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1. Introduction

According to the \Green Electronics Survey",1 electronic companies should try to

prolong the actual lifecycle of their products by extending the design life and

encouraging consumers to use the products for longer time spans. However, in the

¯eld of electronic security industry, it has been happening so often that a security-

related product has to end its lifespan much earlier than its expected obsolescence

because of early breakings or the discovery of unexpected security problems. To

mitigate the e®ect that these no-more-secure electronic wastes could bring to the

environment, one may, as suggested in Ref. 1, upgrade the product by modifying the

software, or by substituting some relevant hardware components. However, these

options are not always available or practical. In most cases, insecure products have to

be called back and disposed, or must be directly thrown away by consumers. New

ones, in which the security problems have been ¯xed, are distributed subsequently.

However, new problems may °oat to the surface some time later as long as they are

still based on the same conventional algorithmic cryptographic primitives and do not

solve their vulnerabilities to physical attacks, e.g., side channel attacks. A versatile

and more active solution to make the products \greener" would be to eliminate the

vulnerabilities to these attacks from the beginning. To explain this, we need to start

with some discussions about conventional cryptography.

Conventional cryptographic algorithms and protocols have originally been

designed to defend against brute force and numerical cryptanalytic attacks.

Although they often rely on unproven mathematical assumptions, the cryptographic

primitives are generally working ¯ne up to today, provided that the employed secret

keys are unknown to the attackers. This requires that the keys must be stored and

safeguarded well, which is by no means an easy task in mobile and often networked

hardware systems. Beyond purely numerical attacks, fraudsters can apply physical

attack strategies, including invasive and side channel attacks. Full or partial

knowledge of the key can be obtained by observing, for example, the timing,2 power

consumption3,4 or electromagnetic leaks5 of the circuits, and then analyzing such side

channel information. Should the secret key become known, the security of all pro-

tocols built on it is ruined: any information that was encrypted with it is compro-

mised, and the key can be replicated arbitrarily to mount future impersonation

attacks in identi¯cation protocols.

To tackle some of the known shortcomings of conventional cryptography,

physical cryptography has been proposed, which takes into consideration the

security of the physical implementation of cryptographic systems and physical

attacks. One concept that has recently been studied in detail are \Physical

Unclonable Functions (PUFs)".6�12 A PUF is a physical function that maps chal-

lenges to responses based on complex physical phenomena taking place in the PUF

structure. It should be easy to evaluate a PUF, i.e., to determine its response to a

single challenge, but it should also be hard to completely characterize a PUF, i.e., to
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read out its responses to all possible challenges within short time.6 Furthermore, it

should be hard to predict the responses of the PUF numerically, i.e., without pos-

sessing physical access to it. With these properties, PUFs are able to serve in various

protocols, for example, in challenge-response based authentication.7 However, these

protocols still require a previously shared piece of information that must be kept

secret throughout the protocol, which makes PUFs a secret-key like primitive. For

applications where public-key type protocols are required or practically advan-

tageous, another PUF-like primitive that is also naturally immune to cryptanalysis

and physical attacks has been proposed in Refs. 13 and 14. This new concept can be

regarded as \public-key" PUF. It requires a physical object to respond to a challenge

much faster than any feasible software or hardware emulation would do. However, it

still must be possible to (slowly) emulate the behavior of the system based on its

publicly available simulation parameters. Based on the speed asymmetry between

the physical object and the emulator, various public-key like protocols described in

Ref. 13 can be executed with this novel type of PUF. This special sort of PUF was

termed a SIMPL (SIMulation Possible, but Laborious) system. This paper presents

two circuit-based implementations for SIMPL systems.

Section 2 of this paper introduces a ¯rst implementation14�16 of SIMPL systems,

which is based on a specially designed memory. We intentionally design some

memory cells (\skew cells") such that they will deterministically fail at some write

operations under speci¯c supply voltages. Carrying out a lot of successive write and

read operations on this special memory can be regarded as a special computation,

which can only be realized with logic operations on a standard computing system.

Section 3 introduces another implementation14�17 based on Cellular Nonlinear

Networks (CNNs). This fully analog-circuit based approach builds its speed

advantage on its real-valued and massively-parallel computing power that can

outperform any numerical emulator when performing the same computing tasks.

2. Skew-Memory Based SIMPL System

2.1. Structure and function

Figure 1 shows the sketch of the skew-memory based SIMPL system.

The SIMPL System S consists of four main blocks, namely a skew memory

(MEM), a challenge control block (CC), a voltage control block (VC), and a feedback

and output control block (FOC).

After an initialization process that attempts to ¯ll the memory with, e.g., all \0"s,

the system receives the challenge Ci, carries out a number of successive write and

read operations on the memory, while possibly changing the supply voltage VDD of

the skew memory for each operation. Even if millions of write and read operations are

performed, the response Ri takes less than tens of milliseconds to produce.

The memory MEM is called a skew memory because of its skew behavior. While a

normal memory faithfully stores the information written into it, a skew memory may
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behave di®erently. It may store a ¯xed \0" or \1" value regardless of the data that

have been attempted to be written into it (even the memory initialization process

cannot modify the ¯xed cells). It may show a supply-voltage dependent behavior,

which means that the success of write operations depends on the supply voltage VDD

controlled by the voltage control block. For example, only when the supply voltage is

VDD � VDDfuncmin > VDDmin will the data be successfully stored in the cell. For

VDD < VDDfuncmin, the cell's current content will not be changed. Di®erent types of

memory cells, i.e., ¯xed \0" cells, ¯xed \1" cells and supply-voltage dependent cells

(di®erent cells may have di®erent VDDfuncmin values) are disorderedly distributed on

memory arrays. It should be noted that only write operations are skewed. All read

operations should correctly output the content of the addressed cells.

The challenge control block CC \scrambles" the input challenge and produces

voltage select, address, write data and possibly memory control (e.g., \W/R", write

or read) signals for VC and MEM. After the ¯rst cycle, the output of CC will be

dependent on the feedback FB from the previous cycle. The CC unit could im-

plement a hash function.

The voltage control block VC receives voltage select signals from CC and switches

the supply voltage of MEM to the next scheduled value.

Inside the feedback and output control block FOC, the linear feedback shift

register (LFSR) serves as a pseudorandom number generator, whose output is

XOR'd with the readout data DOUT, and the result is fed back to CC to modify the

ADR, DIN, SEL and possibly the CTRL signals for the next operation on MEM. The

output control OC generates the response Ri, which is a function of the data

sequence read out from MEM.

2.2. Public counterpart and usage of the system

As a public counterpart of the skew-memory based SIMPL system, the description

DðSÞ of the system should contain all the information that is necessary for building a
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Fig. 1. Schematic illustration of the skew-memory based SIMPL system.
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software emulator of the system. The information should contain the characteristics

and the arrangement of the memory cells, the (logic) functionality of the CC, VC and

OC units, as well as the seed value of the LFSR — based on these data the circuit

behavior is possible to be emulated and the correctness of the behavior of S can be

veri¯ed in a security protocol.13 If the operation of the SIMPL system S can yield the

response Ri faster than a previously speci¯ed time limit tmax (it must be ensured that

emulations of the SIMPL system cannot determine Ri in a time t < tmaxÞ, it proves
that the data was provided by the actual SIMPL system S, not by an emulator, e.g.,

digital clone. The security of the SIMPL system is assured by its clear speed

advantage over any feasible clone.

2.3. Design of skew-memory based SIMPL systems

The detailed design (that is, the number of di®erent supply voltages, the memory size

and the data bit-width of the memory) of a skew-memory based SIMPL system is

restricted by technological limits and security requirements. Proper choices of design

parameters play an important role in the realizability and the security of the system.

As an example, this subsection describes some details of our design based on a

TSMC 0.18micron CMOS technology and discusses decisions regarding design

parameters of the system.

The design of the skew memory gives the SIMPL system its speed advantage and

uniqueness property. This is also the most unusual component of our design, so we

started from the transistor level design of a skew memory cell.

2.3.1. Skew memory cell

Since Static Random Access Memories (SRAMs) are the fastest of all commercial

semiconductor memories, our design is based on SRAM structures.

A six-transistor SRAM cell is schematically illustrated in Fig. 2, with sizes

(width/length in micron) speci¯ed beside each transistor. This special sizing assures

0.385/0.18 0.385/0.18

0.54/0.18 0.54/0.18

0.36/0.18

0.36/0.18

Fig. 2. Skew SRAM cell in a 0.18-�m CMOS technology.
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a supply-voltage dependent but fully predictable and stable operation as long as

proper supply voltages are applied.

We design the circuit to use two di®erent supply voltages VDDhigh and VDDlow.

The sizing of the skew cell guarantees successful read operations under both VDDhigh

and VDDlow, and correct write operations under VDDhigh. However, write operations

under VDDlow are consistently unsuccessful.

In this design, the nominal minimum functional supply voltage (for write oper-

ations) VDDfuncmin is between 1.65V and 1.66V. Theoretically, any supply voltage

that is higher than this VDDfuncmin will guarantee successful write operations and

vice versa. We choose VDDhigh ¼ 1:8V and VDDlow ¼ 1:3V, which results in

reasonable yield, considering unavoidable manufacturing variations in the transistor

parameters. Figure 3 shows a sequence of write and read operations by switching

VDD between 1.8V and 1.3V with the clock frequency of 900MHz. The write

operations which are attempted around t ¼ 3 ns and t ¼ 7 ns are unsuccessful since

VDD equals 1.3V.

The transistor width/length parameters shown in Fig. 2 are one possible sizing

that can produce the special behavior required. By carefully tuning the transistor

sizes, we obtained more skew cell designs with di®erent minimum functional supply

voltages.

2.3.2. Skew memory block and individualization

By randomly allocating skew memory cells that possibly have di®erent minimum

functional voltages in an array, we obtain the main part of the skew memory block.

Fig. 3. Operations of a skew SRAM cell with clock frequency of 900 MHz (WE, write enable, H/L =

write/read; WD, write data; WL, wordline; Q/QB, cell content; SAO, sense ampli¯er output; RD, readout
data).
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Like a normal SRAM, the memory block consists of memory arrays and peripheral

logic such as address decoders, sense ampli¯ers and others.

In practice, besides the skew cell shown in Fig. 2, we include in the memory array

another cell design with VDDfuncmin � VDDmin, which is actually a normal SRAM

cell (both write and read operations are always successful since the whole supply

voltage span is above the minimum functional supply voltage). The normal cells and

the skew cells are randomly distributed in the memory array. Clearly, using more

levels of supply voltages and more di®erent skew cells would increase the complexity

of the system. However, this would also increase the cost and decrease the reliability

of operations against noise and process variations (because safety margins between

di®erent supply voltages are decreased), resulting in lower yield. Applying two dis-

tinct supply voltages and using two kinds of memory cells as we did results in

acceptable reliability and does not lose the security brought by the skew behavior.

To choose a proper size and a proper data bit-width of the memory, we need to

think about the security of the system. The address bit-width and the data bit-width

of the memory should be su±ciently large so that pre-computing a look-up table

(LUT) for the whole system is infeasible. Let us assume that the challenge control

implements a bijective function, which simpli¯es our estimation of the minimum

LUT required for the emulation of the system. We assume that the challenge is

received only in the ¯rst cycle, since it is the simplest and the most practical design in

reality (the rest of the paper is based on this assumption, unless speci¯ed); the bit-

width of the challenge is wC ; the bit-width of the memory data (i.e., DIN and DOUTÞ
is wD; the ¯nal response Ri is the DOUT of the last read operation; and the number of

cycles to output Ri has been ¯xed. Theoretically, the minimum size of the LUT

required for the system would be wD � 2wC . For a current process technology, 64

could be a suitable value for wD. A memory of 512 Kbit size with wD ¼ 64 requires an

address bit-width of 13. Even if we do not consider the voltage select and memory

control signals, this would already require an LUT of 64� 264þ13 bit ¼ 237 TByte,

which is clearly infeasible. If the number of cycles to output the response Ri becomes

a variable ncycle, which is transferred with the challenge, an even larger LUT will be

required to carry out LUT attacks. For a di®erent ncycle value, a di®erent LUT with

the size of wD � 2wC will be required, since an attacker cannot compute DOUT of

later cycles out of theDOUT of the current cycle unless he knows the current content of

the memory also. If the protocol allows the ncycle variable to be in the integer

interval [ncyclemin : :ncyclemax] ¼ fncycle 2 Zjncyclemin � ncycle � ncyclemaxg, the required

LUT size for storing all the possible challenge-response pairs would be wD � 2wC�
ðncyclemax � ncyclemin þ 1Þ.

The individualization of the circuits will ¯nally enable them to serve in the

cryptographic protocols described in Ref. 13. This can be done by adding ¯xed \0"

and ¯xed \1" cells in the last fabrication steps using, e.g., laser fuses.18,19

Depending on where the ¯xed \0" and ¯xed \1" cells are located, a practically

in¯nite number of distinct memories can be fabricated out of one design. For
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example, assuming a 32� 32 bit size array, which is still much smaller than our

512Kbit array, the number of distinct designs is already larger than 10488. Even if we

¯x the number of ¯xed \0" and ¯xed \1" cells to, e.g., 100 (this would make it

impossible to modify a skew memory to behave like another legal one using, e.g., an

FIB (Focused Ion Beam)), the number of distinct designs is still larger than 10277.

However, embedding the cell arrangement information in the descriptionDðSÞ of the
system would require a sequence of 1Mbit for a 512Kbit memory array (two bits are

required for a single cell, which has four possible types), which seems to be not quite

economical to identify a system. To reduce the length of DðSÞ, the arrangement

could be made according to the output of a pseudorandom number generator

(PRNG). By doing this, the cell arrangement can be described with just a short seed

value and the algorithm of the PRNG.

2.3.3. Peripheral blocks (CC, VC and FOC)

The CC block should have three main properties:

(1) It should be able to calculate the output, i.e., address, data input and voltage

control signals for the next cycle so quickly that it will not become a main speed

bottleneck of the system. If CC is slower than the memory, it can compromise the

speed advantage gained by the skew memory;

(2) A small change, e.g., a one-bit change on the input should produce a great impact

on the output, and any bit of the output can possibly be changed. This

requirement ensures that the feedback from FOC can have great impact on the

next operation on MEM, and therefore ensures high dependency of later oper-

ations on previous ones;

(3) It should map the expected inputs as evenly as possible over its output range, so

that each memory cell can have an equal opportunity to be accessed, and the

write data DIN will not be biased, etc.

Under these requirements, a carefully designed hash function would be a suitable

candidate for the implementation of CC.

The VC block should implement a fast voltage switch circuit, so that it will not

hinder the system speed.

Inside the FOC block, OC could simply output the DOUT of the last or the last

several read operations or implement a function (e.g., a hash function) of the last or

the last several readout data. The LFSR is used to lower the probability that a

sequence (possibly very long) of operations forms cyclic behavior or generates cyclic

outputs. It could implement a 64-bit Fibonacci LFSR with an XOR-based feedback,

and the seed value can be an arbitrary binary sequence except all-zeroes.a This seed

value does not need to be unique for di®erent circuits, since the individuality does not

aThe all-zeroes state is considered illegal for XOR-based Fibonacci LFSRs since the LFSR would remain
\locked-up" in this state.
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(although it can) come from the seed value, and the security does not rely on the seed

value either. With a 64-bit Fibonacci LFSR, which has a period of 264 � 1, the

probability of cyclic behavior is practically removed. Besides, LFSR also generates

FB for write operations, in which no DOUT is produced.

Based on the above arguments, we choose two di®erent supply voltages, two kinds of

memory cells with di®erent minimum functional supply voltages (of which, one is

between VDDhigh and VDDlow, and the other is lower than VDDlowÞ and a 512 Kbit

memory array with the data bit-width of 64 bits as an optimal design for the skew

memory. For this design, the address space for the memory is 213, which makes a

number around 100,000 a suitable number of cycles to outputDOUT. If the number of

cycles ncycle is too small, e.g., less than 5000 in this case, it will be very likely that many

of the write operations do not really a®ect the ¯nal DOUT, since write operations do

not produce output for the feedback loop. If the addressed cells in write operations are

not read out at some later time point, the write operations are essentially irrelevant.

Since the LFSR and CC design as we suggested guarantees that the addresses for

memory operations are uniformly distributed, ncycle ¼ 100;000 ensures that almost all

the cells of our 512Kbit skew memory that have been addressed in write operations

are also read out at least once (over 12 operations per address on average).

2.4. Security assessment

Although some discussion about the security of the skew-memory based SIMPL

system has been carried out in previous subsections, this subsection will system-

atically analyze the security of the system from the perspective of faking the system.

There are three basic possibilities for a faker to pose as the owner of the SIMPL

system without actually being in possession of it. The construction of the circuit

should make all these possibilities infeasible.

2.4.1. Building an exact physical clone

Based on the design described above, the skew-memory based SIMPL system can still

be re-fabricated in a silicon foundry. This is extremely expensive having one-time

costs in the millions of US dollars range,20 therefore the system can be considered

secure against attacks by consumers and individual hackers.

2.4.2. Building a functional physical clone

One concept to build a functional physical clone of the skew memory is to combine

\normal" (mass-manufactured) memories together with simple logic circuits to mimic

the operations on skew cells. Figure 4 shows the basic construction of this attack. In

this construction, the con¯guration (that is, the type of cell: either ¯xed \0", ¯xed

\1", skew cell, or normal cell) of the memory cells are stored in a Con¯guration

Memory. In our case, the Con¯guration Memory has twice the size of the skew
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memory, since each cell has four possible types, and the content of the cells are stored

in another normal memory called the Data Memory. Physically these two memories

could be a single memory with at least three times the size of the skew memory they

attempt to emulate. Read operations of a skew memory can directly be emulated on

the data memory, since the read behavior is not \skewed". To emulate a write

operation of the skew memory, the cell con¯guration CellType and the cell content

Dprev need to be read out ¯rst. The new data Dnew (could be the same as the previous

data) will be evaluated through the logic block, and will then be written back to the

data memory. Since a write operation needs to be substituted by a full read and write

operation pair, this construction will be at least a factor of two slower for write

operations if the con¯guration and the data memories have the same speed as our

skew memory and if the delay of the logic operations can be neglected. However, the

fastest mass- produced commercial SRAM by Cypress and Samsung Semiconductor

in early 2010 has only a maximum operating frequency of 550MHz while custom-

designed SRAMs, e.g., L1 caches for Intel processors (of about 512Kbit size, which is

the same as our skew memory in size) have reached the operating frequency of 3GHz.

Since the current operation of the skew memory is always dependent on the output of

the previous operation and successive operations have quite low probability of

accessing successive addresses, the advanced features of today's SRAMs, e.g., pipe-

lined and burst operations cannot be applied. Both the emulator and our skew

memory will su®er from the initial latency (which is usually 2�3 clock cycles) in each

operation. The actual speed of the emulator will be lower than 250MHz, and the skew

memory can operate at the speed of at least 1GHz. Considering the speed advantages

gained from the structure and the memory speed, the functional physical clone

described above will lag behind by at least a factor of eight. Using FPGAs for the

above structure will end up with a similar result because of the same reasons.

Data
Memory

Conf.
Memory

Logic

Skew-Memory
Emulator

ADR

DIN

CTRL

SEL

CellType

Dprev

DOUT

Dnew

W/R

Fig. 4. A skew-memory emulator construction based on normal SRAMs and logic.
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Another option that uses FPGAs is to replicate the behavior of the skew memory

cell by cell. The emulation of a single skew cell requires on average at least three

con¯gurable cells (each including a LUT and a Flip°op) of an FPGA. This requires a

very large (and very expensive) FPGA even for moderately sized (512Kbit) skew

memories. However, FPGAs with this size still do not exist in early 2010 (FPGAs by

Xilinx provide at most about 800,000 con¯gurable cells) — using multiple chips

would further widen the speed gap between the emulator and the \legal" monolithic

circuits. Even if we assume such huge FPGAs exist, the emulation on FPGAs will

still be much slower than a custom-designed skew memory. To prove this, we

emulated a small (32Kbit size, 32 bit word-width) skew memory with a 10-to-1024

address decoder on an FPGA fabricated with a 65 nm technology (even in such a

highly simpli¯ed case, we used up the resources of the FPGA). The maximum

operating frequency the design can achieve is only about 200MHz. A full size

emulator will be even slower. Therefore, we estimate that the operating speed of such

an emulator on a state-of-the-art FPGA will always lag behind optimized special

purpose SRAMs by at least a factor of 10.

2.4.3. Digital clone

Parallel computing of the response of the SIMPL system S on a multi-core com-

puting system is the most straightforward possibility to close the speed gap between

S and its emulator.

However, the data dependency of later operations on the output or e®ect (on the

memory content) of earlier operations gives no chance of parallelization. The only

trick that a faker can try is that the write operations, of which the addressed cells are

never read out in later operations, can be ignored. Except this, all other operations

have to be carried out sequentially (although the order can be modi¯ed to some

degree — a write operation on an address can be delayed until this address is about

to be read out), since the read address must be calculated from the output of the

previous read operation, and the new content of the memory must be evaluated (for

write operations) if the same address is going to be accessed by a later read operation.

This implies that the system should carry out fewer \meaningless" write operations.

However, the solution should not be to signi¯cantly decrease the number of write

operations, since write operations are the main source of the skew system's speed

advantage. Two possibilities exist: a direct solution is to carry out a lot of successive

read operations in the end to make all or almost all previous write operations

\meaningful" to the ¯nal output. The disadvantage is that this would require a lot of

extra operations (about 10% more, assuming that the address bit-width equals to 13

and totally 100,000 operations are to be carried out). Another possibility is to make a

large proportion (but not all, otherwise the ¯rst attack described in Sec. 2.4.2 can be

accelerated by leaving out the read operations since the DOUT would be already

available in the previous write operation which equals to DnewÞ of the write
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operations each followed by a read operation on the same address as the write

operation. Both proposals can be realized by changing the CC block a bit (¯x the

\W/R" control signal to \read enabled" for the last, e.g., 213 cycles, or use one or

several bits of the FB input to indicate whether the address should be updated).

Another possibility for a digital clone is to pre-compute and build LUTs, so that

multiple or all cycles of S can be computed with a single emulation step. However, as

is discussed in Sec. 2.3.2, the storage needed by LUTs grows exponentially with the

bit-width of the input (challenge Ci or ADRjDINjSEL). Building LUTs for interim

cycles will require even larger storage, because the memory content will also (partly)

become part of the input, while for the ¯rst cycle the memory content is a constant.

Besides, larger LUTs also imply longer search time. Therefore pre-computing LUTs

for all the operations or a part of the operations are both infeasible because of the

impractical storage requirement and low speed of searching in a huge memory space.

To estimate the speed advantage of a skew memory over a digital clone, we

implemented a digital clone of a 512Kbit skew memory with the data bit-width of 32.

On a system with an Intel Core (TM) 2 Quad CPU working at 2.5GHz and a 3GB

RAM, the emulation of skew memory operations takes at least 25 ns (CPU time) per

operation, which is at least 25 times slower than a custom-designed skew memory.

In summary, armed with the skew behavior and by carefully choosing the design

parameters, the skew-memory based design ful¯lls the de¯nition of SIMPL systems,

and will be able to serve in the protocols proposed in Ref. 13.

3. Cellular-Nonlinear-Network Based SIMPL System

The speed advantage of the above discussed implementation over possible attackers

comes from the special computing ability of skew memory cells, which is ampli¯ed

through a feedback. The Cellular-Nonlinear-Network (CNN) based implementation

builds its advantage on the real-valued and massively parallel computing power that

can outperform any numerical emulator when performing the same special tasks.

3.1. Cellular nonlinear networks

CNNs are analog computing arrays with regularly arranged and locally inter-

connected elementary processing cells.21 Each cell is characterized by a state vari-

able, and its time evolution is described by an ordinary di®erential equation (ODE).

The time evolution of the state variable depends on the cell's own internal state and

on the outputs of neighboring cells. On an abstraction level, the cell behavior and the

interactions between neighboring cells is characterized by two templates, which are

real-valued matrices.21 Figure 5 shows the structure of a CNN, the general form of

the ODE describing its time evolution and an example of the output function.

CNNs can be simulated by solving the time-dependent di®erential equations

describing the time evolution of each cell (e.g., a thousand-cell CNN solves thousand

coupled nonlinear ODEs \by hardware").
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Due to their analog and highly parallel architecture, CNNs have a remarkable

computing power and e±ciency. Already in 2004, a state-of-the-art programmable,

commercially available CNN in a 0:35�m standard CMOS technology exhibited

peak computing ¯gures of 330 GOPS (3:6GOPS=mm2 and 82.5 GOPS/W, projected

for chip area and power consumption).22 In specialized tasks, it is known that CNNs

can outperform digital computers by a factor of up to 1000.21,23 Due to this extreme

computing performance, CNN circuits can be promising candidates for SIMPL sys-

tems, as long as their implementations are individualizable, characterizable and

reliable in operation.

3.2. Implementation

Figure 6 shows a basic circuit implementation of a CNN cell.14,16,17 The resistance of

the resistors in the circuit represents the templates the cell implements.

The individualization of CNN circuits can be achieved by setting unique tem-

plates through hard-programming the resistances. To do this, laser fuses that have

been proposed for the individualization of skew memories can also be used here.

Another approach to individualize CNN circuits is to take advantage of the inherent

fabrication variations of, e.g., the resistors. This approach would enhance the

security level of the system because it would arm the system with unclonability.

However, since fabrication variations are usually much smaller than the mismatch

Fig. 5. Schematic layout of a CNN circuit and the equations describing its operation (bottom: time

evolution ODE; right upper: output function).

Circuit-Based Approaches to SIMPL Systems 119



that hard-programming can produce, the sensitivity of the ¯nal output to operating

noises would become relatively a bigger challenge. Besides, the characterization

would become an extra step which may require, e.g., some built-in self-measuring

circuit.

Reliability is a natural challenge for SIMPL systems using analog computing

powers. Since CNNs are a general structure, a lot of properties including sensitivities

to noises can generally be tuned through its output functions and time evolution

equations. However, this may at the same time reduce its computing complexity and

therefore security. A balance between complexity and reliability could be made to

optimize the CNNs for SIMPL systems.

3.3. Security assessment

Dedicatedly designed CNN circuits for SIMPL systems have huge natural speed

advantages over digital computers.

Field-Programmable Analog Arrays (FPAA) could be regarded as programmable

CNNs in our case, which can be programmed to behave like CNNs. However, since

FPAAs are built for °exible uses, their speed and array size are relatively limited

because of the complexity of the designs. Custom-manufactured CNNs will outper-

form these programmable CNNs especially when very large arrays are required in the

computing task.

+ −

+ −
1R

2R

3R

V(state)

-V(output)

4R

positive-weight feedbacks 
to the neighbors

5R

6R

V(output)

negative-weight feedbacks to 
the neighbors

feedbacks from all the neighbors

self-feedback (the centering weight)

C1OP

2OP

3OP

Fig. 6. Circuit design of a CNN cell.
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CNN based approaches to SIMPL systems could possibly be made technologically

secure by introducing fabrication variations for CNN individualization. However,

this would require extra e®orts to characterize each CNN during or after fabrication.

4. Discussion and Conclusion

This paper discussed the implementations of a new physical cryptographic primitive

termed SIMPL systems, which had been proposed in Ref. 13. These systems can be

considered a public-key version of Physical Unclonable Functions (PUFs). While

PUF-based protocols7 still require a previously shared piece of secret information

(typically a set of challenge-response pairs) between the communicants, and there-

fore have some aspects of secret-key like protocols, a SIMPL system (as a secret

\key"), together with its software counterpart (as the public \key") that can (slowly)

simulate the functionality of the SIMPL system hardware, is able to serve in various

public-key like cryptographic protocols introduced in Ref. 13. This new physical

cryptographic primitive is \greener" than conventional cryptographic primitives

with respect to the security against physical attacks, and may extend the actual

lifespan of security systems based on it.

The implementations of SIMPL systems should be able to provide the speed

advantages over any feasible emulation of the system. This paper discussed two

concrete implementation candidates for SIMPL systems. The ¯rst skew-SRAM

based implementation obtains its speed advantage over emulators from the \skew"

behavior of specially designed SRAM cells, and this speed advantage is ampli¯ed

with a feedback loop. We discussed the skew-SRAM based implementation in detail

and assessed its security against di®erent clone attacks. In the end we outlined

another implementation based on CNNs, which uses the computing ability of analog

cellular arrays to create speed advantages over numerical emulators.
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