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PUF Modeling Attacks:
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Ulrich Rührmair, Jan Sölter

Abstract—Machine learning (ML) based modeling attacks are
the currently most relevant and effective attack form for so-called
Strong Physical Unclonable Functions (Strong PUFs). We provide
an overview of this method in this paper: We discuss the basic
conditions under which it is applicable; the ML algorithms that
have been used in this context; the latest and most advanced
results on simulated and silicon data; the right interpretation
of existing results; and possible future research directions. The
paper corresponds to one of the talks of the hot topic session
“How Secure are PUFs Really?” at DATE 2014.

Index Terms—Physical Unclonable Functions, Machine Learn-
ing, Modeling Attacks, Cryptanalysis

I. INTRODUCTION

Electronic devices are now pervasive in our everyday life.
This makes them an accessible target for adversaries, leading
to a host of security and privacy issues. Classical cryptography
offers several measures against these problems, but they all rest
on the concept of a secret binary key: It is assumed that the
devices can contain a piece of information that is, and remains,
unknown to the adversary. Unfortunately, it can be difficult
to uphold this requirement in practice. Physical attacks such
as invasive, semi-invasive, or side-channel attacks, as well as
software attacks like API-attacks and viruses, can lead to key
exposure and full security breaks. The fact that the devices
should be inexpensive, mobile, and cross-linked aggravates the
problem.

The described situation was one motivation that led to the
development of Physical Unclonable Functions (PUFs). A
PUF is a (partly) disordered physical system P that can be
challenged with so-called external stimuli or challenges Ci,
upon which it reacts with corresponding responses termed
RCi

. Contrary to standard digital systems, a PUF’s responses
shall depend on the nanoscale structural disorder present in the
PUF. This disorder cannot be cloned or reproduced exactly,
not even by its original manufacturer, and is unique to each
PUF. As PUF responses can be noisy, suitable error correction
techniques like fuzzy extractors [12] may be applied in prac-
tice to obtain stable outputs R′Ci

. Assuming successful error
compensation, any PUF P can be regarded as an individual
function FP that maps challenges Ci to (stable) responses R′Ci

(compare [40]).
Due to its complex and disordered structure, a PUF can

avoid some of the shortcomings associated with digital keys.
For example, it is usually harder to read out, predict, or derive
its responses than to obtain the values of digital keys stored in
non-volatile memory. This fact has been exploited for various
PUF-based security protocols. Prominent examples include
schemes for identification and authentication [32], [14], key
exchange or digital rights management purposes [15].

For a more detailed introduction and overview of PUFs, we
refer the reader to a recent paper by Rührmair, Devadas and
Koushanfar [37], or to the summary paper of the first talk in
this DATE 2014 session [35].

II. PUF MODELING ATTACKS AND THEIR APPLICABILITY

What are PUF modeling attacks? Under which conditions
and to which PUF types are they applicable? In general,
modeling attacks on PUFs presume that an adversary Eve has,
in one way or the other, collected a subset of all CRPs of
the PUF. She then tries to derive a numerical model from
this CRP data, i.e., a computer algorithm which correctly
predicts the PUF’s responses to arbitrary challenges with high
probability. Machine learning (ML) techniques are a natural
and powerful tool for this task, but also other methods like
linear programming or algebraic techniques have been applied
in the past [13], [25], [30], [27], [44], [40], [42], [8]. If and
how the required CRPs can be collected, and how relevant
modeling attacks are in practice, very strongly depends on the
considered type of PUF. It again makes sense to distinguish
between Weak PUFs and Strong PUFs here (see [37], [36],
[40], [41], [35]).

1) Strong PUFs: Strong are the PUF class for which
modeling attacks have been designed originally, and to which
they are best applicable. The reason is that they usually have
no protection mechanisms that restrict Eve in freely applying
challenges and reading out their responses [37], [36], [40],
[35]. A Strong PUF’s responses are usually not post-processed
on chip in a protected environment [32], [45], [28], [16],
[24], [26]. Most electrical Strong PUFs furthermore operate
at frequencies of a few MHz [24]. Therefore even short
physical access periods enable Eve to read-out and collect
many CRPs. A yet further CRP source is simple protocol
eavesdropping, for example on standard Strong PUF-based
identification protocols, where the CRPs are sent in the clear
[32]. Both CRP sources are part of the established, general
attack model for PUFs.

Once a predictive model for a Strong PUF has been derived,
the two main security features of a Strong PUF no longer hold:
The PUF is no longer unpredictable for parties that are not in
physical possession of the PUF; and the physical unclonability
of the PUF is overcome by the fact that the digital simulation
algorithm can be cloned and distributed arbitrarily. Any Strong
PUF protocol which is built on these two features is then no
longer secure. This includes any standard, widespread Strong
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PUF protocols known to the authors. 1

For example, if Eve can use her intermediate physical access
in a PUF-based key exchange protocol [10], [3] to derive a
predictive model of the PUF, she can later predict the key that
was exchanged between the honest parties. A similar effect
occurs in 1-out-of-2 oblivious transfer (OT) protocols [34], [3]:
If the OT-receiver can derive a numerical model of the PUF
before he physically transfers the PUF to the OT-sender, he can
later break the security of the sender, and learn both transfered
bits b0 and b1. Also in the CRP-based, standard identification
protocols for Strong PUFs [31], [32], a numerical model can
be used to impersonate the original PUF.

Concerning applications where the form factor of the PUF
may play a role, such as smartcards, it is important to empha-
size that the simple additive simulation models derived in most
modeling attacks can be implemented in similar environments
as the original PUFs, and with a relatively small number of
gates. An active fraudster can come so close to the original
form factor in a newly set-up, malicious smartcard hardware
that the difference is very difficult to notice in practice.

2) Weak PUFs: Weak PUFs (or POKs) are PUFs with few,
fixed challenges, in the extreme case with just one challenge
[40], [37]. It is usually assumed that their response(s) re-
main inside the PUF-carrying hardware, for example for the
derivation of a secret key, and are not easily accessible for
external parties. Weak PUFs are the PUF class that is the least
susceptible to modeling attacks.

They only apply to them under relatively rare and special
circumstances: namely if a Strong PUF, embedded in some
hardware system and with a not publicly accessible CRP
interface, is used to implement the Weak PUF. This method
has been suggested in [13], [45]. Thereby only a few (of the
very many possible) challenges of the Strong PUF are used for
internal key derivation. Our attacks make sense in this context
only in the special case that the Strong PUF challenges C∗i
that are used in the key derivation process are not yet fixed in
the hardware at the time of fabrication, but are selected later
on. For one reason or another, the adversary may learn about
these challenges at a point in time that lies after his point of
physical access to the PUF. In this case, machine learning and
modeling of the Strong PUF can help the adversary to derive
the key, even though the points in time where he has access to
the PUF and where he learns the challenges C∗i strictly differ.
In order to make our ML methods applicable in this case, one
must assume that the adversary was able to collect many CRPs
of the Strong PUF, for example by physically probing the
internal digital response signals of the Strong PUF to randomly
injected challenges, or by malware that abuses internal access
to the underlying Strong PUF’s interface. We comment that the

1One sole potential exception are a few recent bit commitment protocols
for PUFs that were explicitly designed for the so-called “bad PUF model”
or the “malicious PUF model”. They promise to uphold security even if one
or all used PUFs are not unpredictable (see partly van Dijk and Rührmair
[11] and mainly Damgard and Scafuro [7]). At least some of these protocols
are relatively non-standard in a number of aspects, however, such as the
assumed input/output lengths of the used PUFs. Asides from these two special
protocols, all other practically relevant, widespread Strong PUF schemes
straightforwardly break down if the main security feature of the Strong PUF
is violated by a modeling attack, namely their unpredictability.

latter scenarios obviously represent very strong attack models.
Under comparable circumstances also many standard Weak
PUFs and other secret key based architectures break down.

In any other cases than the above, modeling attacks are not
relevant for Weak PUFs. This means that they are not appli-
cable to the majority of current Weak PUF implementations,
including the Coating PUF [46], SRAM PUF [17], Butterfly
PUF [22], and similar architectures.

We conclude by the remark that this should not lead to the
impression that Weak PUFs are necessarily more secure than
other PUFs. Other attack strategies can be applied to them,
including invasive, side-channel and virus attacks, but they are
not the topic of this paper. For example, probing the output
of the SRAM cell prior to storing the value in a register can
break the security of the cryptographic protocol that uses these
outputs as a key. Also physical cloning strategies for certain
Weak PUFs have been reported recently [19]. These attacks
are discussed in depth in some of the other talks and papers
of the session [48], [18].

III. THE PROCESS OF PUF MODELING AND ITS MAIN
CHALLENGES

We will now discuss the basic process of machine-learning
based modeling and its main challenges in greater detail.
The modeling process essentially is a two-step procedure. Its
first step consists of setting up an internal, parametric model
of the PUF. This requires finding a function F (·, ·) which
correctly describes the PUF’s challenge-response behavior (or
input-output behavior). F should take as input (i) a challenge
Ci that is applied to the PUF, and (ii) values that describe
the internal, unique, fabrication-dependent parameters of the
PUF. The latter are usually given by some multidimensional
parameter vector ~w with values in the reals or rationals. F
then shall output the correct corresponding responses RCi

of
the PUF on challenge Ci, i.e., F (~w,Ci) = RCi

.
In a second step, the parametric model F is used together

with a suitably chosen ML algorithm for PUF learning. The
algorithm takes as input a large set of CRPs of the PUF,
the so-called “training set”. Its goal is to find a concrete
vector ~w′ that leads to a good prediction quality of F . This
prediction quality is evaluated on a second, independent CRP
set, the so-called “test set”. 2 One noteworthy aspect is that
the vector ~w′ derived by the ML algorithm do not need to be
equal to the “real” parameter values ~w of the considered PUF
instance. Depending on the PUF architecture and the model
F , many different vectors can lead to an almost equivalent
output behavior.

What are the main challenges in this process? The first issue
is finding a suitable model of the considered PUF at all. Given
some knowledge about the physical mechanisms underlying
the PUF (e.g., about the used integrated circuits or optical sys-
tems), however, a parametric model usually can be developed

2Typically, the test set can have a fixed size of a few thousand CRPs,
while the size of the training set required for successful learning usually
strongly depends on the PUF and its complexity. It can be linear for certain
PUFs (like the Arbiter PUF), and very large, even exponential in some system
parameter for others (XOR Arbiter PUF, Lightweight PUF). Overall, the CRP
requirements for a sucessful ML attack are mainly determined by the size of
the training set.
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fairly easily. Finding a model that is computationally efficient
can be harder. To that end, the underlying mechanisms in the
PUF may need to be simplified or suitably approximated.

A second problem is to identify a suited ML algorithm
that performs efficiently, i.e., with a polynomial effort in
some system parameter of the PUF (typically in the PUF’s
challenge bitlength) and in the aspired prediction quality.
However, since PUFs cannot be scaled indefinitely due to cost
and stability constraints, also mild exponential growth rates
may be acceptable in certain situations, as long as they break
practically relevant PUF sizes. One well-known example for
this effect are the modeling attacks on XOR Arbiter PUFs:
The practical stability of these PUFs decreases exponentially
in their number of XORs. Current attacks have a complexity
that increases exponentially in the same parameter, but still
reach practically relevant size and complexity levels (compare
[40], [42] and Section IV-C).

The two problems of constructing suitable models and of
finding efficient ML algorithms are closely intertwined. First
of all, many powerful ML algorithms require certain additional
properties of the parametric models in order to be applicable.
They may demand, for example, that the model is linearly sep-
arable (this allows the application of support vector machines),
or that it is differentiable (this enables working with logistic
regression, among other techniques). Only the identification of
such models makes these powerful ML algorithms applicable.
Secondly, the performance of the ML algorithm may depend
strongly on the model and its computational efficiency, too.
Both the model and the ML algorithm may thus need to be
optimized jointly for optimal attacks performance. This often
requires some in-depth knowledge about ML.

IV. AN EXAMPLE: ARBITER PUFS AND VARIANTS

Let us now illustrate our above discussion by virtue of
a concrete example, namely by applying machine learning
based modeling to Arbiter PUFs and their variants (i.e., XOR
Arbiter PUFs, Lightweight (LW) PUFs, and Feed Forward
(FF) Arbiter PUFs). Arbiter PUFs and variants are currently
the best investigated electrical Strong PUF type. In their basic
form, they were first introduced in [16] [24] [45].

We will discuss the employed machine learning methods in
Section IV-A, the attacked PUF types in Section IV-B, and
survey the latest results that have been applied in existing
publications [40], [42] on simulated and silicon data in Section
IV-C. Note in this context that the use of error-free, simulated
CRP data obtained by a linear additive delay model is one
standard, highly established method of obtaining ML results on
Arbiter PUF variants, even though it has one unexpected side
effects: It can lead to prediction rates that are higher than the
real-world temperature stability of the attacked PUF (compare
the discussion in Section II-G of [42]).

A. Employed Machine Learning Methods

Various machine techniques have been applied to PUFs in
the literature [13], [25], [30], [27], [44], [40], [42], [8], includ-
ing Support Vector Machines (SVMs), Logistic Regression
(LR), Evolution Strategies (ES), and briefly also Neural Nets

and Sequence Learning [40]. The two approaches described in
the sequel have been identified as the currently best performing
methods.

1) Logistic Regression with Rprop: LR is a well-
investigated supervised machine learning framework, which
has been described, for example, in [2]. In its application to
PUFs with single-bit outputs, each challenge C = b1 · · · bk is
assigned a probability p (C, r | ~w) that it generates a output
r ∈ {0, 1} ). The vector ~w encodes the relevant internal
parameters, for example the particular runtime delays, of
the individual PUF. The probability is given by the logistic
sigmoid σ(x) = (1 + e−x)−1 acting on a function f(~w,C)
parametrized by the vector ~w as

p (C, r | ~w) = rσ(f) + (1− r)(1− σ(f)). (1)

Thereby the decision function f determines through f = 0
a decision boundary of equal output probabilities. For a
given training set M of CRPs the boundary is positioned
by choosing the parameter vector ~w in such a way that the
likelihood of observing this set is maximal, respectively the
negative log-likelihood is minimal:

~̂w = argmin~w l(M, ~w) = argmin~w

∑
(C, r)∈M

−ln p (C, r | ~w)

(2)
As there is no analytical solution to determine the optimal
parameter vector ~̂w, it has to be optimized iteratively, e.g.,
using the gradient information

∇l(M, ~w) =
∑

(C, r)∈M

(σ (f (~w))− r)∇f(~w) (3)

From the different possible optimization methods, RProp [2],
[33] has been identified as optimal in earlier ML works
on PUFs [40], [42]. RProp makes a very big difference in
convergence speed and stability of the LR algorithms (k-XOR
Arbiter PUFs for medium or large k were only learnable with
RProp).

In general, logistic regression has the asset that the exam-
ined problems need not be (approximately) linearly separable
in feature space, as is required for successful application of
support vector machines, for example, but merely differen-
tiable.

2) Evolution Strategies: Evolution Strategies (ES) [1], [43]
belong to an ML subfield known as population-based heuris-
tics. They are inspired by the evolutionary adaptation of a
population of individuals to certain environmental conditions.
In our case, one individual in the population is given by a
concrete instantiation of the runtime delays in a PUF, i.e., by a
concrete instantiation of the vector ~w appearing in Eqns. 2 and
3. The environmental fitness of the individual is determined
by how well it (re-)produces the correct CRPs of the target
PUF on a fixed training set of CRPs. ES runs through several
evolutionary cycles or so-called generations. With a growing
number of generations, the challenge-response behavior of
the best individuals in the population better and better ap-
proximates the target PUF. ES is a randomized method that
neither requires an (approximately) linearly separable problem
(like Support Vector Machines), nor a differentiable model
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(such as LR with gradient descent); a merely parameterizable
model suffices. Since all known electrical PUFs are easily
parameterizable, ES is a very well-suited attack method.

B. Parametric Models for Arbiter PUF and Their Variants

It has become standard to describe the functionality of
Arbiter PUFs and their variants via an additive linear delay
model [25], [40], [42]. The overall delays of the two racing
signals are modeled as the sum of the delays in the stages.
The final delay difference ∆ between the upper and the lower
path in an n-bit Arbiter PUF is expressed as

∆ = ~wT ~Φ, (4)

where ~w and ~Φ are vectors of dimension n+1. The parameter
vector ~w encodes the delays for the subcomponents in the
Arbiter PUF stages, whereas the feature vector ~Φ is solely a
function of the applied n-bit challenge C [25], [40], [42].

In greater detail, the following holds. We denote by δ
0/1
i

the runtime delay in stage i for the crossed (1) respectively
uncrossed (0) signal path. Then

~w = (w1, w2, . . . , wk, wn+1)T , (5)

where w1 =
δ01 − δ11

2 , wi =
δ0i−1 + δ1i−1 + δ0i − δ1i

2 for all

i = 2, . . . , n, and wn+1 =
δ0n + δ1n

2 . Furthermore,

~Φ(~C) = (Φ1(~C), . . . ,Φk(~C), 1)T , (6)

where Φl(~C) =
∏n

i=l(1− 2bi) for l = 1, . . . , n.
The output r of an Arb-PUF is determined by the sign of

the final delay difference ∆:

r = Θ(∆) = Θ(~wT ~Φ). (7)

with Θ being the Heaviside step function, i.e., Θ(x) =
0 if x < 0 and Θ(x) = 1 if x ≥ 0. Eqn. 7 shows that the
vector ~w via ~wT ~Φ = 0 determines a separating hyperplane in
the space of all feature vectors ~Φ. Any challenges C that have
their feature vector located on the one side of that plane give
response r = 0, those with feature vectors on the other side
r = 1. Determination of this hyperplane allows prediction of
the PUF and can be achieved by setting the decision function
f in Eqn. 1 to the linear delay model f = ~wT ~Φ.

More complex architectures that use k standard Arbiter
PUFs in parallel, possibly together with special input or output
mappings, can then simply be modelled by using the linear
additive delay model for each of the parallel Arbiter PUFs.
Overall, this involves k feature vectors ~Φ1, . . . , ~Φk derived
from the effective challenges at the individual Arbiter PUFs
(given by the input mapping) and k weight vectors ~w1, . . . , ~wk:

o = Θ(

k∏
i=1

∆i) = Θ(

k∏
i=1

~wT
i
~Φi) (8)

Eqn. 8 defines a decision boundary at
∏k

i=1 ~w
T
i
~Φi = 0. Any

challenges C that have their feature vector set ~Φ1, . . . , ~Φk

located on the one side of the boundary (e.g. o < 0 respectively
an odd number of individual delays ∆i smaller than zero) give
response r = 0, those with feature vectors on the other side

r = 1. Determination of this boundary allows prediction of
the PUF and can be achieved by setting the decision function
f in Eqn. 1 to this boundary f =

∏k
i=1 ~w

T
i
~Φi. It implies an

optimization along the gradient in Eqn. 3:

∇f(~wj) = ~Φj

∏
i6=j

~wT
i
~Φi (9)

This principle has been applied to XOR Arbiter PUFs and
Lightweight PUFs in the literature.

C. Results

The application of the above ML algorithms and models to
Arbiter PUFs and their variants (XOR Arbiter PUF, LW PUF,
FF Arbiter PUF) has led to the results shown in Table I, which
are taken from [42]). The attacks thereby have been carried
out both on simulated and silicon CRP data [42]. Only the
XOR-based variants (XOR Arbiter PUF, LW PUF) lead to an
exponential complexity, while the other types (standard Arbiter
PUFs, FF Arbiter PUFs) can be learned successfully with
polynomial effort. In greater detail, as analyzed in [40], [42],
the complexity of the attacks on XOR Arbiter PUFs and LW
PUFs is exponential in the number of XORs (k). It is merely
polynomial of degree k in the challenge bitlength, though.
At the same time, the stability of these two architectures is
exponentially bad in k, too. This makes their ML-resilient
implementation a race between machine learners and circuit
designers: Can the design be optimized in its noise level, so
that it is practically secure against ML existing attacks, while
still being stable? Or can the ML algorithms be optimized
and run on more powerful hardware, so that they can reach
and break all practically stable XOR Arbiter PUF and LW
PUF architectures? The authors of [40], [42] estimate that the
former is the case, and that XOR Arbiter PUFs and LW PUFs
with 8 XORs and bitlength 512 are still stable, but beyond the
reach of current ML methods. Future efforts will have to tell
whether this estimate was reasonable or perhaps too optimistic.

V. DISCUSSION AND FUTURE WORK

A. Discussion

Two straightforward, but biased interpretations of the exist-
ing modeling attacks would be the following: (i) All Strong
PUFs are insecure. (ii) The long-term security of electrical
Strong PUFs can be restored trivially, for example by increas-
ing the PUF’s size. Both views are simplistic, and the truth is
more involved.

Starting with (i), the current attacks are indeed sufficient
to break several delay-based PUF implementations. But there
are a number of ways how PUF designers might be able fight
back in future designs.

For example, increasing the bitlength n in an XOR Arbiter
PUF or Lightweight Secure PUF with k XORs increases
the effort of the presented attacks methods as a polynomial
function of n with exponent k (in approximation for large
n and small or medium k). At the same time, it does not
worsen the PUF’s stability [9]. It has hence been argued in
[40], [42] that one might disable attacks through choosing a
strongly increased value of n and a value of k that corresponds
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PUF-Type No. of XORs/ ML Bit CRP CRPs Training Prediction
FF-Loops Method Length Source (×103) Time Rate

Arbiter PUF — LR
128 Simulation 39.2 2.10 sec 99.9%
64 FPGA 6.5 0.83 sec 99%
64 ASIC 6.5 0.76 sec 99%

XOR Arbiter PUF 5 LR
128 Simulation 500 16:36 hrs 99%
64 FPGA 78 39 min 99%
64 ASIC 78 18:09 min 99%

Lightweight PUF 5 LR 128 Simulation 1000 267 days 99%
FF Arbiter PUF 8 ES 128 Simulation 50 3:15 hrs 99%

TABLE I
SOME MAIN ATTACK RESULTS ON ARBITER PUFS AND VARIANTS THEREOF, TAKEN FROM [42]. BOTH SIMULATED, NOISE-FREE CRPS AND SILICON
CRPS FROM FPGAS AND ASICS HAVE BEEN USED IN THE ML EXPERIMENTS. THE PREDICTION RATES AND TRAINING TIMES ARE AVERAGED OVER
SEVERAL INSTANCES. ALL PRESENTED TRAINING TIMES ARE CALCULATED AS IF THE ML EXPERIMENT WAS RUN ON ONLY one single CORE OF one

single PROCESSOR. USING k CORES WILL APPROXIMATELY REDUCE THEM BY 1/k.

to the stability limit of such a construction. For example,
an XOR Arbiter PUF with 8 XORs and bitlength of 512
is implementable by standard fabrication processes [9], and
currently seems beyond the reach of pure ML-based modeling
attacks, so the authors of [40], [42] argue.

Also new design elements that could be added to standard
Arbiter PUFs and their variants may raise the attacker’s
complexity further. One example could be adding nonlinear-
ities, such as AND and OR gates that correspond to MAX
and MIN operators [25]. Combinations of Feed-Forward and
XOR architectures could be hard to machine learn too, partly
because they seem susceptible only to different and mutually-
exclusive ML techniques.

Moving away from delay-based PUFs, the exploitation of
the dynamic characteristics of current and voltage seems
promising, for example in analog circuits [6]. Also special
PUFs with a very high information content (so-called SHIC
PUFs [38], [39], [21]) could be an option, but only in such
applications where their slow read-out speed and their compar-
atively large area consumption are no too strong drawbacks.
Their promise is that they are naturally immune against
modeling attacks, since all of their CRPs are information-
theoretically independent. Finally, optical Strong PUFs, for
example systems based on light scattering and interference
phenomena [32], show strong potential in creating high input-
output complexity.

Regarding view (ii), PUFs are different from classical
cryptoschemes like RSA in the sense that increasing their
size often likewise decreases their input-output stability. For
example, raising the number of XORs in an XOR Arbiter
PUF and Lightweight PUF has an exponentially strong effect
both on the attacker’s complexity and on the instability of
the PUF. We are yet unable to find parameters that increase
the attacker’s effort exponentially while affecting the PUF’s
stability merely polynomially. Nevertheless, one practically
viable possibility is to increase the bitlength of XOR Arbiter
PUFs and Lightweight PUFs, as discussed above. Future work
will have to show whether the described large polynomial
growth of the latter method can persist in the long term, or
whether its high degree can be diminished by further analysis.

B. Future Work

The upcoming years will presumably witness some com-
petition between codemakers and codebreakers in the area of
Strong PUFs. Similar to the design of classical cryptoprimi-
tives, for example stream ciphers, this process can be expected
to converge at some point to solutions that are resilient against
the known attacks. Some first attempts into this direction have
already been made in [49], [29], [4], [5], [23], but their ML-
resilience has not been analyzed thoroughly in the literature
yet.

For PUF designers, it may be interesting to investigate some
of the concepts that we mentioned above. One major goal will
be the development of practical (=stable, area efficient, low
cost) Strong PUFs that still possess high modeling resilience.
Note in this context that any non-linearity in the PUF design
increases its ML-resilience, but usually also worsens its sta-
bility, unless special countermeasures are taken.

For PUF breakers, a worthwhile starting point is to improve
the attacks presented in this paper through optimized imple-
mentations and new ML methods. A performance comparison
between our results and earlier approaches that used SVMs
and comparable techniques [25], [30] confirms the strong
effect of the choice of the right ML-algorithm. Another,
qualitatively new path is to combine modeling attacks with
extra information obtained from direct physical PUF measure-
ments or from side channels. For example, applying the same
challenge multiple times gives an indication of the noise level
of a response bit. It enables conclusions about the absolute
value of the final runtime difference in the PUF. Such side
channel information can conceivably improve the success and
convergence rates of ML methods. Some first steps towards
these end have been made just recently in a number of works.
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