaning that the content of the SRAM cell remains unchanged in the WRITE operation. At the
same time, the READ operation functions properly at all voltages.

memories are, in general, the fastest currently available technology, meaning that the faker should
use SRAM cells, too. If he cannot rely on skew cells, one straightforward approach may be a system
SFake as described in Figure 8. There, three standard memories M∗,M1 and M2 and one logic
block are used in order to simulate one skew memory MSkew. All of them have the same size (i.e.
number of cells) as MSkew.

The purpose of M∗ is to store the same content as MSkew during all of its operation time. The
purpose of the memories M1 and M2 is to store the distribution of cells of type 1, 2 or 3 in MSkew.
For describing the type of a cell in address ADD of MSkew, we need two bits (for the three different
types). These two bits are distributed in the same addresses of the memories M1 and M2: M1 stores
in ADD the first bit of the description, whereas M2 stores in ADD the second bit.

Under these provisions, SFake can simulate one write procedure of bit b under operational voltage
V DD into address ADD of MSkew as follows: The two bits describing the cell type of MSkew in
address ADD are read from the address ADD in M1 and M2. They are fed into the logic, together
with the operational voltage V DD. The logic determines whether a write operation under the
described circumstandes (type of cell and given V DD) would be successful. If yes, then the bit b
will be written into ADD in the memory M∗. If not, nothing happens, and no write operation will
be executed.

The described construction ensures that M∗ always carries the same content as MSkew would
carry under a similar operation. At the same time, however, it requires more Read/Write operations
plus the additional logic steps, leading to a constant speed-up factor. If also multiple word lines
are activated in MSkew in each write step, this constant speed-up factor will be above a value of 2,
meeting definition 3.1.
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Figure 8: A system SFake designed to imitate a skew memory MSkew.

7 Conclusions

SIMPL Systems are a novel security concept, which can be regarded as a public key version of
physical unclonable functions [1]. Structurally, they function like a private/public key cryptosystem,
with the notable difference that the equivalent to the private key is a physically hard-to-reproduce
structure, which does not contain any secret information at all. This leads to critical security and
practicality advances. In this paper, we reviewed the basic concepts presented in [1], but mainly
focused on promising IC-based implementations of SIMPL systems.

Our first idea was to employ large, analog computing arrays as SIMPL systems. They evolve
in parallel and by exchanging analog signals between their subunits, creating a significant compu-
tational power and complexity. At the same time, the arrays can be designed to strongly depend
on fabrication mismatches, making the function which they implement individual and unique. As a
concrete implementation, we suggested to use cellular, non-linear networks with special templates,
since they are the largest currently known analog circuits with up to millions of transistors. We
proposed one concrete design, and evaluated its working principle in several simulations. If im-
plemented successfully, CNN-based SIMPL systems may eventually lead to technologically secure
SIMPL systems.

Our second idea was to use special ASICs as SIMPL systems, whose circuit design implements
one specific digital function more efficiently than a standard architecture. The resulting circuits
can be made stable and cheap. At the same time, however, this approach can at most result in
consumer secure SIMPL systems, since fabricaton tolerances play no role. One particular problem
is that fraudsters may try to order ASICs with the same design as the original SIMPL system at
chip foundries. This may, in principle, be prevented by legal restriction.

However, a general problem is that fraudsters can order ASICs not with an identical, but with
an effectively equivalent design. Since the equivalence of Boolean functions is co-NP-complete, there
is no generic method for the chip foundries to notice the design equivalence. We believe that our
skew design can help us to circumvent this problem, since any equivalent function seems to require
the use of skew memory cells in their design. The occurence of this particular design unit can
be checked relatively easily. Furthermore, it seems that skew cells have no practical applications
apart from serving as SIMPL systems, whence their prohibition/restriction does not harm other
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implementations.
Overall, our studies have not yet matured to a level where we can claim a full successful proof of

concept. But they do seem to provide an interesting first step towards the realization of electrical
integrated SIMPL systems, and can also serve as a confirmation for the general feasibility of SIMPL
systems as a new security tool.
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