Policy Gradients for Cryptanalysis

Frank Sehnke, Christian Osendorfer, Jan Solter, Jiirgen Schmidhuber, and Ulrich Rithrmair

Faculty of Computer Science, Technische Universitat Miinchen, Boltzmannstr. 3, 85748 Garching, Germany
http://www6.in.tum.de/Main/WebHome

Abstract. Physical Unclonable Functions (PUFs) are an emerging, new cryptographic and security
primitive. In this paper, we investigate to which extent the security of known PUF's can be challenged by
a new machine learning technique named Policy Gradients with Parameter-based Exploration (PGPE).
We apply PGPE to various PUF architectures and compare the results to other ML techniques obtained
in earlier publications. Our findings show that PGPE have several advantages in PUF-cryptanalysis.
Firstly, they merely require an internal parametric model of the PUF, which usually can be identified
very easily for any circuit-based PUF. In opposition to that, several other ML methods such as SVMs
or LR require (approximately) linearly separable or differentiable models, which are harder to develop.
Secondly, we show by comparative experiments that PGPE outperforms the only other established
ML method which works via a parametric model, namely Evolution Strategies, in the cryptanalysis of
various PUF's.

1 Introduction

Physical One-Way Functions, Physical Random Functions and Physical Unclonable Functions are emerging
recently as a powerful alternative to standard, mathematically-based cryptography and security. Eventhough
the two former terms have been coined first, all three notions are often subsumed under the term Physical
Unclonable Function or PUF [7].

It has been realized relatively early [6], however, that machine learning techniques are a natural and also
a very powerful tool to challenge the security conditions of PUFs. In typical PUF applications, an adversary
will be able to obtain a significant number of input bit vectors called challenges and the produced outputs
called responses. The neccesary Challenge Response Pairs (CRPs)will be obtained either by eavesdropping
on the communication protocol, or by gaining physical access to the PUF for a limited time period and
measuring many CRPs himself. He can feed these CRPs into an ML algorithm. If successfully trained, the
algorithm will predict the PUF responses with high probability, thereby breaking its security. For this very
reason, machine learning methods at the moment constitue the most significant cryptanalytic attacks on
PUFs.

This paper investigates to which extent the currently published electrical PUF's are susceptible to recent
Policy Gradient (PG) methods. Our results show that several structures suggested as PUF's can be attacked
well by a recently published PG method called Policy Gradients with Parameter-based Exploration (PGPE).
The particular advantage of PGPE is that they merely require a parametric model of the attacked PUF, which
is usually very easy to identify. PGPE is even faster and more reliable in breaking PUFs than population
based heuristics (Evolution Strategies), which were successfully applied for cryptanalysis in another recent
publication of our group [9]. The CRPs that we used in our experiments were generated by a linear additive
delay model, as standard in the area.

Related Work Attacks on PUFs via machine learning algorithms have also been considered, for example, in
[6,4,14]. [6] show that Support Vector Machines (SVMs) can successfully learn standard Arbiter PUFs. [4]
prove that Feed-Forward Arbiter PUFs with one feed-forward loop can be learned by SVMs, too. Essentially
the same result has been obtained independently by [14]. However, it can be shown that the approach of [4,
14] does not generalize to more than one feed-forward loop; two or more loops require new techniques. XOR
Arbiter PUF and Lightweight PUF have, to the knowledge of the authors, only been cryptanalysed in [9].

Organization of the Paper The paper is organized as follows. In section 7?7 we define the investigated Arbiter
PUF architectures. In section 3 we describe the population based heuristic used, namely Evolution Strategies

2 Frank Sehnke, Christian Osendorfer, Jan Solter, Jiirgen Schmidhuber, Ulrich Rithrmair

b)

®/R - RK I S |
ChaII.TE E T B |?| | L1 >.

“ Chall o N
" f cha. { i
b b,

‘ f 1 t t e
b, , Bits b,

c)

[op

e |

b, b, by b

o

1

Fig. 1. Standard Arbiter PUF (left), XOR Arbiter PUF (middle) and Feed Forward Arbiter PUF (right) architecture
scheme. The incoming bits to each stage decide if the signal propagates directly through the stage or if the signal
is swoped. All ways the signal can take through the stage have slightly different run time properties due to small
fabrication variances that are not controllable by the fabricator. The Arbiter at the end of the Standard Arbiter PUF
outputs a bit depending on the signal coming first in the upper or the lower way. In the XOR, Arbiter PUF several
of the Standard Arbiter PUFs are the inputs to a XOR element. In FF Arbiter PUFs arbiters like the one at the end
of the Standard Arbiter PUF are used to generate a bit depended on the run time differences after a certain stage to
replace the normally incoming bit to a later stage.

(ES) and PGPE. Section 4 gives the results we obtained, in particular the obtained prediction rates plus the
required CRPs and computation times for each ML method on each examined PUF. Section 5 summarizes
the paper and discusses conclusions of our work.

2 Physical Unclonable Functions and Arbiter PUF's

Physical Unclonable Functions In a nutshell, a PUF is a physical system S with a unique, partly disordered
fine structure that depends on uncontrollable manufacturing variations. The system can be exposed to
external stimuli or “challenges”. It reacts by returning so-called “responses”, whose value depends on said
manufacturing variations.

The special, security relevant features of a (Strong) PUF S are the following: (i) Due to the partly random
finestructure of .S, which should be beyond the control of its manufacturer, it must be impossible to fabricate
a second physical system S’ which has the same challenge-response behavior as S. (ii) Due to the complicated
internal interactions of S, it must be impossible to devise a computer program that correctly predicts the
response to a given challenge with high probability. This should hold even if many challenge-response pairs
of S were known.

Together, the two conditions imply that the responses of S can be evaluated correctly only by someone
who has got direct physical access to the single, unique system .S. The validity of this assertion is essential
for the security of all PUF-based protocols and schemes.

PUFs based on Runtime Delays in Integrated Circuits All electrical PUFs analyzed in this paper have some
common characteristics: The state of some switches is configured by a challenge vector C' (with the i — th
component encoding the state of the i—th switch), leading to pairs of unique propagation pathes for an electric
signal. The resulting propagation delay difference A between the pairs of pathes is then further transformed
by an arbiter gate (respectivly combined arbiter and Xor gates) to a binary response t. Assuming that the
overall propagation delay of a path is just the sum of the constant propagation delays of its constituent sub
pathes, Gassend et al. established a parametric linear model for the propagation delay difference [2]. In a

compact notation the model is given by
A=w'd (1)

Thereby the parameter vector w encodes the sub delays for all switches, whereas the feature vector @ is
soley a function of the applied challenge vector C'. For the details, see [2] and [6].

As shown in [6], the set of all possible linear propagation difference delay models (eqn 1) covers the
characteristic of real PUF instances sufficient well, such that each PUF instance can be assigned a model

Policy Gradients for Cryptanalysis 3

instance with its response prediction error in the range of the PUFs real-world stability. Therefore in this
paper algorithms are presented which determine the suitable parameters w provided that an adequate
solution is contained in the set of linear propagation delay models. That is, the algorithms are evaluated
by applying them to data generated by the linear model itself with the sub delays drawn from a Gaussian
distribution [13].

3 Employed Machine Learning Methods

Evolution Strategies Evolution Strategies (ES) [10] belong to a class of ML techniques called Evolution-
ary Algorithms. They are inspired by the biological evolution of a population of individuals under certain
environmental conditions. The population repeatedly undergoes the evolutionary steps of evaluation, envi-
ronment selection, partner selection, recombination and mutation. In this process, individuals evolve which
fit increasingly well a previously specified target.

In our case, an individual is given by a concrete instantiation of the runtime delays in a PUF (or by
the vector w from equation (1)). The environmental fitness is determined by how well this individual (re-
Jproduces the correct CRPs of the target PUF as output. The outputs of the individual are computed by
a linear additive delay model from its subdelays (or from w), and are compared to several known outputs
of the target PUF structure. The best individuals are selected. In the following recombination step, the
remaining individuals mutually exchange part of their 'genome’/their individual subdelays, in order to form
descendants. In the final mutation step, the subdelays are varied randomly, and the process starts anew.

ES are especially suited for this task since in problems with causal search spaces, ES are known to be
among the most effective methods. The use of special mutation operators as introduced by Rechenberg and
Schwefel [8,11] make them self-adapting to the properties of the search space.

We used a standard implementation of ES with the ES standard meta-parameters [1]: Population size of

(6,36), comma-best-selection, and a global mutation operator with 7 = \/17)
n

Policy Gradients with Parameter-based Exploration In what follows, we briefly summarize [12], outlining the
derivation that leads to PGPE. We give a short summary of the algorithm as far as it is needed for the rest
of the paper. Consider an agent interacting with an environment. Denote the state of the environment at
time t as s; and the action at time ¢ as a;. Because we are interested in continuous state and action spaces
(usually required for control tasks), we represent both a; and s; with real valued vectors. We assume that
the environment is Markovian, i.e. that the current state-action pair defines a probability distribution over
the possible next states s;y1 ~ p(Si41/8¢, ar). We further assume that the actions depend stochastically on
the current state and some real valued vector 6 of agent parameters: a; ~ p(at|st, 6). Lastly, we assume that
each state-action pair produces a scalar reward r;(a, s¢). We refer to a length T' sequence of state-action
pairs produced by an agent as a history h = [s1.7, a1.7].

Given the above formulation we can associate a cumulative reward r with each history A by summing
over the rewards at each time step: r(h) = 23:1 r¢. In this setting, the goal of reinforcement learning is to
find the parameters 6 that maximize the agent’s expected reward

J(6) = /H p(hl6)r(h)dh ()

An obvious way to maximize J(0) is to find VyJ and use it to carry out gradient ascent. Noting that the
reward for a particular history is independent of 6, and using the standard identity V,y(z) = y(z)V log y(z),
we can write

Vo (0) = /H Vop(h|0)r (h)dh = /H p(h]8) Vg log p(h|@)r(h)dh 3)

PGPE addresses the variance problem by replacing the probabilistic policy with a probability distribution
over the parameters 6, where p are the parameters determining the distribution over 8. The advantage of
this approach is that the actions are deterministic, and an entire history can therefore be generated from a
single parameter sample. This reduction in samples-per-history is what reduces the variance in the gradient
estimate. As an added benefit the parameter gradient is estimated by direct parameter perturbations, without

4 Frank Sehnke, Christian Osendorfer, Jan Solter, Jiirgen Schmidhuber, Ulrich Rithrmair

having to backpropagate any derivatives, which allows the use of non-differentiable controllers or modells.

The expected reward with a given p is
0= [[pinOlo)r(h)dns)
©JH

Noting that h is conditionally independent of p given 8, we have p(h,0|p) = p(h|0)p(f|p) and therefore
V,logp(h,0|p) = V,logp(f|p). Substituting this into Eq. (4) yields Eq. (5) under the notion of several
conditionally independencies (given the details from [12]).

= [[sui0)p(610)%, tog 61 (1)t 5
6eJH

where p(h|0) is the probability distribution over the parameters 6 and p are the parameters determining the
distribution over 6. Clearly, integrating over the entire space of histories and parameters is unfeasible, and
we therefore resort to sampling methods. This is done by first choosing 6 from p(6|p), then running the agent
to generate h from p(h|6):

N
1 n

V() = < 309, logp(Blo)r(h") (6)

n=1
We assume that p consists of a set of means {u;} and standard deviations {o;} that determine an independent
normal distribution for each parameter 6; in 6. (In this case this assumption is especially useful because the
fabrication variances of the Arbiter PUFs are around a known p with an also known o and are very well

normal distributed and the delays in the PUF architecture are independent.)
Some rearrangement gives the following forms for the derivative of log p(6|p) with respect to u; and o;:
O — p i)?

v ogp(0l) = Ut g ogpiel) = Bt

g

: (7)

which can then be substituted into (6) to approximate the p and o gradients. Note the similarity to RE-
INFORCE [15], but in contrast to REINFORCE 6 resembles the parameters of the modell not the taken
action. This enables us to use this mehtod on models that are non-differentiable like the FF-Arbiter PUFs.

We used the standard implementation of PGPE with the PGPE standard meta-parameters [12]: 2-Sample
Symetric Sampling, starting standard diviation for exploration as the standard diviation assumed for the
PUF's and stepsizes of 0.2 and 0.1 for the parameter and the sigma update. We also applied the usual reward
normalization for PGPE.

4 Results

We will now discuss the results that we achieved in the application of the above machine learning tech-
niques to the currently known electrical PUFs. If not stated differently, as the training data underlying the
experiments, we used a set of 50.000 CRPs with random subsets of 2.000 CRPs for the evaluation step of
the individuals. These CRPs where generated on the basis of a linear additive delay model. The subdelays
in the stages were drawn according to a uniform distribution with parameters motivated by the standard
fabrication delays that may occur in such a structure. Please note that since ES and PGPE are probabilistic
methods, additional evaluations and also additional runs can be expected to yet further improve the predic-
tion accuracys presented in this section. Also more suitable meta-parameters like bigger population sizes or
smaller 7 for ES or smaller step sizes for PGPE can optimize the performance further.

4.1 Standard Arbiter PUF's

Evolution Strategies Figure 2 shows the average of 10 runs on each standard arbiter PUF that have been
conducted. As shown, in all cases we have been able to successfully learn the PUFs nearly perfect (99.26%
for 64 bit) in only 10,800 evaluations. In other words, the standard Arbiter PUF can be broken well by ES;
and also by several other ML methods ([2, 9]).

Table 1 shows the evaluations needed to achieve an average prediction rate of 10 % and 5 %. The need
of evaluations seem to grow only linearly with the number of bits.

Policy Gradients for Cryptanalysis 5

ES on Standarld ArbiterlPUFs PGPE on Standard Arbitelr PUFs

0.5 0.5
m =16 Bit m m16 Bit
¢ ¢32 Bit ¢ ¢32 Bit
0.4 v v64 Bit 0.4l v v64 Bit
A 4128 Bit A 4128 Bit
S S
o T 0.3
o o
° o
-t -t
(=} (=
=] 5 0.2
g v
a a
01
A
0.0 0.0
0] 5000 10000 15000 20000 0 5000 10000 15000 20000
evaluations evaluations

Fig. 2. Results of 10 runs per experiment for different Fig.3. Results of 10 runs per experiment for different

lengths of Standard Arbiter PUFs with ES lengths of Standard Arbiter PUFs with PGPE
ES on Standard Arbiter PUFs: PGPE on Standard Arbiter PUF's:
10% 5 % 10% 5%

Bit| E E/Bit| E E/Bit Bit| E E/Bit| E E/Bit

16| 446 27.88| 720 45.00 16118 7.38 |190 11.88

24| 680 28.33|1202 50.08 241171 7.13 [280 11.67

32| 878 27.44(1530 47.81 321219 6.84 [384 12.00

48 1264 26.33 [2387 49.73 481357 7.44 [605 12.60

64 (1879 29.36 [3589 56.08 64467 7.30 [834 13.03

Table 1. The evaluations needed to achieve an aver- Table 2. The evaluations needed to achieve an aver-
age prediction rate of 10 % and 5 % with ES. E marks age prediction rate of 10 % and 5 % with PGPE. E
the columns with the average evaluations needed, while marks the columns with the average evaluations needed,
E/Bit marks the columns that shows the evaluations while E/Bit marks the columns that shows the evalua-
needed per number of bits. tions needed per number of bits.

Policy Gradients with Parameter-based Exploration Figure 3 shows the average of 10 runs on each standard
arbiter PUF that have been conducted. In all cases we have been able to successfully learn the PUFs nearly
perfect (99.84% for 64 bit) in only 10800 evaluations. In other words, Standard Arbiter PUF can also be
broken by PGPE. This confirms earlier results obtained by other groups [6,2-4,13].

Table 2 shows the evaluations needed to achieve an average prediction rate of 10 % and 5 %. The need
of evaluations seem to grow only linearly with the number of bits.

When comparing PGPE and ES, we observe that PGPE after the same number of generations, PGPE
achieves a remaining prediction error that is smaller by a factor of 5 than ES. Further, PGPE performs
computationally about 4 times faster on this basic type of Arbiter PUF.

4.2 XOR Arbiter PUF

In contrast to the other experiments we used random subsets of 8.000 CRPs for the evaluation step of the
individuals for all XOR Arbiter PUF experiments. We assumed that all XOR’ed circuits have equal input
signal vectors.

Model ToDo: HERE we should write about the model that we applied for the XOR, and why the application
of PGPE makes is easy to devise a model.

Evolution Strategies Figures 4 to 6 show the best of a total of 10 runs on each XOR~Arbiter PUF that have
been conducted. Table 3 shows the needed evaluations to achieve a prediction rate of 10% and the fraction

6 Frank Sehnke, Christian Osendorfer, Jan Solter, Jiirgen Schmidhuber, Ulrich Rithrmair

Es on 16 Bit XOR Arbiter PUFs os PGPE on 16 Bit XOR Arbiter PUFs
Y m m? XOR
L ¢ ¢3 XOR
0.4 & " 0.4} v v4 XOR
I A 45 XOR
F

130’37] .2 XOR - &
= ¢ ¢3 XOR ©
= v v4 XOR 2
So.2f A A5 XOR =

0.1}

0.0 0.0

0 2000 4000 6000 8000 10000 12000 14000 16000 0 1000 2000 3000 4000 5000 6000 7000 8000
evaluations evaluations

Fig. 4. The best of 10 runs on each XOR-Arbiter PUF Fig.5. The best of 10 runs on each XOR-Arbiter PUF
architecture with an 16 bit input vector. architecture with an 16 bit input vector.

_.&ES on64.B[t XOR Arblte_r PUFs . PGPE on 64 B|t XOR Arblter PUFs

0.5

0.4} 0.4

03T m =2 XOR 5 031 m m2 XOR
G ¢ ¢3 XOR © ¢ ¢3 XOR
2 v v4 XOR z v v4 XOR
S o2} A A5 XOR Soa} A A5 XOR

0.1} 0.1}

0 5000 10000 15000 20000 25000 30000 35000 40000 "“0 2000 4000 6000 8000 10000 12000 14000 16000 18000
evaluations evaluations

Fig. 6. The best of 10 runs on each XOR-Arbiter PUF Fig. 7. The best of 10 runs on each XOR-Arbiter PUF
architecture with an 16 bit input vector. architecture with an 16 bit input vector.

of runs that have achieved this prediction rate in the given maximal number of evaluation steps. Clearly
the number of evaluations needed grows more than linearly. If the needed evaluations grow exponential or
polynomial with respect to the number of XOR~inputs is hard to say. Also the fraction of runs that succeed
in predicting the PUF with a suitable rate drops drastically with the number of XOR-inputs. However, as
shown, in all cases up to 3 XOR~inputs we have been able to successfully learn the PUF's with rates better
than 10%. In this sense, our experiments show that the XOR-Arbiter can in principal be broken by ES up
to at least 3 XOR-inputs.

Policy Gradients with Parameter-based Exploration Figures 5 to 7 show the best of a total of 10 runs on
each XOR-Arbiter PUF that have been conducted. Table 4 shows the necessary evaluations to achieve a
prediction rate of 10% and the fraction of runs that have achieved this prediction rate in the given maximal
number of evaluation steps. Clearly the required number of evaluations grows also more than linearly for
PGPE. Whether the necessary evaluations grow exponential or polynomial with respect to the number of
XOR-inputs is again hard to say. Also the fraction of runs that succeed in predicting the PUF with a suitable
rate drops drastically with the number of XOR-inputs, though it drops less drastically than for ES. However,

Gen Rate
XOR|16 Bit 64 Bit|16 Bit 64 Bit
2 30.0 153.0|100% 100%
3 84.2 485.0| 90% 50%
4 1161.0 - 30% 0%
5 - - 0% 0%

Table 3. The number of evaluations needed to achieve a
prediction rate of 10% and the rate of runs that achieved
this prediction rate in the given maximal number of eval-
uations. Gen marks the columns with the evaluations
needed, while Rate marks the columns that show the rate

Policy Gradients for Cryptanalysis 7

Gen Rate
XOR|16 Bit 64 Bit|16 Bit 64 Bit
2 | 30.0 153.0[100% 100%

3 | 84.2 485.0| 90% 50%

4 |161.0 - 30% 0%

5 - - 0% 0%

Table 4. The number of evaluations needed to achieve a
prediction rate of 10% and the rate of runs that achieved
this prediction rate in the given maximal number of eval-
uations. Gen marks the columns with the evaluations
needed, while Rate marks the columns that show the rate

of successful runs.

of successful runs.

el bl bl b B B

—

1 2 7 I ™ 2N ENE
cat. | 11 I [I I I I
Bits D1 by +++ Dy big by by - by, -+ by Dgg

Fig. 8. The architecture of the FF-Arbiter PUFs that we employed in our ML experiments.

also PGPE was able in all cases up to 3 XOR-inputs to successfully learn the PUFs with rates better than
10%.

An interesting related question is how the stability of a real XOR~Arbiter behaves with increasing numbers
of XOR inputs. The overall stability of the XOR PUF is the statistically combined stability of the single
Standard Arbiter PUFs that are used as inputs to the XOR stage. For example, assuming that a single
standard arbiter PUF has a stability of 98% over a temperature range of 45;C, an XOR-Arbiter PUF with
5 XOR-inputs would only have an overall stability of 90.4% over the same temperature range.

4.3 Feed Forward Arbiter PUFs

Feed Forward Arbiter PUFs (FF Arb PUFSs) are the most important type of PUF for this paper. Their
models are, in general, not differentiable, and are therefore not prone to supervised learning and to standard
PG methods. In [9], we showed that FF Arb PUFs are prone to attacks based on Evolutionary Algorithms.
In this section, we show that PGPE is a better alternative to ES in breaking this PUF. The architecture of
the chosen PUF structures are shown in Figure 8.

Model ToDo: Here we should write which model we applied, and why the application of PGPE makes it so
easy to set up a model.

Evolution Strategies Figure 9 shows the best of a total of 10 runs on each FF-Arbiter PUF that have been
conducted with ES. As shown, in all cases we have been able to successfully learn the PUF's with rates better
than 97%. Please note that our accuracy is significantly better than the stability of an in-silicon FF-Arbiter
with 7 FF-loops while undergoing a temperature change of 45C, which is only 90.16% [5]. In this sense, the
experiments show that the FF-Arbiter are well susceptible to attacks by ES.

In the following we repeat the complexity estimates of the FF-Arbiter PUF from [9] with respect to
the needed CRPs with growing number of bits. We chose architectures with 6 FF stages that are equally
distributed over the PUF, and overlap in the same manner as shown in figure 8. The results are shown in
Figure 13. Every data point resembles the average of 10 runs in prediction difference. Prediction difference
here means the difference between the quality on the test and the training set. The given number of CRPs

8
ES on FF Arbiter PUFs with 64 Bit
m m6FF
+ ¢7FF
04 v v8FF
S
& 0.3
c
o
% 0.2}
g
o
0.1}
0.0

0 10000 20000 30000 40000 60000 70000

evaluations

50000

Fig.9. The best of 40 runs on each FF-Arbiter PUF
architecture with ES.

Frank Sehnke, Christian Osendorfer, Jan Solter, Jiirgen Schmidhuber, Ulrich Rithrmair

. PGPE on EF Arbiter PUFs with 64 Bit

m m6FF
¢ ¢7FF
0.4} v v8FF
e
o
=
o 03
c
(o]
2
o
T 0.2
)
[
o
0.1}
O'0(} 5000 10000 15000 20000 25000 30000 35000

evaluations

Fig.10. The best of 10 runs on each FF-Arbiter PUF
architecture with PGPE.

10% 5% Result

FF| E E/FF| E E/FF|Best Aver.
6 | 5832 972 | 9756 1626
7 16528 933 (11844 1692
8 |12544 1568 (23112 2889

10% 5% Result
FF| E E/FF| E E/FF|Best Aver.
6 [1580 263 (2870 478
7 12210 316 |3440 491
8 14260 533 [8120 1015

Table 5. The evaluations needed to achieve an prediction
rate of 10% and 5%. G marks the columns with the aver-
age evaluations needed, while G/Bit marks the columns
that shows the evaluations needed per number of bits
and G/St marks the columns that show the evaluations
needed per number of stages.

Table 6. The evaluations needed to achieve an prediction
rate of 10% and 5%. G marks the columns with the aver-
age evaluations needed, while G/Bit marks the columns
that shows the evaluations needed per number of bits
and G/St marks the columns that show the evaluations
needed per number of stages.

were divided in half for these two sets. To reduce the noise that is still present with 10 runs per data point,
we fitted a hyperbola on the data points (see figure 13. Table 9 shows the CRPs needed, estimated by the
hyperbola fit, to reach a prediction error less than 10% and 5%. The results suggest a linear growth. For the
complexity experiments of the FF-Arbiter PUF with respect to the needed CRPs with growing number of
FF stages, we chose also architectures with 32 bit. The FF stages are again equally distributed over the PUF
and overlap in the same manner like shown in figure 8. The results are shown in Figure 14. Every data point
resembles the average of 10 runs in prediction difference. The given number of CRPs were again divided in
half for the test and training sets. We also fitted a hyperbola on the data points. Table 10 shows the CRPs
needed, estimated by the hyperbola fit, to reach an prediction difference less than 10% and 5%. The results
suggest a less than linear growth. The growth in need of evaluations is also of interest. Figure 11 shows the
best of a total of 10 runs on each FF-arbiter PUF that have been conducted. Table 8 shows the evaluations
needed to achieve an average prediction rate of 10% and 5%. The need of evaluations seem again to grow
only linearly with the number of bits. Because the computation time for simulating an Arbiter PUF grows
also linearly with the number of stages, the complexity in computational time would be O(n?).

Policy Gradients with Parameter-based Exploration Figure 10 shows the best of a total of 10 runs on each
FF-Arbiter PUF that have been conducted with ES. In all cases we have been able to successfully learn
the PUF's with rates better than 98% with PGPE. The experiments show that the FF-Arbiter can be fully
broken also by PGPE.

As there is no reason that PGPE would need more CRPs or respectively would grow in the need of CRPs
more than ES we restrict our experiments in showing that with the same number of CRPs PGPE produces
on the hardest PUF's investigated equaly or better results.

TODO: 32Bit8FF with different number of CRPs

Arbiter PUES Wi’gh 6 EF

0.5 T
® m8 Bit
¢ ¢16 Bit
0.4 v v24 Bit
A A 32 Bit
v v64 Bit

fithess

0.0

100 150 200 250 300 350 400

generations

Fig.11. The best of 10 runs on each FF-Arbiter PUF
architecture.

10% 5%
Bit| G G/Bit G/St| G G/Bit G/St
8 (287 359 2.05|433 541 3.09
16]62.2 3.89 2.83[139.0 8.69 6.32
24476 1.98 159|744 3.10 2.48
32/84.0 2.63 2212180 6.81 5.74
64/196.0 3.06 2.80(393.0 6.14 5.61

Table 7. The evaluations needed to achieve an prediction
rate of 10% and 5%. G marks the columns with the aver-
age evaluations needed, while G/Bit marks the columns
that shows the evaluations needed per number of bits
and G/St marks the columns that show the evaluations
needed per number of stages.

5 Discussion and Conclusion

Policy Gradients for Cryptanalysis 9

PGPE on 6 FF Arbiter PUFs

0.45
- m m8 Bit
’ 4 ¢16 Bit
—_— v v24 Bit
A A32 Bit
0.30 ¥ v64 Bit
Toa2s5H
©
=
E 0.20
015}
0.10|
0.05|
0.00 —¥
0 2000 4000 6000 8000 10000 12000
evaluations

Fig.12. The best of 10 runs on each FF-Arbiter PUF
architecture.

10% 5%
Bit| G G/Bit G/St| G G/Bit G/St
8287 359 2.05|43.3 541 3.09
16]62.2 3.89 2.83[139.0 8.69 6.32
24|476 1.98 159|744 310 248
32| 84.0 2.63 2.21|218.0 6.81 5.74
64]196.0 3.06 2.80[393.0 6.14 5.61

Table 8. The evaluations needed to achieve an prediction
rate of 10% and 5%. G marks the columns with the aver-
age evaluations needed, while G/Bit marks the columns
that shows the evaluations needed per number of bits
and G/St marks the columns that show the evaluations
needed per number of stages.

We showed that the recently published Policy Gradient method PGPE can be applied well to the crypt-
analysis of various PUFs. It is easy to apply to all current and, with all likelihood, also to all future circuit
based PUF implementations, since it merely required a parametric internal model of the PUF. We also
showed that PGPE significantly outperforms Evolution Strategies in the cryptanalysis of PUFs. Due to its
easy applicability, and as no hard-to-optimize differentiable or linearly separable models need to be set up,
PGPEs have a high potential to become a standard benchmark method for the security of circuit based PUF
implementations. ML curves obtained by PGPE on small PUF instances can help us to judge and compare

the security of various PUF implementations.

References

1. T. Back: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic

algorithms. Oxford University Press, USA, 1996.

2. Blaise Gassend, Daihyun Lim, Dwaine Clarke, Marten van Dijk, Srinivas Devadas: Identification and authentica-
tion of integrated circuits. Concurrency and Computation: Practice & Experience, pp. 1077 - 1098, Volume 16,

Issue 11, September 2004.
Lee, ?7.: Please fill in teh actual publication. 777: 777.

o oUW

. M. Majzoobi, F. Koushanfar, M. Potkonjak: Lightweight Secure PUFs. IC-CAD 2008: 607-673.
. D. Lim: Extracting Secret Keys from Integrated Clircuits. MIT, 2004
. D. Lim: Extracting Secret Keys from Integrated Circuits. MSc Thesis, MIT, 2004.

10

¢
avg m m8 Bit
A® ¢ ¢16 Bit
R A T ® e24 Bit
10"} o A A32 Bit
5 . v v v64 Bit
£ A
c * \4
'% . ¢ *
5 Lo &
o *
o
107} - °
]
o
10" 10° 10°
CRPs/(s+1)

Fig. 13. Results of 10 runs per data point for different
lengths of FF Arbiter PUFs and the hyperbola fits.

Frank Sehnke, Christian Osendorfer, Jan Solter, Jiirgen Schmidhuber, Ulrich Rithrmair

ES on FF Arbiter PUFs with 6 FF Loops

Bit

10%
CRP C/Bit C/St

5%
CRP C/Bit C/St

8
16
24
32

447 55.88 31.93
872 54.50 39.64
1150 47.92 38.33
1710 53.44 45.00

940 117.50 67.14
1970 123.13 89.55
2580 107.50 86.00
3810 119.06 100.26

‘ES on FF Arbiter PUES with 32 Bit

Yoy

prediction error

10°

._.
O.
<

m4 FF
®5 FF
®6 FF
A7 FF
v8 FF

4> oo n

(%2

10

Fig. 14. Results of 10 runs per data point for different

10°
CRPs/(s+1)

numbers of FF stages and the hyperbola fits.

10%
FF|CRP C/FF C/St

5%
CRP C/FF C/St

21953 476.50 28.03
4 1790 447.50 49.72
6 1750 291.67 46.05
8 2300 287.50 57.50

2140 1070.00 62.94
4010 1002.50 111.39
3860 643.33 101.58
5200 650.00 130.00

Table 9. The number of CRPs needed to achieve an
average prediction error of 10% and 5%. CRP marks the
columns with the CRPs needed, while C/Bit marks the
columns that show the CRPs needed per number of bits
and C/St marks the colums that show the CRPs needed
per number of stages.

Table 10. The number of CRPs needed to achieve an
average prediction error of 10% and 5%. CRP marks the
columns with the CRPs needed, while C/FF marks the
columns that show the CRPs needed per number of FF
stages and C/St marks the colums that show the CRPs
needed per number of stages.

7.

8.

10.
11.
12.

13.
14.

15.

R. Pappu, B. Recht, J. Taylor, N. Gershenfeld, Physical One-Way Functions, Science, vol. 297, pp. 2026-2030,
20 September 2002.

I. Rechenberg: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution.
Fromman-Holzboog, Stuttgart, Germany, 1973.

. Rihrmair, U., Sehnke, F., Solter, J., Dror, G., Stoyanova, V., Schmidhuber, J.: Machine Learning Attacks on

Physical Unclonable Functions. Not published yet, 2010.

H.P. Schwefel: Evolution and optimum seeking. Wiley, New York, 1995.

H.-P. Schwefel: Numerical Optimization of Computer Models. John Wiley and Sons, LTD, 1981.

Sehnke, F., Osendorfer, C., Riickstie}, T., Graves, A., Peters, J., and Schmidhuber, J.: Parameter-exploring policy
gradients. Neural Networks, Special Issue, December 2009.

M. Majzoobi, F. Koushanfar, and M. Potkonjak: Testing techniques for hardware security. ITC, 2008

Vera Stoyanova: Machine Learning and Physical Unclonable Functions. MSc-Thesis, Technische Universitt
Mnchen, 2008.

R.J. Williams: Simple statistical gradient-following algorithms for connectionist reinforcement learning.Machine
Learning, 8:229-256, 1992.

