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I. ABSTRACT

This paper proposes the use of Cellular Non-Linear Net-
works (CNNs) as physical uncloneable functions (PUFs). We
argue that analog circuits offer higher security than existing
digital PUFs and that the CNN paradigm allows us to build
large, unclonable, and scalable analog PUFs, which still show
a stable and repeatable input–output behavior.

CNNs are dynamical arrays of locally-interconected cells,
with a cell dynamics that depends upon the interconnection
strengths to their neighbors. They can be designed to evolve in
time according to partial differential equations. If this equation
describes a physical phenomenon, then the CNN can simulate
a complex physical system on-chip. This can be exploited to
create electrical PUFs with high relevant structural information
content.

To illustrate our paradigm at work, we design a circuit that
directly emulates nonlinear wave propagation phenomena in
a random media. It effectively translates the complexity of
optical PUFs into electrical circuits.

a) Keywords: Physical Uncloneable Functions (PUF),
Analog circuits, Cellular Nonlinear Networks (CNN)

II. INTRODUCTION

Physical unclonable functions (PUFs) are emerging as a
new, powerful approach to cryptography and security applica-
tions [1]. In the widest sense, a PUF is a mathematical function
that is derived from the behavior of a complex, disordered
physical object or device. Whenever the object is excited via
external stimuli or challenges Ci, it reacts with corresponding
responses Ri, meaning that we can regard its input–output
behavior as a function from challenges to responses. Due to
the high degree of nanoscale disorder or structural entropy
inherent in the object, and due to its complicated internal
interactions, it should both be hard to (i) rebuild or clone the
PUF-object physically, and (ii) simulate or predict the PUF’s
input-output behavior numerically, even if a large number of
challenge-response pairs (Ci, Ri) are known.

It is possible to develop a variety of cryptographic protocols
which rest on the two said properties of PUFs. One of the
assets of such protocols is that they can avoid many of
the usual unproven assumptions in cryptography (hardness of
factoring/discrete log), albeit they rest on other, independent
assumptions. Another advantage is that they can avoid the
long-term storage of binary keys in non-volatile memory,
where such keys can often be located and read out invasively.

Similar to many other cryptographic primitives, well-
designed PUFs should combine some seemingly conflicting
requirements in their behavior. On the one hand, they should
be stable upon multiple measurements, robust against tem-
perature variations, aging and environmental influences while
still easy to manufacture and measure. On the other hand,
their input–output behavior should be highly complex and
sensitive against minuscule manufacturing variations. Even
small variations should lead to a detectable change in many
(ideally all) outputs. Local changes ideally should perpetuate
and influence the behavior of the PUF globally.

The historically first attempt to resolve this tension between
complexity, sensitivity and stability was the optical PUF
suggested in [1]. This is a transparent object with many
randomly distributed scatterers. Small changes in the position
of only a few scatterers alter the entire interference pattern
detectably. Stability, on the other hand, is guaranteed by the
thermally inert behavior of the optical structure. Unfortunately,
the described PUF requires on an expensive, bulky and delicate
measurement apparatus.

Integrated, on-chip electrical PUFs [2], [3] with electrical
inputs and outputs have been investigated soon after said
optical PUF, since they promise higher practicality. Unfortu-
nately, the implementations realized so far have been reverse
engineered and imitated successfully by machine learning
techniques [3], [4], breaking their security.

It is not difficult to see where the significant challenge in
the design of highly complex electrical PUFs comes from.
Electrical signals are highly susceptible to noise, temperature



variations, voltage fluctuations and crosstalk. Thus, in order to
maintain reproducibility, only relatively simple circuits were
designed and built so far. They do not exhibit suffuciently
high amount of relevant information content or highly complex
internal interactions.

In order to circumvent said problems, we propose analog
circuits with a Cellular Nonlinear Network (CNN) architecture
in order to build scalable, highly complex electrical PUFs.
Analog signals are very sensitive to the individual device char-
acteristics of the circuit components, meaning that they lead to
a larger amount of relevant random structural information per
chip area than their digital counterparts. Their complex analog
internal dynamics also strongly masks and obfuscates the
internal random parameters, and hence provides a high degree
of immunity against reverse engineering. Invasive attacks and
microprobing can render analog signals unrecognizable. At the
same time, the special circuit architecture of CNNs allows to
large scalable analog arrays, while maintaining stability.

In particular, we investigate CNN designs that solve partial
differential equations (PDEs) describing complex physical
systems. Our motivation is that such PUFs will inherit their
complexity from the suitably chosen PDEs. In other words,
we use complex physical PDEs as a design guideline for
highly secure, on-chip PUFs. To illustrate this concept at work,
we discuss CNNs whose design is derived from Maxwell’s
equation, and which – electrically and on-chip – imitate the
behavior of optical PUFs.

The rest of this paper is organized as follows: Section III for-
mulates general requirements for highly secure circuit-based
PUF implementations. We assume that the reader is familiar
with the fundamentals of Cellular Nonlinear Networks (CNNs)
[5], [6]. Section IV demonstrates that a CNN simulating a
nonlinear wave equation fulfills the requirements stated in III.
Section V shows how this circuit can be built from elementary
device components within a small chip area. The last section
VI discusses the security features of this new type of PUF.

III. SPECIFICATION OF SECURE CIRCUIT PUFS

Based on the discussion in the introduction, we stipulate the
following design goals for a highly secure circuit-based PUF:

1) It carries as much as possible structural information per
chip area. As much of this information as possible is
relevant in the chip’s electrical behavior, meaning that
it influences the responses Ri for most or many Ci.

2) A small and localized change in circuit parameters
should globally alter the circuit behavior.

3) The characteristics of the circuit elements are difficult to
measure invasively, and difficult to deduce from known
challenge–response pairs (Ci, Ri).

4) There is a strong, non-linear, complex interaction be-
tween the different PUF-subcomponents.

5) The circuit is scalable to large sizes. The scaling should
increase both the information content and the complexity
of circuit operation, while maintaining the circuit stabil-
ity.

6) The circuit operation should be stable and repeatable
over time and relatively insensitive to temperature vari-
ations, noise, aging, power fluctuations.

7) The circuit is physically unique, and it is infeasible to
build a clone which is accurate enough to show the same
challenge–response behavior as the original.

Several of the requirements seem to be contradictory, or at
least difficult to achieve simultaneously. They require a special
circuit architecture that – despite being highly sensitive to its
circuit parameters – still leads to a stable behavior in time.
Special types of so-called Cellular Nonlinear Networks meet
precisely just these requirements, which is why they represent
a promising approach to highly secure and complex electrical
PUFs.

A. Physical Uniqueness and the Role of Mismatches

A CNN cell, which is realized from solid-state electronic
components does not follow precisely the ideal CNN equa-
tions. Parameter deviations of the integrated circuit elements
[7] result in the deviation of templates from their nominal
values. These deviations can be introduced by the fabrication
process, noise, temperature, device degradation and noisy
input signals [8]. Such mismatches represent a critical problem
in scaling analog circuits in the sub-micrometer range.

Templates, which are called robust in the CNN literature are
tolerating certain amount mismatch. A CNN with not robust
templates may show a unique challenge-response behavior and
serve as a circuit-PUF.

B. Read-Out Formalism for CNN-PUFs

Our proposed CNN-PUF is built from nominally identical,
fixed-template cells (with or without an output/bias). The
excitation vector Ci is applied as an input or fixed value on
some cells. It triggers an excitation (wave) that propagates
through the circuit and possibly bounces back and forth
between the boundaries. The circuit may go to a stationary
state after some time or oscillate indefinitely, depending on
the choice of the A and B templates. The steady-state values
or, alternatively, the averaged oscillating voltages can serve as
the response Ri.

The resulting response vector Ri should be sensitive to the
deviations of the templates from their nominal value (cell
mismatches) and consequently carries a signature from the
individual device characteristics from each cell of the CNN.
Note that even if the cells are only locally connected, far-away
cells influence each other indirectly due to the propagation
effects. Quantitative values for this influence can be obtained
by simulations, and will be discussed in the next sections.

C. CNNs and Partial Differential Equations

CNNs are intimately related to Partial Differential Equations
(PDEs), too [9], [10], a fact which we are going to exploit in
this paper. Given a two-dimensional, continuous, one variable,
time dependent PDE which was discretized in space (but not
in time) on an n × m lattice, there are standard methods to
design CNNs to directly simulate this discretized system – the



CNN can be tuned to physically evolve according to a certain
PDE. More precisely, we can derive a CNN template from the
PDE such that the state variables of the CNN cells evolve over
time in the same way to the states of the lattice points in the
discretized n×m lattice. The necessary CNN templates, which
enforce the right CNN behavior, can be directly determined
from the finite difference approximation of the PDE.

We will demonstrate this procedure exemplarily for the
case of the Maxwell equations and non-linear optical behavior
in Section IV, deriving a concrete template that enforces a
time evolution according to Maxwell’s equations. As we will
exemplify in Section V, it is furthermore possible to translate
this abstract template architecture into a concrete, relatively
simple circuit block on the transistor level. This leads to
cellular PUF-circuits that can be commercially ordered on
demand or fabricated in large volumes [11].

IV. CASE STUDY: WAVE PROPAGATION ON A CHIP

There is an infinite number of possible CNN templates,
but there is no general, systematic method how to construct
templates for a given set of requirements. As said earlier, one
promising possibility to meet our specifications of Section
III is to employ CNN templates which realize well-known
PDEs describing physical systems. Then the CNN inherits its
complex dynamics from the complex behavior described by
these PDEs.

As we discussed in Section II, the appeal of optical PUFs is
coming from the ’global’ interactions that define the interfer-
ence patterns. Therefore we will now investigate a CNN which
solves a linear wave equation known from electromagnetic
theory, aspiring that it will inherit the typically optical feature
of non-local interactions. For weak excitations, the CNN
solves a linear scattering problem (i.e. the original PDE). For
stronger excitations, the nonlinear cell-cell dynamics comes
into play.

A. The Maxwell equation for TE waves

Our CNN design is based on a simple numerical technique
that rests on Zuse’s seminal work [12], [13] for solving
Maxwell’s equations in two dimensions for TE (transversal
electric) waves [14]. Using µ0 = ε0 = 1, Maxwell’s equations
take the form:

curlH =
dE
dt

(1)

curlE = −dE
dt

(2)

divE = 0 (3)

divH = 0 (4)

For a TE field (propagating in the x-y plane), the electric
field vector has only an Ez component, while the magnetic
field bears the Hx and Hy components. A continuous time,
spatially discretized form of the wave equations can be

obtained by using a second-order, central finite difference
approximation for the spatial derivatives:
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Here ∆x and ∆y are the step width of the spatial dis-
cretization. We used ∆x = ∆y = 5 for all the example
simulations. The ’CNN-hardware’ that evolves according to
the above equations (and thereby computes its solution) must
be implemented as a three-layer CNN: One layer for each of
the Ez , Hx and Hy variables. Comparing the above equations
with the CNN dynamical equations, the templates can be
directly determined. The Hx and Hy layers are bi-directionally
coupled to the Ez layer, and there is no direct coupling
between Hx and Hy layers. The corresponding templates are:

BEz→Hx =
1

(∆x)2

 0 0 0
−1 2 −1
0 0 0

 (8)

BHx→Ez =
1

(∆x)2

 0 0 0
1 −2 1
0 0 0

 (9)

BEz→Hy =
1

(∆y)2

 0 1 0
0 −2 0
0 1 0

 (10)

BHy→Ez =
1

(∆y)2

 0 −1 0
0 2 0
0 −1 0

 (11)

All self-feedback templates are:

A =

 0 0 0
0 1 0
0 0 0


B. Simulation of CNN-dynamics: sensitivity and complexity

We numerically studied the behavior of larger CNNs by
custom-built Matlab and C++ based simulators. We used a
simple Runge-Kutta scheme for calculating the CNN dynamics
integrating the above ODEs [15].

If all the templates are fixed at their nominal value and
the excitation vector is a single, fixed-value cell placed at the
center, then the CNN generates a wave, which is illustrated in
Fig. 1a). Initially, all state variables of the circuit were zero
and the circuit does not cross into the nonlinear regime.

The bottom panel of Fig. 1 shows snapshots from simu-
lations of a mismatched CNN. All the elements of the B
templates (matrices) were varied by σ = 0.03. The initial
similarity to the non-mismatched case quickly disappears, and
non-periodic nonlinear waves appear in the structure.



Fig. 1. Simulation results of the wave-CNN, with a single excitation of
the center. For identical cells, a characteristic wave pattern is formed (panel
a)). For mismatched templates complex, non-symmetric interferences appear
(panel b)).

We found that for mismatched templates, the dynamic
behavior never stays in the linear range, as even for very
weak excitations signals rapidly amplify. The mismatches
automatically lead into a non-linear regime, which is desirable
in order to increase the system’s complexity. The sigmoid-type
nonlinearity has the further positive effect that it forces all the
signals (circuit variables) to stay in the [−1; +1] range.

Physically, the mismatched B templates essentially are
equivalent to a nonlinear, non-isotropic and optically active
gain material. This ’world’ is much more rich than the
linear scattering effects used in [1]. On the other hand, the
CNN model is only two-dimensional unlike the 3D token
described there 1. A more direct CNN analogy of the linear
scattering PUF could also be built by placing fix zero-valued
cells (obstacles, scatterers) at some (random) positions but
this ’randomization strategy’ realizes only lower information
content and density, and is to some extent unnatural in the
circuit implementation case, since there are better sources of
random information and uniqueness there.

Simulation results confirm the sensitivity of this CNN for
both the initial (input) values and the templates.

A particular simulation result for the input sensitivity is
sketched in Fig. 2. We placed one source (a fixed-value cell) in
the center of the CNN array - all the other cells started from a
zero initial value. The averaged absolute value (|Ez|) of some
randomly picked cell outputs is plotted as a function of this
source value. The function is oscillating with a high amplitude
even far away from the source and the curves belonging to
nearby cells seem to be uncorrelated. It strongly indicates
that this structure fulfills the criteria we set up for the input
sensitivity.

The simulations of Fig. 3 confirm that this structure sensi-
tively responds to the change of circuit parameters (templates)
as well. Changing only a single template at a particular

1Three-dimensional CNNs can be straightforwardly defined, but they cannot
be realized on a large scale by planar IC technology.

Fig. 2. Sensitivity of the CNN for one particular input. The averaged output
value is shown as a function of the applied fixed input. A close-up view
(from a different simulation) shows that despite the ’chaotic’ appearance of
the signals on panel a), they are changing continously.

position (denoted by B in the figure), even far away from
an input (marked as In in the figure) going to alter the global
behavior of the circuit detectably.

Fig. 3. Sensitivity of the CNN to change in a particular template - the
contour plots gives the difference of Ez if a single template is altered.

The simulation results confirm that this circuit inherits the
’global sensitivity’ property from optical PUFs, which make
those devices so appealing. The circuit behavior also appears
to be complex, as it is expected from a nonlinear dynamic
system with many degrees of freedom. Work is in progress
to set up machine learning experiments on simulated data
to confirm that our circuit indeed withstands such types of
attacks.

Another very important characteristics of our circuit that its
behavior is sensitive, but is not chaotic. Chaotic circuits are
well known [16] and several CNN templates are known to
realize chaos [17] [18] [19]. The time trajectories of a chaotic
system are irreproducable in a real physical environment and
seem to be unsuitable as a PUF.

C. Effect Propagation and Read-Out Speed

The interactions in the described cellular structures are
propagating with a finite speed. If the dynamics of the system
is interrupted after a short time then only cells lying within a
finite neighborhood can influence each other. Changing the



length of the time evolution gives a possibility to balance
’global sensitivity’ against error tolerance and robustness of
the circuit.

Strongly depending on the template that we choose, the
development of the full pattern can take considerable time.
Assuming that the time constant of a single cell is ∆t, and
the circuit is composed of n×n cells, the entire pattern (with
the signals bouncing back and forth between the boundaries)
can take several times n∆t time to develop.

This provides us with the possibility to design CNN-PUFs
which take intendedly long time in order to develop robust
outputs, and even to set the read-out speed to an intrinsic,
predefined value.

This leads the way for an extra security feature of CNN-
PUFs: it limits the rate at which data and information can
be gathered from the circuit, making the task of reverse
engineering or machine learning more difficult.

V. CIRCUIT IMPLEMENTATION OF CNN-PUFS

So far, we described the behavior of CNNs on an abstract,
template-based level. We now investigate which design on a
transistor level is necessary to enforce this behavior in a real
circuit. This will allow us to estimate the information content
per chip area and the scalability of the structure.

A non-programmable (fixed-template) CNN cell can be
built using three operational amplifiers. Additional passive
elements (resistors) set the cell to cell coupling via the cloning
templates, and the feedback. The circuit schematics is shown
in Fig. 4.

Fig. 4. Circuit schematics of a non-programmable CNN cell.

The state variable is represented by the voltage of the
capacitor. OP1 is used for limiting the state voltage and
connecting one end of the capacitor (node1) to virtual ground.
OP2 , R2 and R3 work as an inverting amplifier which
can realize the full nonlinear transfer characteristic to map
V(state) nonlinearly to -V(output). R3 is usually several times
larger than R2 so as to have the OP2 driven to the saturation
region. Another inverting amplifier (OP3, R5, R6 ) is used to

provide the actual V(output). The weights in the A template
can be controlled by changing the resistances of feedback
resistors, e.g. R4. The weight of the B templates are set by
resistor values connecting from the neighboring cells to node1

Kirchoff’s current law applied for node1 can exactly present
the CNN state equation.

The simplest CMOS operational amplifiers can be built
using seven transistors, so the circuit of Fig. 4 requires 21 tran-
sistors. Considering that a state of the art CPU contains a few
times ≈ 107 circuit elements, an approximately 1000× 1000
cell fixed-template CNN could be reasonable to build [20].
Each template carries at least a few bytes of information
in its deviation from the nominal value. Obviously, some
part of this information could be lost because of averaging
/ error correction, but the information content of the CNN-
PUF should be comparable or even higher as the optical PUF
of [1].

Using a modest workstation and standard SPICE distribu-
tion [21], we could verify the operation of few-hundred cell
(few thousand transistor) circuits, and the results agree with
the results from the template-based description. Only highly
parallelized, research-distributions of SPICE, running on su-
percomputers (such as Xyce [22]) could deal with the few-
million transistor circuits that could eventually be envisaged
as CNN-PUFs. This is a strong indication of the security of
our CNN-PUF approach: Even if all the parameters of the
circuit are known, it still takes hours for supercomputer to
simulate the few microsecond or millisecond behavior of the
CNN-PUF. Reverse engineering of such a circuit would thus
be formidably difficult.

b) Error Correction and Stability.: An important benefit
of circuit-based PUFs is that there are efficient circuit solutions
to minimize the output instability of the circuit. For exam-
ple, bandgap references can provide temperature-independent
voltage sources, albeit they make the circuit more complicated
and slightly reduce the achievable information content per chip
area.

We could not yet perform extensive simulations on large-
scale circuits to estimate the effects of temperature, noise,
power supply fluctuations, etc. on the circuits, as it requires
extreme amount of computer power. It is known, however
that cell to cell mismatch in CNN circuits dominates over
temperature effects [8], [23], which is particularly important
in our context. The templates are set by resistance ratios, so
if those close-by resistors are at the same temperature, the
temperature dependence of the templates will become very
small.

In addition, the response vector Ri is read-out as a result of a
stationary process. While Ri depends on the internal dynamics
/ timing of the circuit, noise, glitches may be averaged out,
increasing the stability of the circuit.

VI. CONCLUSIONS: SECURITY ASSESSMENT OF
CNN-PUFS

This paper proposed CNN circuits with non-robust tem-
plates (i.e. CNNs which are sensitive to uncontrollable vari-



ations in their circuit parameters) as promising circuit im-
plementations of PUFs. We argued that (i) analog circuits,
in general, yield to higher security than digital ones (ii) the
CNN paradigm (or a similar cellular structure) is among the
very few viable possibilities to build scalable analog arrays.
Based on an physical analogy, we designed a template that
inherits the benefits of optical PUFs (such as high sensitivity,
no averaging out effects, global interactions) and, on top of
that, also displays nonlinear behavior. The complex internal
interactions probably eliminate the possibility to construct a
simple computationally non-intensive model of such a circuit.

Full characterization of the circuit by a faker is further
complicated by the fact that the stationary (steady state)
behavior of the CNN can be designed in such a manner that
it takes time to develop; we could call such a circuit a ’slow
read-out CNN-PUF’. A brief analysis showed that the read-
out time for one CRP can easily be put in the order of several
milliseconds. This feature can make it complicated for a faker
to obtain the large number of challenge-response pairs that he
might need for reverse engineering or machine learning.

We could not give ’hard’ computational limits on the
difficulty of reverse engineering and simulating the behavior
of a random (mismatched) CNN with the described template.
Note, however, that providing such provably hard limits may
be beyond the current state of complexity theory anyway. We
refer in this context to the unsettled NP vs. P question and the
general difficulty of giving hard, meaningful and non-linear
boundaries for natural problems in NP.

Nevertheless, it can be argued convincingly that, based on
the proven computational power of CNN chips [24] [25], [26]
their large internal information content and their parameter
sensitivity, the use of CNNs as PUFs seems very promising.
It may eventually yield to the highest security achievable by
circuit-based PUFs with interacting components.
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