
Strong PUFs: Models, Constructions and
Security Proofs

Ulrich Rührmair and Heike Busch and Stefan Katzenbeisser

Abstract Classical authentication and identification protocols arecommonly based
on the possession of a secret key. It is assumed that this key does not fall in the
hands of an adversary. However, this assumption may be violated if the adversary
has physical access to the device that performs authentication. He may read out the
memory of the device, including all secret information. Even if dedicated hardware
security measures are in use, they may be circumvented by specialized attacks such
as side-channel analysis or invasive methods. Alternatively, software attacks such
as viruses can reveal key material. Physically Unclonable Functions (PUFs) were
proposed to mitigate this risk. They avoid direct storage ofdigital binary keys in
hardware systems, providing inexpensive and lightweight security solutions. In this
chapter, we investigate the powerful concept of a Strong PUFmore closely. We first
give an overview of Strong PUF implementations that can be used as basic building
blocks in authentication and identification protocols. Subsequently we turn to the
formal foundations of Strong PUFs. We analyze existing definitions, and introduce
new semi-formal and formal adversarial models. We then perform a security proof
for a Strong PUF-based identification scheme in one of our models.

1 Introduction

Electronic devices have pervaded our everyday life to a previously unseen extent,
and will likely continue to do so in the future. But their ubiquity also makes them

Ulrich Rührmair
Technische Universität München, e-mail: ruehrmai@in.tum.de

Heike Busch
Technische Universität Darmstadt, e-mail: busch@seceng.informatik.tu-darmstadt.de

Stefan Katzenbeisser
Technische Universität Darmstadt, e-mail: katzenbeisser@seceng.informatik.tu-darmstadt.de

1

2 Ulrich Rührmair and Heike Busch and Stefan Katzenbeisser

a potential target for adversaries, and brings about privacy and information security
issues.

The tools that classical cryptography offers in order to fight these issues all rest
on the concept of a secret binary key. They assume that devices can contain a piece
of information that is, and remains, unknown to the adversary. Unfortunately, this
assumption can be difficult to uphold in practice: Physical attacks such as invasive,
semi-invasive, or side-channel attacks, as well as software attacks like API-attacks
and viruses, can lead to key exposure. The fact that the employed devices should be
inexpensive, mobile and cross-linked aggravates the problem.

The described situation was one of several motivations thatinspired researchers
to develop the concept of aPhysical Unclonable Function(PUF). A PUF is a phys-
ical systemS that can be challenged with so-called stimuli or challengesCi , and
which reacts with corresponding responsesRCi . The responses shall depend on man-
ufacturing variations or structural disorder inS that is beyond the control of the
original manufacturer, and which cannot be cloned or reproduced exactly. The tu-
ples(Ci ,RCi) are often calledchallenge-response pairs(CRPs) of the PUF.

Two important subtypes of PUFs are so-calledStrong PUFsandKey Obfuscating
PUFs [20]; the latter have also been called Weak PUFs in [8] or Physically Obfus-
cated Keys (POKs) in [6]. Strong PUFs must possess a very large number of possible
challenges. A complete determination/measurement of all challenge-response pairs
within a limited time frame (such as several days or even weeks) must be impos-
sible. Furthermore, it must be difficult for an adversary to numerically predict or
guess the responseRC of a Strong PUF to a randomly selected challengeC. This
should hold even if many other challenge-response pairs areknown to him. Thus, a
Strong PUF’s challenge-response behavior must be complex,and difficult to imitate
and “learn”. A well-known example of a Strong PUF is the Optical PUF of [15, 16],
which also historically is the first PUF that has been suggested.

Typical applications of Strong PUFs are key establishment and identification pro-
tocols [16]. The latter usually work in the following manner: A central authority
(CA) holds a secret list of many CRPs of a PUFS. The PUF is assumed to be embed-
ded in a hardware system or contained on a security token. In order to identify the
PUF, the CA sendsk randomly chosen challengesC1, . . . ,Ck from the CRP list. If the
hardware/token can return the correct, corresponding PUF-responsesRC1, . . . ,RCk,
then the identification is successful. Note that such an approach avoids the storage
of secret binary keys in the PUF-embedding hardware. It alsoavoids the use of stan-
dard symmetric or asymmetric cryptosystems, whose security depends on a small
set of well-known, but unproven assumptions. It also obviates the potentially costly
implementation of standard cryptosystems in mobile devices.

Key Obfuscating PUFs, on the other hand, have few challenges—in the extreme
case just one, fixed challenge. Their response(s) are used toderive a classical binary
secret key, which is subsequently processed by the embedding system in a standard
fashion, i.e. as a secret input for classical cryptosystems. This makes Key Obfus-
cating PUFs similar to a non-volatile key storage. Their advantage is that they may
be harder to read out invasively than common non-volatile memory such as EEP-
ROM. Since they depend on inherent manufacturing variations, they can individu-

Strong PUFs: Models, Constructions and Security Proofs 3

alize hardware without costly, dedicated individualization steps in the production.
Typical examples of Key Obfuscating PUFs are the SRAM PUF [8], Butterfly PUF
[10] and Coating PUF [21].

Since Key Obfuscating PUFs are nothing else than a special form of secret key
storage, they can be used for essentially all cryptographicschemes and applications.
Please note, however, that this also makes them susceptibleto side channel attacks
like power consumption or emanation analysis, in just the same manner as clas-
sical schemes. Protocols based on Key Obfuscating PUFs usually show the same
dependency on computational assumptions as standard cryptoschemes built on se-
cret binary keys. Furthermore, since zero errors in the derivation of the secret key
from the PUF are tolerable, error correction plays a much more critical role for Key
Obfuscating PUFs.

In this paper, we focus on Strong PUFs, and investigate theirformal founda-
tions and their application for identification purposes. Westart by an overview of
currently existing Strong PUF implementations in Section 2. Then, we analyze cur-
rently existing definitions of (Strong) PUFs in Section 3, and devise new adversarial
models and definitions in Section 4. We introduce PUF-based identification schemes
in Section 5. Subsequently, we perform a formal security proof for identification
based on Strong PUFs in one of our models. We conclude the paper in Section 6.

2 Implementations of Strong Physical Unclonable Functions

We start by surveying the current candidates for Strong Physical Unclonable Func-
tions. In 2001, Pappu [15] suggested an optical system as thehistorically first PUF.
It consists of a laser beam, which is directed at a transparent scattering token com-
prising of many randomly distributed scatterers. The laserlight is scattered multiple
times in the token, and interferes constructively and destructively with itself. This
leads to an interference pattern of bright and dark spots on asubsequently placed
CCD. This pattern sensitively depends on the location of thescatterers in the to-
ken, but also on the angle and point of incidence of the laser light (and on other
parameters of the set-up).

The angle and point of incidence of the laser beam are usuallyregarded as the
challenge of this PUF, while the interference pattern (or a suitably chosen image
transformation of it) is interpreted as its response. This optical Strong PUF offers
high internal complexity and security. On the downside, it cannot be integrated eas-
ily into an electronic microsystem, and requires an external, precise read-out appa-
ratus.

Relatively soon afterwards, integrated, electrical candidates for Strong PUFs
have been suggested. One important example is the so-calledArbiter PUF [5, 13],
which exploits the natural variations in the runtime delaysof integrated circuits. The
Arbiter PUF consists of a sequence ofk stages (e.g. multiplexers), which are con-
ditioned by a corresponding sequence ofk external bits(b1, . . . ,bk). An incoming
electrical signal is split into two signals, which race against each other in parallel

4 Ulrich Rührmair and Heike Busch and Stefan Katzenbeisser

through the sequence of stages. Their exact paths are thereby determined by the
valuesbi . At the end of the structure, an “arbiter element” (consisting of a latch) de-
termines whether the top or bottom path arrived first, and correspondingly outputs a
zero or a one. The Arbiter PUF thus maps ak-bit input challengeCi = (b1, . . . ,bk)
to a 1-bit responseRCi .

However, it has been noted early by its inventors that the Arbiter PUF can be
attacked successfully by standard machine learning (ML) methods, such as Support
Vector Machines or Perceptrons [5, 12]. An attacker collects a number of CRPs
and uses them to train the ML algorithm. If trained successfully, the algorithm will
subsequently be able to predict the correct responses to other challenges with high
probability.

In order to improve their resilience to ML attacks, several variants of the basic
Arbiter PUF have been proposed. Examples include XOR Arbiter PUFs [4], Feed-
Forward Arbiter PUFs [5, 11], and Lightweight Secure PUFs [14]. All of them are
based on runtime delays, but employ the basic Arbiter PUF as abuilding block
in more complex architectures. Nevertheless, it has been shown recently that even
these improved variants can be attacked by more sophisticated ML techniques [19,
20], at least for instances of medium lengths. The critical question in the long term
will be whether circuit implementations of Arbiter PUF variants can be made stable
in size regimes that are beyond the reach of improved ML techniques.

Another potential Strong PUF candidate that must be considered is the Power
Grid PUF of [9]. It exploits the resistance variations in thepower grid of integrated
circuits. A Power Grid PUF can in principle be used both as KeyObfuscating PUF
and as Strong PUF. Due to its simple linear model, however, the Power Grid PUF
is presumably susceptible to ML attacks just like other linear PUF structures. This
makes it more useful as Key Obfuscating PUF, as already notedin [9].

Two approaches that follow new routes to machine learning resilient Strong
PUFs have been suggested just recently. In [2, 3], analog circuits, in particular so-
called Cellular Nonlinear Networks (CNNs), have been introduced as Strong PUFs.
CNNs are two-dimensional, cellular, analog computing arrays, in which every cell
is coupled in an analog fashion to its direct neighbors. Commercially available, pro-
grammable CNNs contain millions of transistors, while operating in a stable fash-
ion. CNN-PUFs promise to allow stable PUFs with a very large number of interact-
ing components, whose output strongly depends on a very large number of random
components. Furthermore, their internal models are drivenby complex differential
equations, which complicates re-modeling and machine learning attacks.

A second recent approach to machine learning resistant Strong PUFs [17, 18] is
to employ as many densely packed, independent random subunits as possible, which
are read out individually and independently of each other atslow read-out rates. It
was shown in [17] that large, monolithic, memory-like crossbar structures based on
random diodes can practically implement this approach. They reach optimal infor-
mation densities of up to 1010 bits per cm2, and can be designed such that the slow
read-out rate is not enforced by an artificially slow access module or the like, but by
the inductive and resistive capacitances of the structure itself [17]. Faster read-out

Strong PUFs: Models, Constructions and Security Proofs 5

leads to overloading and immediate destruction of the wiring, rendering the remain-
ing structure unusable.

The resulting Crossbar PUFs are provably immune against machine learning and
any other computational attacks. Their security merely depends on the access time of
the adversary, and on the ratio of the already read-out bits vs. the number of overall
bits stored in the structure. Modeling attacks subsequent to read-out are fruitless,
since all components are independent of each other. Whether the limited read-out
speed is a severe disadvantage depends on the intended application of this Strong
PUF. [18] suggest the term SHIC PUFs (pronounce as“chique PUFs”) for this new
category of Strong PUFs, where SHIC stands for Super High Information Content.

3 Physical Unclonable Functions: Towards a Formal Definition

In the following we take a closer look at formal definitions proposed for PUFs,
which is a necessary prerequisite to being able to formally reason about the security
of PUF-based protocols. Our discussion follows [20].

3.1 Physical One-Way Functions

We start our overview with the historically first definition,which is the definition of
Physical One-Way Functions [15]. The following Notation 3.1 and Definition 3.2
are taken directly from [15].

Notation 3.1 (Notation for Physical One-Way Functions)LetΣ be a physical sys-
tem in an unknown state X∈ {0,1}l . X could also be some property of the physical
system. l is a polynomial function of some physical resourcesuch as volume, energy,
space, matter, et cetera.

Let z∈ {0,1}k be a specific state of a physical probe P such that k is a polynomial
function of some physical resource. Henceforth, a probe P instate z will be denoted
by Pz.

Let y= f (X,Pz) ∈ {0,1}n be the output of the interaction between systemΣ con-
taining unknown state X and probe Pz.

Definition 3.2 (Physical One-Way Functions) f : {0,1}l ×{0,1}k→ {0,1}n is a
PHYSICAL ONE-WAY FUNCTION if

• ∃ a deterministic physical interaction between P andΣ which outputs y in O(1),
i.e. constant, time.

• Inverting f using either computational or physical means requires Ω(exp(l))
queries to the systemΣ .
This may be restated in the following way: The probability that any probabilis-
tic polynomial time algorithm or physical procedure A′ acting on y= f (X,Pr),

6 Ulrich Rührmair and Heike Busch and Stefan Katzenbeisser

where y∈ {0,1}n is drawn from a uniform distribution, is able to output X or Pr

is negligible. Mathematically,

Pr[A′(f (X,Pr)) outputs X or Pr] <
1

p(l)

where p() is any positive polynomial. The probability is taken over several real-
izations of r.

We also stipulate that for any physical one-way function f

• Simulating y, given X and P, requires either O(poly(l)) or O(exp(l)) in time/space
resources depending on whether f is aWEAK or STRONGphysical one-way func-
tion.

• Materially constructing a distinct physical systemΣ ′ such that its unknown state
X′ = X is hard.

Definition 3.2 is reminiscent of the well-known definitions of mathematical one-
way functions. It transfers the concepts known from that area (such as polynomial
time and negligible probability) to the physical, finite context of PUFs. We would
like to stress that the definition certainly owns the great merit of being the first
formalization attempt in the field. It is associated with thehighly respected, seminal
work of [15] that established the whole field. But nevertheless, it touches upon a few
noteworthy issues.

Firstly, let us address some formal aspects. Definition 3.2 employs the concept of
polynomial resources and of negligible probability. However, these concepts cannot
directly be applied to finite functionsf : {0,1}l → {0,1}k. In particular, no such
function can meet the “hard to invert”-condition of Definition 3.2, since there is
always an algorithm that containsf hard-coded as a lookup-table in its code. Since
l andk are constant, this table has constant size; browsing the table for inverting f
thus requires constant time as well.

These formal problems could be resolved by a suitable asymptotic treatment.
Such a treatment might work along similar lines as collections of one-way functions
[7], and could consider infinite families(fi)i∈I of Physical One-Way Functions. Per-
haps such a treatment was already attempted in Notation 3.1,when it is stated that
l andk are a polynomial function of some physical resource. However, in Defini-
tion 3.2, l andk are treated as constants, and also the other relevant parameters of
Definition 3.2, such as the polynomial runtime ofA′, are not functions of an external
parameter.

Still, even if we assume that Definition 3.2 was meant to be asymptotic in some
physical resource, and ifl and k were intended to be functions of this resource,
another interesting issue arises. The parametern, which describes the length of
f (X,Pr), is a constant both in Definition 3.2 and Notation 3.1. At the same time,
the runtime ofA′ is required to be polynomial in| f (X,Pr)|= n = const. This is not
meaningful, sinceA′ should be given longer computation time for a growing size
of the considered PUF-instances. If Definition 3.2 was intended asymptotically, it
might be better to formulate the non-invertability condition in the following manner:

Strong PUFs: Models, Constructions and Security Proofs 7

Pr[A′(f (X,Pr),1
k+l) outputsX or Pr] <

1
p(l)

. (1)

There are some interesting conceptual aspects of Definition3.2 as well. For exam-
ple, it can be observed that Definition 3.2 excludes functions with small ranges, e.g.
ones with a binary output{0,1}. Such functions are not hard-to-invert in the sense
of Definition 3.2. The reason is that for each of the two possible output values,
somepre-image can always be found efficiently—simply by testing several ran-
domly chosen challenges for their response until there is a match. Most electrical
candidates for PUFs (e.g. variations of the Arbiter PUF or the Ring Oscillator PUF)
have only a single bit or a fixed number of bits as output. They are hence excluded
by Definition 3.2. Note that it cannot be regarded as a flaw of Definition 3.2 that
it excludes electrical PUFs, as they were only introduced after the definition was
written. Nevertheless, our observation points at two facts: (i) The concept of Physi-
cal One-Way Functions cannot serve as a comprehensive PUF-definition today. (ii)
The non-invertibility condition of Definition 3.2 might notbe the essential feature
that makes PUF applications work. To our knowledge, the onlyPUF application
where the non-invertability off plays a role is the bit commitment protocol that
was described in [15].

3.2 Physical Unclonable Functions

Another characterization of PUFs was given in [8]. It is not marked as a formal
definition in the original text of [8], whence we term it a description here. It distin-
guishes between Strong PUFs and Weak PUFs, and is as follows.

Description 3.3 (Physical Unclonable Functions)Physical Unclonable Functions
consist of inherently unclonable physical systems. They inherit their unclonability
from the fact that they consist of many random components that are present in the
manufacturing process and can not be controlled. When a stimulus is applied to the
system, it reacts with a response. Such a pair of a stimulus C and a response R is
called a challenge-response pair (CRP). In particular, a PUF is considered as a
function that maps challenges to responses.

The following assumptions are made on the PUF:

1. It is assumed that a response Ri (to a challenge Ci) gives only a negligible amount
of information on another response Rj (to a different challenge Cj) with i 6= j.

2. Without having the corresponding PUF at hand, it is impossible to come up with
the response Ri corresponding to a challenge Ci , except with negligible probabil-
ity.

3. Finally, it is assumed that PUFs are tamper evident. This implies that when an at-
tacker tries to investigate the PUF to obtain detailed information of its structure,

8 Ulrich Rührmair and Heike Busch and Stefan Katzenbeisser

the PUF is destroyed. In other words, the PUF’s challenge – response behavior
is changed substantially.

We distinguish between two different situations. First, weassume that there is a
large number of challenge response pairs(Ci ,Ri), i = 1, . . . ,N, available for the
PUF; i.e. a strong PUF has so many CRPs such that an attack (performed during
a limited amount of time) based on exhaustively measuring the CRPs only has a
negligible probability of success and, in particular,1/N ≈ 2−k for large k≈ 100.
We refer to this case asStrong PUFs. If the number of different CRPs N is rather
small, we refer to it as aWeak PUF. Due to noise, PUFs are observed over a noisy
measurement channel i.e. when a PUF is challenged with Ci a response R′i which is
a noisy version of Ri is obtained.

Description 3.3 stipulates that Strong PUFs shall have an exponential numberN
of CRPs, with 1/N ≈ 2−k for somek with k≈ 100. In addition, item 1 of Descrip-
tion 3.3 demands that all CRPs of the PUF shall only reveal a negligible amount of
information about each other. It is not fully clear how and under which conditions
these two requirements can be met simultaneously. For example, it is argued in detail
in [20] that the information content of any physical system is bounded polynomially
in its size. If this is true, then the two above requirements mutually exclude each
other. Again, this definition excludes PUFs whose output consists only of a single
bit (such as the aforementioned Arbiter PUF and the Ring Oscillator PUF), as the
probability to guess the PUF output correctly is at least 1/2. This is better than neg-
ligible. Therefore, all these PUFs are excluded as Strong PUFs by Description 3.3.

The concept of Weak PUFs in the sense of Description 3.3 is logically consistent.
But it is a relatively restrictive notion. From all currently known PUFs, only coating
PUFs and SRAM-based PUFs are Weak PUFs. The reason is that (i)they only have
very few possible challenges; and (ii) their responses to different challenges are
fully independent of each other, since they read out single,non-interacting subunits
of the PUF (isolated SRAM-cells in the case of SRAM PUFs and spatially isolated
sensor arrays in the case of coating PUFs). Therefore the mutual information that
different responses give about each other is essentially zero. For all other known
PUFs (in particular the Arbiter PUF including all of its variants, Ring Oscillator
PUFs, and Pappu’s Optical PUFs), most responses to different challenges contain
a non-negligible mutual amount of information about each other. This contradicts
item 1 of Definition 3.3.

3.3 Physical Random Functions

Another PUF-definition, taken from [5], is as follows.

Definition 3.4 (Physical Random Functions)A PHYSICAL RANDOM FUNCTION

(PUF) is a function that maps challenges to responses, that is embodied by a phys-
ical device, and that verifies the following properties:

Strong PUFs: Models, Constructions and Security Proofs 9

1. Easy to evaluate: The physical device is easily capable ofevaluating the function
in a short amount of time.

2. Hard to predict: From a polynomial number of plausible physical measurements
(in particular, determination of chosen challenge-response pairs), an attacker
who no longer has the device, and who can only use a polynomialamount of
resources (time, matter, etc.) can only extract a negligible amount of information
about the response to a randomly chosen challenge.

The terms short and polynomial are relative to the size of thedevice.1

Definition 3.4 is very compact and intuitively appealing. Italso stipulates some
sort of asymptotic treatment, with the parameter being the size of the system. A few
interesting conceptual aspects can be observed. The underlying security model al-
lows an adversary to measure polynomially many challenge-response pairs (CRPs).
This has the consequence that several PUFs cannot meet the definition, since they
only possess polynomially many challenges at all. An adversary can create a full
look-up table without breaking the polynomial CRP bound, and can use this table
to imitate/predict the PUF. This applies, for example, to the Ring Oscillator PUF
[4], which has only a quadratic number of challenges. It alsoholds for the Optical
PUF of [15, 16]: Its number of CRPs is directly proportional to the dimensions of
the scattering token, multiplied by the number of distinct laser angles realizable by
the measurement set-up. This means that this Optical PUF only has polynomially
many challenges. Similar considerations also apply to the Crossbar PUF [17, 18],
which only has quadratically many challenges, too. All these PUFs are excluded
by Definition 3.4, but especially the Optical PUF and the Crossbar PUF seem fully
secure in practice.

4 Alternative Attack Models

Our discussion in the last section showed that the familiar notion of polynomial
resources and the usual asymptotic treatment of mathematical cryptography cannot
be transferred to PUFs easily. We therefore work out an alternative treatment in this
paper, which is based on concrete time bounds. We start with semi-formal models
in this section, and provide a more formal version later.

4.1 Semi-Formal Models for Strong PUFs

We start by some fundamentals and some notation for PUFs.

Specification 4.1 (SEMI-FORMAL SPECIFICATION OFPUFS) A PUF is a physi-
cal system S that maps stimuli or challenges Ci to responses RCi . The set of all

1 In the original text this sentence is placed after the definition.

10 Ulrich Rührmair and Heike Busch and Stefan Katzenbeisser

possible challenges of S is denoted asCS, and the set of all possible responses as
RS. Without loss of generality,CS andRS are assumed to be finite subsets of{0,1}∗.
By its challenge-response behavior, S implements a function FS with

FS : CS→ RS, C 7→ RC.

We further assume that in each PUF, the responses are notablyinfluenced by fabri-
cation variations beyond the control of the manufacturer (afact that distinguishes
PUFs from purely digital systems based on secret binary keys).

We suggest that apart from these basic requirements, no further security features
should be required from a (plain) PUF. In our opinion, such additional security fea-
tures should strictly be associated with special subnotions derived from PUFs, such
as Strong PUFs, Key Obfuscating PUFs or Physically Obfuscated Keys, etc.

We will now present a first, semi-formal security model for Strong PUFs:

Specification 4.2 (SEMI-FORMAL SPECIFICATION OFSTRONG PUFS) Let S be a
PUF according to Specification 4.1. S is called aSTRONG(tL, tA, tP,q,ε)-PUF if no
cryptographic adversary Eve limited by the current state oftechnology will succeed
in the following experiment with a probability of at leastε.

SecExp(S, tL, tA, tP,q):

PHASE 1: LEARNING. Eve is given a time period tL for learning the PUF S.
Within that period, she is given physical access to S at adaptively chosen points
in time, and for time periods of adaptive length. The sum of all time periods for
which she had access to S must not excel tA. Further, Eve can adaptively query
an oracleOFS for the function FS at most q times. After the end of the learning
phase, Eve cannot access S orOFS any more.

PHASE 2: PREDICTION. A challenge C0 is chosen uniformly at random from the
setCS, and is given to Eve. Within time tP, she must produce an output VEve.

Thereby the experiment is called successful if VEve = RC0. The probabilityε is taken
over the uniformly random choice of the challenge C0, and the random choices or
procedures that Eve might employ during Phase 1 and 2.

The specification models real application scenarios relatively closely. Typically,
Eve will have a relatively long “learning period”tL in practice. During this phase,
she may gather information about the PUF in several ways: (i)She can obtain stan-
dard CRPs, for example through protocol eavesdropping, viadirect physical access
to the PUF, or remotely (e.g. by a virus in the embedding system). These possibil-
ities are comprehensively included via the adaptive oracleaccess and the physical
access periodtA that we grant Eve. (ii) Eve may attempt arbitrary measurements
(beyond mere CRP determination) on the PUF, including measurement of internal
system parameters and invasive probing. This possibility is included in our model
through the physical access timetA. Note that Eve will often not be able to execute
her physical access at adaptively chosen points in time, or for periods of adaptive

Strong PUFs: Models, Constructions and Security Proofs 11

time length. But specifying our model in this way includes worst-case scenarios,
and puts us on the safe side.

In practice,tL is typically relatively long, and is only limited by the lifetime of
the device embedding the PUF and/or the relevance of the datathat was encrypted
with a key derived from the PUF. Contrary to that, the physical access timetA is
usually short and costly. This motivates a distinction between these two parameters
in our model.

The further distinction betweentL andtP, on the other hand, is not relevant for all
applications of Strong PUFs, but plays a role in many of them.In order to obtain def-
initions with maximal generality, we opted to include it in our model. To illustrate
this point, let us consider two typical applications of Strong PUFs, namely key es-
tablishment and identification. In key establishment, the main security requirement
is that Eve will not be able to predict the responsesRCi that were used to derive a key
between the cryptographic players. Usually no distinctionbetweentL andtP is nec-
essary here—we are only interested in the sumtL + tP of the two values, and hope
for the sake of security thattL + tP is impractically large. In PUF-based identifica-
tion, however, an adversarial attack strategy that leads tovery long prediction times
tP is worthless. It can be countered in practice through measuring the response time
of the identifying party. In other words, Eve’s attacks on PUF-based identification
protocols are only successful if they deliver theRCi fast.

Spec. 4.2 provides a workable model for Strong PUFs. The definition is non-
asymptotic, whence it allows statements about concrete PUFinstances. For exam-
ple, as Machine Learning results show [19, 20], we can make the following state-
ments:2

• A 64-bit Arbiter PUF is no (0.6 sec., 0 sec., 0.001 sec., 18050, 0.99)-Strong PUF.
• A 64-bit Arbiter PUF that produces CRPs at a 1 MHz frequency isno (0.6 sec.,

0.01805 sec., 0.001 sec., 0, 0.99)-Strong PUF.

The formalism can also be used to make positive statements, not only negations:

• Assuming that its read-out speed cannot be accelerated3, a Crossbar PUF of size
105×105 and read-out speed of 100 bits/sec. is a (tL, 107 sec.,tP, 0, 0.6)-Strong
PUF for arbitrary values oftL andtP.

• Assuming that its read-out speed cannot be accelerated, a Crossbar PUF of size
105×105 and read-out speed of 100 bits/sec. is a (tL, 0, tP, 109, 0.6)-Strong PUF
for arbitrary values oftL andtP.

Specification 4.2 also has its limitations. Most importantly: How do we model
Eve? Since we allow Eve arbitrary physical actions, a standard Turing machine is
insufficient. This lack of a formal model leads to two problems. Firstly, in a strict

2 The statements follow from machine learning experiments based simulation data, which were
reported in Table 1 of [19]. They show that a 64-bit Arbiter PUFcan be broken (in simulations)
with the respective parameters in terms of learning times, access times, prediction times, CRPs and
prediction rates.
3 It is argued in [17] in all detail that such an acceleration is indeed practically impossible if the
crossbar’s design is chosen appropriately.

12 Ulrich Rührmair and Heike Busch and Stefan Katzenbeisser

sense, we do not know over which set we quantify when we state in Specification 4.2
that “. . . no cryptographic adversary Eve limited by the current state of technology
will succeed in the following experiment . . . ”. This logical problem is awkward. But
it could perhaps be acceptable under the following provisions: (i) Specification 4.2
is not understood as a formal definition, but as a semi-formalspecification. (ii) The
main purpose of Spec. 4.2 is to put down a precise, but not overly technical descrip-
tion of the essence of Strong PUFs, which can be used as a common basis by all
communities involved in PUF research. The second problem that results from the
lacking model for Eve is perhaps more severe, at least for theoreticians. Without a
formal model for Eve, we cannot perform reductionist security proofs.

In order to resolve this dilemma, we could either introduce anew computational
model, which captures arbitrary physical actions (some sort of “Physical Turing
Machine”). But this seems very intricate. Alternatively, we may restrict the attack
model; this route is taken in the rest of the paper.

4.2 The Digital Attack Model

In thedigital attack model, we follow the basic adversarial model that was put down
in Specification 4.2, with one exception: We do not grant Eve direct physical access
to the PUFS, and do not allow arbitrary physical measurements onS. Instead, we
restrict her to the measurement of CRPs of the PUF. This restriction is not as unre-
alistic as it may seem: The natural tamper sensitivity of many PUFs enforces this
setting by itself. If a PUF is embedded in a device, separating it from the device to
make arbitrary measurements will often be impossible.

The advantage of the digital model is that Eve can be formalized by a standard
probabilistic Turing machine with an oracle that provides her with CRPs of the PUF
S, or, more precisely, with an oracle for the functionFS. This will allow us to carry
over reductionist techniques from the security proofs of mathematical cryptography
to PUFs.

Let us now define what it means to break the security properties of a Strong PUF
in the digital model.

Definition 4.3 (BREAKING STRONG PUFS IN THE DIGITAL ATTACK MODEL) Let
S be a PUF. Let an adversaryA be given by a tuple(L ,M), whereL is a prob-
abilistic oracle Turing machine, andM is a probabilistic Turing machine. We say
that A (tL, tP, q, ε)-BREAKS S AS A STRONG PUF IN THE DIGITAL ATTACK

MODEL if A succeeds in the following security experiment with a probability of at
leastε:

SecExp(S, tL, tP,q):

PHASE 1: LEARNING. L is provided with an oracleOFS for the function FS, and
is started with an empty input. It may make at most q adaptive queries toOFS.
After at most tL Turing steps, it outputs a string z and halts.

Strong PUFs: Models, Constructions and Security Proofs 13

PHASE 2: PREDICTION. A challenge C0 is chosen uniformly at random from the
set CS, and M is started with input(z,C0). Within tP Turing steps,M must
outputs a string VADV and halts.

Thereby the experiment is called successful if VADV = RC0. The probabilityε is
taken over the uniformly random choice of the challenge C0, and the random coins
thatL andM might employ during Phase 1 and 2.

5 Identification Schemes Based on Strong PUFs

We will now work towards a security proof of PUF-based identification schemes in
the digital model. We start by defining the concept of a PUF-based identification
scheme.

5.1 PUF-based Identification Schemes

Roughly speaking, a PUF-based identification scheme is a protocol where one party
P, known as prover, tries to convince another partyV , known as verifier, of its
identity. The prover possesses a PUF that he can query at will. The protocol should
both assert the identity of the prover and the physical availability of the PUF. More
precisely, a PUF-based identification scheme is defined as a tuple(K ,P,V):

Definition 5.1 (PUF-BASED IDENTIFICATION SCHEME) Let S be a PUF. An iden-
tification scheme based on S is a tuple(K ,P,V), whereK is a probabilistic
oracle Turing machine,P is a probabilistic interactive oracle Turing machine and
V is a probabilistic interactive Turing machine, which together fulfill the following
properties:

INITIALIZATION . On input1k, and provided with an oracleOFS for the function
FS, the instantiation algorithmK returns a string xin.

INTERACTIVE IDENTIFICATION. In the identification process,P andV execute
a joint interactive computation, where1k is their joint input,P is provided with
an oracleO, and V gets a private input x. At the end of the computation,V

outputs a bit d∈ {0,1}.
COMPLETENESSCONDITION. We require that if in the identification process,P

is run with oracleOFS, andV is run with xin as private input, the output ofV at
the end of the interactive computation is “1” with probability 1.

Let us consider the following “canonical” PUF-based identification scheme, il-
lustrated in Figure 1. In a setup phase, the verifierV chooses a set ofk random
challenges (wherek denotes a security parameter)C1, . . . ,Ck and measures the PUF
response for each challenge.V stores the set of all chosen challenge-response pairs
as private data. Subsequently, the device is given to the prover P. The interactive

14 Ulrich Rührmair and Heike Busch and Stefan Katzenbeisser

identification protocol starts whenP presents its device to a reader: the verifierV

sends the challengesC1, . . . ,Ck to the prover, who answers with responsesV1, . . . ,Vk

which are derived from PUF measurements with challengesC1, . . . ,Ck. V accepts if
all responses match the pre-recorded responsesRC1, . . . ,RCk during initialization.

VERIFIER (V) PROVER (P)

Private input: Oracle:OFS

(Ci ,RCi), i = 1, . . . ,k
C1, . . . ,Ck−−−−−−−−−−−−−−→ Set Vi ← OFS(Ci)

Accept,if RCi = Vi for all i
V1, . . . ,Vk←−−−−−−−−−−−−−−

Reject,otherwise.

Fig. 1 Canonical identification scheme based on a PUFS

More formally, we define the canonical identification schemebased on a PUF
Sas the tuple(K ,P,V), where the algorithms(K ,P,V) implement the above
protocol. In particular:

• K takes as input 1k and as oracleOFS. It choosesC1, . . . ,Ck uniformly at random
from the setCS, and produces as outputxin = (C1,RC1, . . . ,Ck,RCk).

• V gets the public input 1k and the private inputxin = (C1,RC1, . . . ,Ck,RCk). It
sendsC1, . . . ,Ck to P. Subsequently, it receives valuesV1, . . . ,Vk from P, and
outputs “1” if and only if

Vi = RCi for all i = 1, . . . ,k.

• P gets as public input 1k and as oracleOFS. Upon receiving valuesC1, . . . ,Ck,
it queriesOFS for the valuesV1 = FS(C1), . . . ,Vk = FS(Ck), and sends the oracle
responses toV .

5.2 Security of PUF-based Identification in the Digital Attack
Model

We now state what it means to break a PUF-based identificationscheme in the digital
attack model. We closely follow the IMP-CA security notion of traditional identifi-
cation schemes [1]. Thereby, the adversary’s goal is to impersonate the prover, that
is to make the verifier accept, despite he has no access to the PUF. More precisely,
the definition consists of two phases: alearningand animpersonationphase. In the
learning phase, the adversary has access to an oracleOFS in order to collect PUF

Strong PUFs: Models, Constructions and Security Proofs 15

measurements up to a certain maximum number. Furthermore, the adversary is al-
lowed to play a cheating verifier which can interact with an honest prover for an
arbitrary number of independent protocol runs. In the impersonation phase, the ad-
versary tries to impersonate the prover such that the verifier accepts the false proof.

Definition 5.2 Let S be a PUF, and let IDS = (K ,P,V) be an identification
scheme based on S. Let an adversaryA be a tuple(V ∗,P∗), whereV ∗ is a prob-
abilistic oracle Turing machine, andP∗ is a probabilistic Turing machine. We say
thatA (tL, tP, q, r , ε)-BREAKS IDS FOR THE SECURITY PARAMETERk if A suc-
ceeds in the following security experiment with a probability of at leastε:

SecExp(S, tL, tP,q, r,k):

PHASE 1: INITIALIZATION . K is run on input1k and produces an output xin.
PHASE 2: LEARNING. V ∗ is provided with an oracleOFS for the function FS, and

is started with input1k. It may make at most q adaptive queries toOFS. Further-
more, it may interact at most r times with the honest proverP, instantiated with
a fresh random tape, wherebyP getsOFS as oracle and1k as input at each of
these interactions. After at most tL Turing steps,V ∗ must output a string z.

PHASE 3: IMPERSONATION. P∗ is provided with the private input z.V is pro-
vided with the private input xin. Both get as joint input1k, and execute a joint
computation. Within tP Turing steps,V outputs a bit d∈ {0,1}.

We say that the experiment was successful ifV outputs “1” at the end of Phase 3.
The probabilityε is taken over the random coins thatK ,V ,P,V ∗,P∗ employ
during Phases 1 to 3.

We will now perform a reductionist security proof for the canonical PUF-based
identification scheme. The following statement informallysays that ifS is a Strong
PUF, then the canonical identification scheme based onS is secure.

Theorem 1.Let S be a PUF. Then there is a generic black-box reduction that con-
structs from any adversaryA = (V ∗,P∗), which (tL, tP, q, r, ε)-breaks the canoni-
cal identification scheme based on S for the security parameter k, another adversary
A ′ = (L ,M), which (tL + c · ⌈k/ε⌉, ⌈k/ε⌉(tP + c · k), q+ kr + ⌈k/ε⌉, 0.6 k

√
ε/k)

breaks S as a Strong PUF. Thereby c is a small constant independent of k.

Proof. In the following, we show how to build an adversaryA ′ = (L ,M) that
predicts the response to a given challenge by running black-box simulations ofA =
(V ∗,P∗).

More precisely,L runs a black-box simulation ofV ∗. WheneverV ∗ makes a
query toOFS, L simulates this query by using his oracleOFS. L keeps track of
all oracle queries and their responses in a listcrp to avoid duplicate oracle queries.
WheneverV ∗ engages in a protocol run with the prover,L simulates this inter-
action as follows: upon receipt of a list ofk challenges(C1, . . . ,Ck), L creates a
corresponding list of PUF responses(RC1, . . . ,RCk), either by looking up the result
in crp or queryingOFS. OnceV ∗ stops with outputz, L proceeds to drawℓ = ⌈k/ε⌉

16 Ulrich Rührmair and Heike Busch and Stefan Katzenbeisser

further (previously unused) challenges randomly from the set of challenges and ob-
tains their answers by queryingOFS; all challenges and responses collected in this
last step are collected in a listCR= (Ĉ1, R̂1, . . . ,Ĉℓ, R̂ℓ). SubsequentlyL halts and
outputs(z,CR).

On receiving a challengeC1, M performs the following operations:

1. M selects uniformly at random a positionk0 with 1≤ k0 ≤ k and constructs
a list of k challenges(C̄1, . . . ,C̄k) as follows: he sets̄Ck0 = C1 andC̄i = Ĉi for
1≤ i ≤ k0−1; furthermore he sets all̄Ci with k0+1≤ i ≤ k to random challenges
from CS.

2. M runsP∗ on (C̄1, . . . ,C̄k) and inputz to obtain(R̄1, . . . , R̄k).
3. If R̄i = R̂i for 1≤ i ≤ k0−1, algorithmM outputsR̄k0 and stops. Otherwise,M

deletes the first (used)k0−1 entries of the listCRand re-starts the operation at
step 1. Afterm= ⌈k/ε⌉ unsuccessful runs,M stops and fails.

We denote byAi the probability thatP∗ (when run in the game of Defini-
tion 5.2) outputs the correct response for thei-th challenge it is given. We thus
have Prob[P∗ succeeds] = Prob[

⋂
i=1,...,k Ai] > ε. We can write Prob[

⋂
i=1,...,k Ai] as

Prob[A1]Prob[A2 |A1]Prob[A3 |A2∩A1] . . . Prob[Ak |Ak−1∩ . . .∩A1].

Since Prob[
⋂

i=1,...,k Ai] > ε, we know that one of the factors in the above product
must be larger thank

√
ε. Thus, there exists a position 1≤ k̄≤ k in which P∗ suc-

ceeds with a higher probability, under the condition that the algorithm has predicted
all prior challenges correctly. The reduction attempts to exploit this fact. It guesses
this positionk̄. Then, it outputs the response ofP∗ for the k̄-th challenge, but only
in caseP∗ has predicted all previous challenges correctly. Otherwise, this (sub-)run
of M fails, and a new run is started, up tom= ⌈k/ε⌉ overall iterations.

The probability thatM succeeds to guess this positionk̄ in one iteration is 1/k;
the probability thatM outputs a correct guess in this round is Prob[Ak̄ |Ak̄−1∩ . . .∩
A1]≥ k

√
ε, since the reduction is constructed in a way that it outputs aguess only if

P∗ predicts all challenges̄C1, . . . ,C̄k̄ correctly. Due to the independence of succes-
sive runs ofP∗, we can estimate the overall success probability ofM as

Prob[M succeeds] ≥ 1/k(1− (1− ε)k/ε) k
√

ε
≥ 1/k(1− (1/e)k) k

√
ε

≥ 0.6 k
√

ε/k.

The bounds on the run times ofV ∗ andP∗ can easily be obtained by observing that
the simulation requires an overhead that scales linearly inthe security parameterk.
The precise scaling constantc is dependent on the machine model, and is indepen-
dent ofk. Furthermore,V ∗ makes at mostq+kr+⌈k/ε⌉ oracle queries. This proves
the theorem.

Strong PUFs: Models, Constructions and Security Proofs 17

6 Conclusions

We investigated the formal foundations and applications ofStrong Physical Unclon-
able Functions. The problem of defining PUFs and Strong PUFs in a formally sound
way turns out to be complicated. One reason for the occurringobstacles is that PUFs
are a hybrid between physics and computer science. Some of their properties, such
as their unclonability or the dependence of their output on uncontrollable manufac-
turing variations, can hardly be expressed in a formalism based on standard Turing
machines. On the other hand, some other central features of Strong PUFs—such as
their unpredictability, even if many CRPs are known—are closely related to compu-
tational complexity. Expressing them formally requires some sort of computational
model. Finally, a purely information-theoretic approach to PUF-security is not go-
ing to work for all Strong PUFs: Several electrical Strong PUF candidates contain
only a relatively small amount of relevant structural information.

We made the following contributions. We started by analyzing existing defini-
tions of Physical One-Way Functions, Physical Random Functions and Physical
Unclonable Functions, and noted some interesting aspects in these definitions. We
subsequently proposed new semi-formal specifications for Strong PUFs. They have
some limitations from a strictly formal point of view, and donot enable reductionist
proofs. But they are intuitive and not overly technical, andalso specify an adversar-
ial model and its security relevant parameters relatively exactly. The specifications
also have the asset of being non-asymptotic, meaning that they can be applied di-
rectly to concrete PUF-instances.

Next, we introduced a restricted adversarial model, thedigital attack model, and
gave a security definition for breaking Strong PUFs, which eventually enabled re-
ductionist proofs. In principle, it is based on the adversarial scenario of the above
informal specifications. But it restricts the adversary’s measurements on the PUF to
mere CRP determination. This constraint allowed to model the adversary by oracle
Turing machines, and made classical reductionist techniques applicable. Finally, we
showed that the security of the “canonical” PUF identification scheme can be prov-
ably based on the security of the underlying Strong PUF without any complexity
theoretic assumptions.

18 Ulrich Rührmair and Heike Busch and Stefan Katzenbeisser

References

1. Mihir Bellare and Adriana Palacio. GQ and Schnorr identification schemes: Proofs of secu-
rity against impersonation under active and concurrent attacks. In Advances in Cryptology
(CRYPTO 2002), Proceedings, volume 2442 ofLecture Notes in Computer Science, pages
162–177. Springer, 2002.

2. Qingqing Chen, Gÿorgy Csaba, Xueming Ju, Srinivas Bangalore Natarajan, Paolo Lugli, Mar-
tin Stutzmann, Ulf Schlichtmann, and Ulrich Rührmair. Analog circuits for physical cryptog-
raphy. InInternational Symposium on Integrated Circuits (ISIC), 2009.

3. György Csaba, Xueming Ju, Zhiqian Ma, Qingqing Chen, Wolfgang Porod, J̈urgen Schmidhu-
ber, Ulf Schlichtmann, Paolo Lugli, and Ulrich Rührmair. Application of mismatched cellular
nonlinear networks for physical cryptography. In12th IEEE CNNA - International workshop
on Cellular Nanoscale Networks and their Applications, 2010.

4. Srinivas Devadas G. Edward Suh. Physical unclonable functions for device authentication
and secret key generation. InProceedings of the Design Automation Conference, DAC 2007,
pages 9–14.

5. B. Gassend, D. Lim, D. Clarke, M. v. Dijk, and S. Devadas. Identification and authentication
of integrated circuits.Concurrency and Computation: Practice & Experience, 16(11):1077–
1098, 2004.

6. Blaise L.P. Gassend. Physical random functions. Master thesis, Massachusetts Institute of
Technology, February 2003.

7. Oded Goldreich.Foundations of Cryptography, volume 1, Basic Tools. Cambridge University
Press, 2001.

8. Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, and PimTuyls. FPGA intrinsic PUFs
and their use for IP protection. InCryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Proceedings, volume 4727 ofLecture Notes in Computer
Science, pages 63–80. Springer, 2007.

9. Ryan Helinski, Dhruva Acharyya, and Jim Plusquellic. A physical unclonable function defined
using power distribution system equivalent resistance variations. In Proceedings of the 46th
Design Automation Conference (DAC 2009), pages 676–681, 2009.

10. Sandeep S. Kumar, Jorge Guajardo, Roel Maes, Geert Jan Schrijen, and Pim Tuyls. The
Butterfly PUF: Protecting IP on every FPGA. InInternational Symposium on Hardware-
Oriented Security and Trust (HOST 2008), pages 67–70, 2008.

11. J. W. Lee, Daihyun Lim, Blaise Gassend, G. Edward Suh, Marten van Dijk, and Srinivas
Devadas. A technique to build a secret key in integrated circuits for identification and authen-
tication applications. InProceedings of the IEEE VLSI Circuits Symposium, pages 176–179.
IEEE, 2004.

12. Daihyun Lim. Extracting secret keys from integrated circuits. Master’s thesis, Massachusetts
Institute of Technology, 2004.

13. Daihyun Lim, J. W. Lee, Blaise Gassend, G. Edward Suh, Marten van Dijk, and Srinivas
Devadas. Extracting secret keys from integrated circuits.IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 13(10):1200–1205, October 2005.

14. Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak. Lightweight secure PUFs.
In International Conference on Computer-Aided Design (ICCAD’08), pages 670–673, 2008.

15. Ravikanth Srinivasa Pappu.Physical One-Way Functions. Phd thesis, Massachusetts Institut
of Technology, March 2001.

16. Ravikanth Srinivasa Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. Physical one-way
functions.Science, 297(5589):2026–2030, September 2002.

17. Ulrich R̈uhrmair, Christian Jaeger, Matthias Bator, Martin Stutzmann, Paolo Lugli, and
György Csaba. Applications of high-capacity crossbar memories in cryptography. IEEE
Transactions on Nanotechnology, 2010, to appear.

18. Ulrich R̈uhrmair, Christian Jaeger, Christian Hilgers, Michael Algasinger, György Csaba, and
Martin Stutzmann. Security applications of diodes with unique current-voltage characteristics.
In Financial Cryptography (FC 2010).

Strong PUFs: Models, Constructions and Security Proofs 19

19. Ulrich R̈uhrmair, Frank Sehnke, Jan Sölter, Gideon Dror, Vera Stoyanova, and Jürgen Schmid-
huber. Machine learning attacks on physical unclonable functions, submitted. 2009.

20. Ulrich R̈uhrmair, Jan S̈olter, and Frank Sehnke. On the foundations of physical unclonable
functions. Technical Report 227, IACR Cryptology E-print Archive, 2009.

21. Pim Tuyls, Geert Jan Schrijen, BorisŠkoríc, Jan van Geloven, Nynke Verhaegh, and Rob
Wolters. Read-proof hardware from protective coatings. InCryptographic Hardware and
Embedded Systems (CHES 2006), Proceedings, volume 4249 ofLecture Notes in Computer
Science, pages 369–383. Springer, 2006.

