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Abstract. SIMulation Possible, but Laborious (SIMPL) systems are a novel
cryptographic concept for physical cryptography that have been suggested in
recent years. They can potentially solve inherent vulnerabilities of conventional
public-key cryptography that is based on unproven mathematical hypotheses.
The security of SIMPL systems rests on their physical unclonability and on the
runtime difference between the real-time behavior of the unique SIMPL system
and any adversarial simulation or emulation of it. One first circuit-based reali-
zation of SIMPL systems via so-called skew SRAMs has previously been dis-
cussed in the literature. This paper presents an approach to enhance the security
of skew SRAM based SIMPL systems by introducing more complicated and
parallel computing behavior taking place in the skew SRAM, which we call
multiple-wordline-activation (MWA) skew SRAM. Simulations of the MWA
skew SRAM show expected behavior complexity that can be taken advantage of
in SIMPL systems to amplify the speed advantage over emulators (functional
physical clones) or simulators (digital clones), which plays a key role in the
security of SIMPL systems.

Keywords: Security � Cryptography � Physical cryptography � Public-key
physical cryptography � Physical unclonable function � Simulation possible, but
laborious system � SIMPL system � Public physical unclonable function, public
PUF � Skew SRAM � MWA skew SRAM � Multiple wordline activation

1 Introduction

SIMulation Possible, but Laborious systems (SIMPL systems or just SIMPLs) [1, 2] are
a novel cryptographic concept within so-called physical cryptography. Unlike physical
unclonable functions (PUFs) [3–7], whose aim is to resolve inherent issues of con-
ventional private-key cryptography, SIMPL systems and public PUFs [8] are new
cryptographic primitives for typical public-key like scenarios.

A PUF is a physical function that maps challenges (inputs) to responses (outputs)
depending on the physical phenomena taking place in the PUF structure. Based on the
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challenge-response pairs (CRPs), a PUF is able to serve in various cryptographic
protocols [9], e.g., challenge-response authentication. However, all these protocols
require a piece of previously shared information that must be kept secret, restricting the
application of PUFs as secret-key like primitives. Similar to a PUF, every SIMPL
system also realizes an individual function that maps challenges to responses. Unlike
PUFs, however, any SIMPL system possesses an individual public numeric simulation
program. This allows everyone to simulate and calculate the responses of the SIMPL
system, and therefore to verify the correctness of the responses received from the party
who claims to be in possession of the original SIMPL system. As the SIMPL system is
designed such that any adversarial simulation or hardware emulation of it is slower and
more time consuming than the real-time behavior of the original SIMPL system, which
means that only the person physically holding the original SIMPL system can compute
the responses at a certain speed (equal to or faster than a threshold speed value that is
publicly available, together with or given by the simulation program), everyone may
verify the realness of the claimant’s possession of the SIMPL system by checking the
quickness (speed) of the responses with a timer and the correctness with the simulation
program. It has been shown that the speed advantage or “speed gap” can be used for a
number of different cryptographic protocols, including identification, key exchange, bit
commitment, zero-knowledge protocols, and digital rights management applications [1].

1.1 SIMPL Systems and Public PUFs

SIMPL systems and public PUFs are actually equivalent cryptographic concepts.
However, recent research on both primitives has shown a slightly different accentua-
tion. Publications on public PUFs have mostly focused on nanoelectronic solutions,
trying to achieve an exponential time gap between the public PUF hardware and any
adversaries [10, 11]. While being scientifically highly interesting, such exponential
time gaps between hardware and its simulation may be hard to achieve in practical,
inexpensive, and stable implementations. Furthermore, an exponential time gap makes
the simulation of the public PUF, which is one inherent protocol step, very time
consuming, leading to practically inefficient schemes. For these reasons, recent
investigations on SIMPL systems followed a different route [1, 2, 12, 13]: They
examined practical, circuit-based implementations with a sufficiently large, but con-
stant time gap. In order to avoid attacks, the SIMPL system implemented a
non-parallelizable function, whose computation is closely tied to the maximal clock
frequency of today’s integrated circuits. It is well-known that this frequency cannot be
raised indefinitely due to physical constraints imposed by semiconductor materials.
This strategy promises to thwart many attacks while still maintaining practicality.

We follow and extend this route in this paper, attempting to achieve a substantial
improvement over previous skew-SRAM-based designs of SIMPL systems: We try to
lift the relative security margin from a small factor of around 2 to larger factors of 2n by
a new, so-called multiple wordline activation (MWA) skew SRAM, in which n repre-
sents the number of wordlines that can possibly be activated simultaneously in skew
SRAM write operations.
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1.2 Implementation of SIMPL Systems via Skew SRAMs

A first implementation of SIMPL systems known as skew SRAM based SIMPL
systems has been introduced in [2, 12, 13]. It uses specially designed (“skew”) SRAM
architectures to outperform their emulators/simulators when executing certain, spe-
cialized computing tasks that skew SRAMs are designed for. Figure 1 shows the
structure of the skew SRAM based SIMPL system of [12, 13]. The system consists of
four main blocks, namely a skew SRAM block (SS), a challenge control block (CC), a
voltage control block (VC), and a feedback and output control block (FOC).

Similar to PUFs, SIMPL systems calculate responses Ri when fed with challenges
Ci. The challenge control block CC “scrambles” the challenge and generates voltage
select (SEL), read/write address (ADR), write data (DIN) and other control (CTRL)
signals, e.g., write enable, for the skew SRAM. References [12, 13] suggested realizing
the challenge control block with a hash function. The skew SRAM block SS is
designed similar to normal SRAMs, except that different types of cells (normal cells
and skew cells, of which skew cells differ from normal, i.e., standard SRAM cells in the
sizing of their transistors and therefore in their electrical characteristics, specifically
their write behavior) are distributed in the array and write operations taking place in
those specially designed skew cells may fail to modify their previously stored contents
depending on the current supply voltage (controlled by voltage control block VC). To
be specific, the skew cells discussed in [12, 13], which were designed for a 0.18-µm
CMOS technology, will retain their previously stored values when the VDD to the
skew SRAM block SS is 1.3 V, and the write operation will be successful (like in
conventional SRAM cells) when the VDD is 1.8 V. Therefore, writing and reading
successively in a cell of such a skew SRAM is effectively a computation process based
on the VDD and DIN signals, as well as the type and the current contents of the cell.

As the skew SRAM behavior cannot be outperformed by emulators or simulators
[13], its speed advantage can be used to distinguish real SIMPL systems from faked
ones. The speed advantage of the SIMPL system over emulators/simulators can be
amplified if the data read out from the skew SRAM in a cycle is fed back into the
challenge control, thus influencing the next cycle. This can of course be repeated
multiple times. In [12, 13], the feedback loop is realized with a linear feedback shift
register (LFSR) that XOR’s the read-out data DOUT of the skew SRAM block. More
details of the operation and the design can be found in [12, 13].

By randomly allocating skew as well as normal cells in the skew SRAM array SS, a
specific design is achieved. However, individualized SIMPL systems should not be
realized by creating many different designs with different skew/normal cell distribution
patterns, as it is too expensive to fabricate just one single or several chips out of one
design for usual commercial applications. References [12, 13] suggested to randomly
modify a portion of the skew and normal cells in the array to become fixed-“0” or
fixed-“1” cells, which can be realized with laser fuses and “burn-in” fabrication steps.
These fixed-“0” and fixed-“1” cells have their data nodes directly connected to GND
and VDD, respectively. Their stored and read-out values will remain fixed no matter
what operation is carried out. Depending on where the fixed-“0” and fixed-“1” cells are
located, a practically infinite number of different SIMPL systems can be fabricated out
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of one design, with properly chosen parameters including the skew SRAM array sizes
and the portions of skew and normal, as well as fixed cells.

In public-key applications, the public key, i.e., the simulator part, implements a
function that calculates response Ri when fed with the description D(S) of a SIMPL
system S as well as the challenge Ci (the challenge Ci should be given by the verifier).
The simulator should also be able to tell the response time limit tmax of the legal SIMPL
system S, so that a verifier can check both the quickness and the correctness criteria
discussed at the beginning of this section. To create such a public simulation program
for a specific SIMPL system, one needs to know the accurate logic functionalities of
each block of the system including the configurations of the skew SRAM block, i.e.,
allocations of normal, skew, as well as fixed cells. The simulation program just needs to
implement the logic functionality of the SIMPL system in software, and, based on the
specifications, calculate the response time limit tmax of the legal SIMPL system.

The security of SIMPL systems is determined by the speed/performance advantage
which the systems have over all emulators or simulators of them. Specifically for skew
SRAM based SIMPL systems, the security results from the speed advantage of skew
SRAM write operations over emulators using conventional memories and logic, as well
as simulators using standard computing systems [13], which can theoretically mimic
each skew SRAM write operation in three sequential steps: (1) read out the contents
and the type of addressed cells; (2) compute the result of the write operation; (3) write
back the result into addressed cells. However, as technology develops, the speed
advantage of a previously fabricated skew SRAM may decrease since
emulators/simulators using new technologies become faster, making the secured ser-
vice lifetime of a skew SRAM based SIMPL system shorter. To further enhance the
security of skew SRAM based SIMPL systems and to ensure longer service lifetime,
the concept of multiple wordline activation (MWA) skew SRAM is proposed in this
paper. This concept attempts to write into multiple cells in each column of a skew
SRAM array by activating multiple wordlines simultaneously in a write operation.

Fig. 1. Schematic illustration of the skew SRAM based SIMPL system [12, 13].
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The rest of the paper is organized as follows: Section 2 proposes the security
enhancement approach using MWA skew SRAM for SIMPL systems. Section 3 pre-
sents a design of MWA skew SRAM. Section 4 shows simulations of the design.
Section 5 briefly assesses the security enhancement of the MWA skew SRAM and
summarizes the paper.

2 MWA Skew SRAM Based SIMPL Systems

As discussed in Sect. 1, the long-term security of skew SRAM based SIMPL systems
can be enhanced by increasing the speed advantage executing an operation in the skew
SRAM over mimicking it through emulation/simulation. To enlarge the speed asym-
metry, multiple wordline activation during write operations is introduced, which allows
the attempt of writing the same data appearing on skew SRAM bitlines into multiple
cells on simultaneously activated wordlines. Multiple wordline activation is only
allowed in write operations, but not in read operations.

As an example, Fig. 2 shows when wordlines WL2 and WL4 are activated (become
logic ‘1’) at the same time in a write operation, the write data ‘1’/‘0’ appearing in bitline
BL/BLB attempts to overwrite the internal data node Q/QB, respectively. Depending on
the type of the addressed cells, the current supply voltage level, as well as their previ-
ously stored contents, the write operation may succeed or fail (i.e., previously stored
contents stay unchanged, and are different from the write data). Since the activation of
multiple wordlines connects the internal data nodes of multiple cells electrically through

Fig. 2. Part of the schematic of an MWA skew SRAM array, withWL2 andWL4 activated at the
same time. The two illustrated cells of the same column are activated simultaneously for write
operations.
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access transistors and bitlines, the operations of these cells influence each other (e.g., if a
‘1’ is to be written, and one of the two activated cells already contains a ‘1’, then writing
‘1’ into the other cell becomes easier), making the computation taking place in write
operations even more complicated. As any combination (defined by the challenge
control module, see Fig. 1) of wordlines can be activated simultaneously, this parallel
write operation can be emulated or simulated only by evaluating the type and the current
contents of all the addressed cells together. That would require the emulator/simulator to
read all needed information from different addresses, which cannot be done in a single
read operation using normal memories or standard computing systems (resources
available for attackers making functional physical clones or digital clones discussed
in [13]). And the same also holds for the writing of the computed results back into those
addresses, which cannot be done in a single write operation. While the SIMPL system
can effectively perform reading, computing, and writing-back in one single cycle, an
attacker will have to read the necessary data one by one in multiple cycles, compute the
results based on all readout information, and write back again in multiple cycles. That
would make the attacker’s emulator/simulator many times slower, and the factor is
dependent on the number of wordlines that can possibly be activated at the same time.
Further discussions about the security assessment of the MWA skew SRAM are carried
out in Sect. 5.

As the security of the skew SRAM based as well as the MWA skew SRAM based
SIMPL system relies on the speed advantage of the skew SRAM block, other blocks
described in Sect. 1 may stay unchanged. Section 3 presents a specific design of our
MWA skew SRAM that enhances the security of the SIMPL system based on skew
SRAM concepts.

3 Design of an MWA Skew SRAM

As a proof of concept, an MWA skew SRAM design using 45-nm PTM nano-CMOS
models [14] is presented below, with up to two simultaneously activated wordlines (in
each write cycle, one or two wordlines are activated simultaneously for writing) and two
different supply voltages (1.0 V and 1.3 V). Two types of skew cells (Type 1 skew cell
S1, and Type 2 skew cell S2) are designed, which differ in their transistor sizing and thus
in their write behavior. They are randomly distributed in the skew SRAM array, with
some of them configured to be fixed cells in post fabrication steps [13]. Therefore, four
types of fixed cells exist (F1: S1 fixed to ‘0’; F2: S1 fixed to ‘1’; F3: S2 fixed to ‘0’; F4: S2
fixed to ‘1’). All types of cells work normally as conventional SRAM cells do in read
operations, but show relatively complicated behavior when data is attempted to be
written into them, depending on the combination of cell types activated in the write
cycle, the current supply voltage, the previously stored data in the activated cells, as well
as the data to be written into them. The defined write behavior is presented in Table 1.

The left-most column specifies the type(s) of the activated cell(s) in write opera-
tions, with previously stored data in the parentheses. The upper-most two rows give the
operating conditions (supply voltage VDD during the write cycle, and the data WD to
be written). Non-bold numbers in the rest of the table are the stored data (result) of
corresponding activated cells after the write operation.

6 Q. Chen et al.



Compared to the behavior definition of the skew SRAM cells (normal/skew/fixed
cells) described in [12, 13], we name the MWA skew SRAM cells differently, since no
cell behaves the same as normal SRAM cells under all conditions. For the MWA skew
SRAM, two types of skew cells, which behave differently in write operations, are
defined. As described in Table 1, the “S2(0), S2(1)” line defines that when a Type 2
skew cell (with previously stored data ‘0’) and another Type 2 skew cell (with pre-
viously stored data ‘1’) from the same column are activated simultaneously in a write
cycle under the condition that VDD is 1.3 volt and the write data is ‘1’, the first S2 cell
succeeds to store the new data ‘1’, while the second S2 cell remains storing the
previously stored data ‘1’, which is the same as the write data. Figure 3 shows the
schematic and carefully chosen transistor sizes of Type 1 and Type 2 skew cells, which
fulfill the behavior specification of Table 1.

Table 1. Write behavior of MWA skew cells

Cell typea (prev. stored data) VDD = 1.0 Vb VDD = 1.3 V
WD = 0b WD = 1 WD = 0 WD = 1

S1 0 1 0 1
S2 0 1 0 - d

S1, S1 0, 0 1, 1 0, 0 1, 1
S1, S2 0, 0 1, 1 -, - -, -
S2(0), S2(0) 0, 0 0, 0 0, 0 0, 0
S2(0), S2(1)

c 0, 0 1, 1 0, 0 1, 1c

S2(1), S2(1) 0, 0 1, 1 1, 1 1, 1
Fx(0), Sx 0, 0 0, 0 0, 0 0, 0
Fx(1), Sx 1, 1 1, 1 1, 1 1, 1
Fx, Fx -, - -, - -, - -, -
aThe type(s) of cells that are activated simultaneously for write. For
example, “S1, S2” means that a Type 1 skew cell and a Type 2 skew cell
are activated simultaneously (both cells are from the same column,
sharing the same bitline). “S1” only means that one single Type 1 skew
cell is activated. “Fx, Sx” stands for a fixed cell of any type and a skew
cell of any type activated simultaneously. Data in the parentheses is the
previously stored data in the corresponding cell, or the fixed value in case
of a fixed cell. Without parentheses means that the previously stored data
could be ‘1’ or ‘0’.
b“VDD” is the supply voltage of the current write cycle. “WD” is the
data to be written in that cycle.
c “1, 1” here means the stored data of the first S2 (with previously stored
data ‘0’) and the second S2 (with previously stored data ‘1’) cells after the
write operation, respectively: Under the condition of VDD=1.3V and
WD=1, ‘1’ is successfully written into the first S2 cell, while the second
S2 cell retains its previously stored data ‘1’, which is the same as the
write data.
d“-” means that previously stored data remains unchanged after the write
operation
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Fixed cells are simulated by adding connections between internal nodes Q to VDD
(for Fixed ‘1’ cells) or GND (for Fixed ‘0’ cells) through resistors of 600 ohm (a typical
value for antifuses using ONO, i.e., oxide-nitride-oxide technologies [15]).

As up to two wordlines need to be activated at the same time in write cycles, the
challenge control block (see Fig. 1) and/or the address decoder of the skew SRAM
need to be redesigned. A simple solution is to double the address (output of challenge
control) bit width for the skew SRAM row decoder which controls the activation of
wordlines, and duplicate the row decoder, with each taking half of the row address as
input. The two row decoders may produce the same or different outputs, and each
wordline is controlled by an “OR”-gate taking the corresponding output bits of the two
row decoders as its inputs. Thus, one or two wordlines of the array will be activated
simultaneously in each write cycle. In read cycles, the inputs of the two row decoders
should be the same, so that only one wordline is activated in read cycles. This can be
realized with simple logic based on the state of the R/W signal (read/write signal, which
is part of the CTRL signal of Fig. 1).

Other modules, i.e., voltage control and feedback & output control modules, of the
skew SRAM based SIMPL system do not require any modification.

4 Simulation

We simulate an MWA skew SRAM column as shown in Fig. 4 to verify the design. In
the MWA skew SRAM column, S1 and S2 cells are randomly distributed. Several cells
are chosen to be fixed cells. All combinations of situations described in Table 1 are
simulated for verification. Figure 5 shows part of the simulation that verifies, e.g., the
“S1(1), S2(0)” situation with VDD = 1.3 V and WD = 1 of Table 1 at simulation time
420 ns. It can be seen that the write operation of the S2 cell fails (to overwrite its
previously stored value ‘0’, see signal “qs22”) as is desired, while the operation of the

 Type 1 Type 2 
M1, M3 180 / 45 145 / 45
M2, M4 50 / 90 115 / 45
M5, M6 85 / 45 54 / 45 

M5 Q

VDD

QB M6

M2 M4

M1 M3
BL BLB

WL

Fig. 3. Schematic of skew cells and transistor sizing (W/L in nanometer) of Type 1 and Type 2
skew cells using 45-nm PTM nano-CMOS models [14].
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S1 cell (see signal “qs12”) can be regarded as successful although WD is the same as
its previously stored value. Through simulations, all functionalities under different
situations defined in the specification of Table 1 have been verified.

To approximately evaluate the yield of the design, simulations of the MWA skew
SRAM column of Fig. 4 considering global process variations were carried out to
verify the design further. Gaussian distributed variations (with three standard devia-
tions of 30 millivolt, i.e., about 16.7 %) of the threshold voltages of PMOS and NMOS
transistors were considered. However, since the simulated circuit is not small and there
are a lot of different situations (Table 1) to check, it is time-consuming to run a large
amount of Monte Carlo simulations. Our solution was to sweep the process variation
parameters and find the parameter space boundary first. Within the boundary, all the
specifications of Table 1 should be met. This greatly reduced the number of required
simulations. After that, we just need to check if a Monte Carlo sample falls in the yield
region or not. Out of all 1,000,000 Monte Carlo samples, 997,334 (over 99.7 %) totally
meet the specification of Sect. 3 in all cases.

S1

S2

S1

S2

F1

F2

F3

F4

Precharge

WriteDriver

VDD
PC

WL0

WL1

WL2

WL3

WL4

WL5

WL6

WL7

WE
WD

BL BLB

(s11)

(s21)

(s12)

(s22)

Fig. 4. MWA skew SRAM column design for simulation (PC: precharge; WLn: wordlines; WE:
write enable; WD: write data; BL/BLB: bitlines; S1: Type 1 skew cell; S2: Type 2 skew cell; Fx:
fixed cells)
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5 Discussion and Conclusion

This section briefly discusses the security improvement of the MWA skew SRAM
based SIMPL system over the original described in [2, 12, 13] and concludes the paper.

5.1 Security Assessment

As in [12, 13], three basic possibilities for a faker to imitate the SIMPL system are
discussed.

Exact Physical Clone. Similar to the conventional skew SRAM based SIMPL system,
the MWA skew SRAM based SIMPL system is also refabricatable in a silicon foundry,
if one-time costs of millions of US dollars are available for the faker [12]. However, if
the value to be protected by the SIMPL system is much lower than that, which is the
usual case for consumers or individual hackers and consumer application scenarios,
fabricating an exact physical clone of the system is not only practically difficult, but
also pointless from an economic perspective.

Furthermore, it is interesting to compare the attacker’s need to fabricate a certain
ASIC in silicon to the security level of secret binary keys, say, be they stored in
classical memory or in alternative technologies like PUFs. In the past, such individual

Fig. 5. Waveform of Type 1 and Type 2 skew cell operations. The voltage of logic ‘1’ varies
between 1.0 V and 1.3 V as VDD changes. Signals: we (write enable), wd (write data), s11/qs11
(WL/Q of an S1 cell), s21/qs21 (WL/Q of an S2 cell), s12 and qs12 (WL/Q of a second S1 cell),
s22 and qs22 (WL/Q of a second S2 cell).
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keys can and have been read out by professional hacker teams on several occasions
[16, 17]. In the case of satellite TV boxes, such attacks have reportedly been mounted
by hacker teams hired by the direct competitors of the TV companies [18]. The sup-
posedly protective keys can then be distributed quickly and conveniently over the dark
net, since they are fully digital, and can be downloaded and used even by relatively
untrained private consumers to commit fraud. The same does not hold for IP protection
based on SIMPL systems, as attacks here require the professional fabrication of an
ASIC in silicon. This offers a potentially game-changing novel security feature for
large consumer markets.

Functional Physical Clone. Building functional physical clones using resources like
“normal” (mass-manufactured) memories, logic IC components, PLDs and FPGAs that
are available for consumers or individual hackers is discussed.

Figure 6 shows the basic structure of an emulator of the MWA skew SRAM using
normal mass-manufactured memories and logic, which mimics the behavior of the
MWA skew SRAM and attempts to catch up with it in computing speed. However,
since the result of a write cycle is dependent on the type and the previously stored data
of addressed cells, the emulator needs to first read out celltype and the previously stored
data Dprev of the addressed cells from the configuration memory and the data memory,
respectively, and then calculate (together with the write data DIN and the voltage select
signal SEL) in the logic block the new data (result of the write cycle) to be written back
into the data memory. For an MWA skew SRAM emulator, the data for celltype as well
as for Dprev for different MWA wordlines come from multiple addresses, making it

 

Computing
Logic

Reg

Reg

Reg

Data
Memory

Conf.
Memory

FSM

OutputSEL

DIN

DOUT

ADR

CTRL

CLK

clk

Skew-SRAM
Emulator

cm_ctrl

celltype
&
Dprev

output_en
dm_ctrl

Fig. 6. Basic structure of an MWA skew SRAM emulator based on normal SRAMs and logic
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impossible to read in a single cycle. Therefore, celltype and Dprev must be read out with
multiple read operations (to be specific, n read operations where n is the number of
simultaneously activated wordlines) and stored at the input of the logic block until all
needed information is collected for calculation. For writing back, a similar procedure
must be done (to be specific, in n write operations where n is the number of simul-
taneously activated wordlines), since writing back into multiple addresses simulta-
neously is not possible. Thus, write back data must be present at the output of the logic
block until all data are written back into the data memory cycle by cycle. And a finite
state machine (FSM) needs to be implemented to control all the operations, e.g., the
cycle-by-cycle read out and write back should be controlled by the FSM through
cm_ctrl and dm_ctrl that contains the addresses and other control signals for each
operation cycle. Since a write operation in the MWA skew SRAM has to be substituted
with multiple read and multiple write operations in sequence, this emulator is at least a
factor of 2 × n slower in write operations where n is the number of wordlines activated,
if the configuration and the data memories work at the same speed as our MWA skew
SRAM, and if the delay of the computing logic of the emulator is ignored. Realizing
the same structure of Fig. 6 with FPGAs wouldn’t be dramatically different in speed
since the multiple read and write operations have to be done in sequence.

Another possible FPGA-based emulation approach is to replicate the behavior of
the MWA skew SRAM block cell by cell. Emulating the logic behavior of a single cell
defined in Table 1 is not complicated. However, to be noted is that determining the
result of MWA write operations in a Type 1 or Type 2 skew cell (S1 or S2) requires
some knowledge about the other simultaneously activated cell in the same column (on
the same bitline). An emulated S1 cell needs to know the cell type of the other activated
cell, while an emulated S2 cell needs to know both the cell type and the cell contents
(previously stored data) of the other activated cell. Since any two cells in the same
column may be activated at the same time, there must be a path between a skew cell
and all the other cells in the same column to communicate the cell type (for both S1 and
S2 cells) and the cell contents (for S2 cells). That indicates a large amount of con-
nections between cells. Directly connecting all the cells would be impossible, since it
quickly uses up the wiring resources of FPGAs. A crossbar-like implementation [19]
based on multiplexers and demultiplexers may solve the wiring resource problem, if the
array size is not too large. However, that causes more delays as many stages of
multiplexing are required for a large MWA skew SRAM array. Although emulating a
single cell with FPGA is possible, another issue arises when emulating a complete
MWA skew SRAM array. As the logic behavior of MWA skew cells are much more
complicated than the original skew cells described in [12, 13], the number of config-
urable cells (look-up-tables or LUTs, and Flip-flops) required for emulating their
behavior increases a lot. To verify that, we implemented a 2 Kbit (with 32 bit
word-width) MWA skew SRAM array with a Xilinx Virtex-6 FPGA (fabricated with a
40-nm technology). Even in such a highly simplified case with only 16.7 % S1 and
16.7 % S2 cells randomly distributed in the array, already 84 % LUT resources of the
FPGA were used. Implementing a 512 Kbit (an optimal array size suggested in [13])
MWA skew SRAM array with commercially available FPGAs would be simply
impossible. Even if an emulator can be built by connecting hundreds of FPGAs, the
communication delay between FPGA chips would further widen the speed gap between
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the emulator and the “legal” monolithic SIMPL system. As the maximum operating
frequency for MWA write operations achieved with the Xilinx Virtex-6 FPGA
implementing a 2 Kbit array is only 21 MHz, implementing a full-size MWA skew
SRAM array with hundreds of FPGA chips would end up with an even much slower
emulator. By increasing the number of wordlines n that may be activated at the same
time, the connections between skew cells and other cells in the same column will also
at least linearly increase when implementing the emulator in the cell-by-cell way
described above. And since the complexity of skew cell logic behavior also increases
with n, emulating the MWA skew SRAM array will become even harder and slower as
n increases.

Digital Clone. Building a digital clone using standard computing systems like PC and
software could be the most cost-effective way to emulate the behavior of an MWA
skew SRAM. However, due to the data dependency of a computing cycle on its
previous cycles, parallelization of the computation taking place in the MWA skew
SRAM is impossible. As discussed in [13], building a digital clone wouldn’t produce a
faster system compared to a functional physical clone. Even if the delay for computing
logic (for calculating the new data to be stored) is ignored, just reading the data
required for computing logic and writing back the new data already makes the emulator
(implemented with an Intel Core 2 Quad CPU working at 2.5 GHz and a 3 GB RAM)
at least 25 times slower [13]. By applying MWA designs, this speed gap will be further
enlarged by at least a factor of n (where n is the number of simultaneously activated
wordlines) in write operations, as the data bit-width of PCs is just comparable with that
of skew SRAMs, and any combination of wordlines to be activated in a cycle may
happen, today’s memory architectures in standard computing systems are not able to
parallelize or speed up the required cycle-by-cycle read out and write back procedure as
described in building “functional physical clone(s)”.

5.2 Conclusion and Future Scope

This paper presented a multiple wordline activation (MWA) skew SRAM design to
improve the security of the original skew SRAM based SIMPL systems discussed in
[12, 13]. By enabling parallel computations taking place in different cells controlled by
multiple wordlines using the MWA skew SRAM design, the security of SIMPL sys-
tems based on that is enhanced by a factor linearly related to the number of simulta-
neously activated wordlines. Simulations of the enhanced skew SRAM show expected
behavior complexity and satisfying yield considering manufacturing process variations.
This makes our approach one of the first practically viable, circuit-based implemen-
tations of SIMPL system and public PUFs.

The security level can be further enhanced by increasing the number of supply
voltages and/or the number of simultaneously activated wordlines. However, as the
number of supply voltages and/or the number of simultaneously activated wordlines
increase, the stability of the skew behavior against ambient noises, temperature
changes, supply voltage ripples as well as process variations may decrease. A trade-off
between security level and stability needs to be determined in future work.
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