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Abstract. We present an elementary method to construct optimized
lattices that are used for finding small roots of polynomial equations.
Former methods first construct some large lattice in a generic way from a
polynomial f and then optimize via finding suitable smaller dimensional
sublattices. In contrast, our method focuses on optimizing f first which
then directly leads to an optimized small dimensional lattice.

Using our method, we construct the first elementary proof of the
Boneh-Durfee attack for small RSA secret exponents with d ≤ N0.292.
Moreover, we identify a sublattice structure behind the Jochemsz-May
attack for small CRT-RSA exponents dp, dq ≤ N0.073. Unfortunately, in
contrast to the Boneh-Durfee attack, for the Jochemsz-May attack the
sublattice does not help to improve the bound asymptotically. Instead,
we are able to attack much larger values of dp, dq in practice by LLL
reducing smaller dimensional lattices.

Keywords: linearization, lattices, small roots, small secret exponent,
RSA, CRT-RSA.

1 Introduction

The RSA cryptosystem is currently the most widely deployed cryptosystem.
To perform a decryption or signature generation, an element x ∈ ZN is raised
to the d-th power, where d ∈ Z

∗
φ(N) is the secret key. In order to speed up

this process, one might be tempted to use a small value of d. However, once
d ≤ N

1
4 , Wiener [Wie90] showed using a continued fraction approach that d can

be reconstructed from just the public parameters e and N in polynomial time.
This result has been further improved by Boneh and Durfee to d ≤ N0.292 using
a lattice based technique [BD99].

Another possibility to speed up the decryption and signature generation has
been proposed by Quisquater and Couvreur [QC82]. They make use of the knowl-
edge of the prime factorization of N = pq to compute xd modulo p and modulo q
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and finally combine the result using the Chinese Remainder Theorem. The run-
ning time of this process is approx. 4 times faster than a standard decryption. To
further lower the number of required operations, one can additionally use small
CRT exponents, i.e. one can choose d such that dp = d mod p and dq = d mod q
are both small.

At Crypto ’07, Jochemsz and May [JM07] proposed the first polynomial time
attack on CRT exponents that are smaller than N0.073. However, the experi-
mental results of Jochemsz and May for small dimensional lattices are much
better than theoretically predicted. For example, using a lattice dimension of
56, theoretically the attack should not work at all, while in practice this lattice
dimension is sufficient to reconstruct private keys up to a size of N0.01. Such a
discrepancy between theoretically predicted and practically achieved results is
a strong indication that the involved lattice structure is not optimal. This led
Jochemsz and May to conjecture that an analysis of sublattice structures could
lead to a theoretically superior bound.

In this paper we propose a method that can be applied to attack small CRT-
exponents. Our new approach leads to smaller dimensional lattices than in the
Jochemsz-May attack and fully explains the gap between the practical results
of Jochemsz and May and their theoretical analysis. Unfortunately, our analysis
shows that our smaller dimensional lattices asymptotically lead to the same
bound N0.073 as in [JM07], thereby answering the conjecture of Jochemsz and
May that sublattices improve the bound in the negative.

Although we do not achieve an asymptotic improvement, our new approach
enables us to attack much larger values of dp, dq in practice, compared to [JM07],
by using smaller dimensional lattices. We implemented our algorithm and showed
that e.g. for a 2000-bit N we can efficiently recover 47-bit dp, dq, whereas the
technique of [JM07] only allows to recover about 35-bit dp, dq in a comparable
amount of time.

Our method is lattice-based and uses the technique of unravelled linearization
introduced by Herrmann and May at Asiacrypt ’09 [HM09], which can be seen as
a hybrid method between usual linearization and Coppersmith’s method [Cop97].
The central idea of unravelled linearization is to perform as a first step a lineariza-
tion on the initial polynomial and keep the induced relations of the linearization
in mind. These relations are afterwards used in a second step where we back-
substitute in order to eliminate some monomials, thereby partially unravelling
the first linearization step. In order to explicitly compute the induced relations,
we propose to use a Gröbner basis computation.

We illustrate the technique of unravelled linearization by showing the first
elementary proof of the Boneh-Durfee bound d ≤ N0.292 for small secret RSA
exponents. Optimization of bounds is in our framework a simple task. There-
fore, we conjecture that the Boneh-Durfee bound cannot be improved unless a
different polynomial equation is used.

The rest of the paper is organized as follows: In Section 2 we will review some
basic results from lattice theory. Section 3 will describe the method of unravelled
linearization for the case of small RSA exponents d with a proof of d ≤ N0.292.
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We will then apply our method to attack small CRT exponents in Section 4,
where we achieve the Jochemsz-May bound of N0.073 with smaller dimensional
lattices. In Section 5, we demonstrate that our improved lattices allow for much
better practical results in attacking small CRT-exponents.

2 Basics

Before we explain the details of unravelled linearization and how to use it to
improve the analysis of small CRT-exponents, we want to give some necessary
background information on lattice theory and the lattice-based method of Cop-
persmith [Cop97].

A lattice is a discrete additive subgroup of R
n. That is, for a set of linearly

independent basis vectors b1, . . . , bdim ∈ R
n, dim ≤ n, the set

L :=

{
x ∈ R

n | x =
dim∑
i=0

aibi with ai ∈ Z

}

is called a lattice. One can describe a lattice by its basis matrix B, where we
write the vectors bi as row vectors.

Let L be a lattice with basis b1, . . . , bdim, and let b∗1, . . . , b
∗
dim be the result

of applying Gram-Schmidt orthogonalization to the basis vectors. Then the de-
terminant of L is defined as det(L) =

∏dim
i=1 ||b∗i ||. For a lattice of full rank, i.e.

dim = n, the determinant of a lattice equals the absolute value of the determi-
nant of a lattice basis matrix.

Lattices have proved to be very useful in cryptanalysis mostly because of a
powerful and efficient lattice reduction algorithm due to Lenstra, Lenstra and
Lovász [LLL82]. This so-called LLL algorithm outputs an approximation of a
shortest lattice vector in time polynomial in the bit-length of the entries of the
basis matrix and in the dimension of the lattice dim. Using the LLL algorithm as
a building block, Coppersmith [Cop96a, Cop96b] designed a rigorous algorithm
that allows to efficiently compute small roots of bivariate polynomials over the
integers or univariate modular polynomials. Additionally, he gave a heuristic
extension to multivariate polynomials.

Coppersmith’s idea is to construct, on input some polynomial f , a set of
coprime polynomials which contain the same roots over the integers. Then one
can use standard elimination and root finding techniques to extract these roots.
Howgrave-Graham [HG97] gave a simple reformulation of Coppersmith’s method
that defines the following condition.

Theorem 1 (Howgrave-Graham). Let g(x1, . . . , xk) be a polynomial in k
variables with n monomials. Furthermore, let m be a positive integer. Suppose
that

1. g(r1, . . . , rk) = 0 mod bm, where |ri| ≤ Xi, i = 1, . . . , k and
2. ||g(x1X1, . . . , xkXk)|| ≤ bm√

n
,

where the norm of g is defined as the Euclidean norm of its coefficient vector.

Then g(r1, . . . , rk) = 0 holds over the integers.
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3 Unravelled Linearization and the Boneh-Durfee Attack

In this section, we will apply the method of unravelled linearization, introduced
by Herrmann and May [HM09], to attack RSA with small secret exponent d.
This will lead to an elementary proof of the Boneh-Durfee bound d ≤ N0.292.

In 1999, Boneh and Durfee [BD99] showed with a lattice-based Coppersmith-
type attack, that private RSA keys smaller than N0.284−ε can be recovered in
polynomial time. The attack’s running time is dominated by LLL-reducing some
large dimensional lattice basis B, whose dimension depends on 1

ε . It turns out
that the associated lattice L(B) contains a smaller dimensional sublattice L′

that allows to show an improved bound of N0.292−ε.
The identification and analysis of this sublattice L′, however, is a complicated

task due to the fact that its lattice basis is no longer triangular and, there-
fore, the computation of the lattice determinant det(L′) is much more involved.
Boneh and Durfee developed for the analysis of det(L′) a notion called geometri-
cally progressive matrices that allowed for handling these non-triangular lattice
bases. Blömer and May [BM01] followed a different approach and showed that
asymptotically it does not influence the determinant if some specific columns
are removed. This allowed them to rebuild some triangular structure of the basis
matrix. Both approaches are, however, quite complex methods for optimizing
lattice bases.

As opposed to the methods of [BD99] and [BM01] our new approach will
not manipulate a basis matrix but rather it will manipulate the underlying
polynomial from which a basis matrix is derived. This will directly lead to a
low-dimensional sublattice with a basis of triangular structure that allows for an
easy determinant calculation.

The method of our choice for this task is the technique of unravelled lin-
earization [HM09]. However, before we introduce our method we briefly re-
call the original Boneh-Durfee attack in order to illustrate the similarities and
differences.

The polynomial to be analyzed is derived from the RSA key equation ed =
1 mod φ(N). Rewrite this as

ed = 1 + xφ(N)
⇔ ed = 1 + x(N + 1︸ ︷︷ ︸

A

+ (−p− q)︸ ︷︷ ︸
y

)

and search for small modular roots of the polynomial

f(x, y) := 1 + x(A + y) mod e.

Therefore, we fix an integer m and define the polynomials

gi,k(x, y) := xifkem−k and hj,k(x, y) := yjfkem−k.

A lattice basis is constructed by using the coefficient vectors of the so-called
x-shifts gi,k(xX, yY ) for k = 0, . . . , m and i = 0, . . . , m − k as basis vectors.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x xy x2 x2y x2y2 y xy2 x2y3

e2 e2

xe2 e2X
fe e eAX eXY
x2e2 e2X2

xfe eX eAX2 eX2Y
f2 1 2AX 2XY A2X2 2AX2Y X2Y 2

ye2 e2Y
yfe eAXY eY eXY 2

yf2 2AXY A2X2Y 2AX2Y 2 Y 2XY 2 X2Y 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1. Boneh-Durfee basis matrix for m = 2, t = 1

The values X and Y denote upper bounds on the sizes of the solutions. Addition-
ally, we use the so-called y-shifts hj,k(xX, yY ) for k = 0, . . . , m and j = 1, . . . , t,
where t is some parameter that has to be optimized. Figure 1 shows an example
for the parameters m = 2 and t = 1. Note that the coefficient vectors of the shift
polynomials gi,k(xX, yY ) and hj,k(xX, yY ) are written as row vectors.

Boneh and Durfee’s improved analysis showed that one obtains superior values
for X and Y , if one takes only a subset of the y-shifts. For our example this means
we exclude ye2 and yfe. Hence, the resulting lattice basis is no longer triangular
and, therefore, deriving a closed determinant formula for general m and t is a
complex task.

We now use the technique of unravelled linearization to construct a lattice
basis which yields the best known asymptotic bound N0.292 and yet retains a
triangular lattice basis.

The first step in the process is to perform a suitable linearization of the original
polynomial. In our case, we glue together the monomials in the following way

1 + xy︸ ︷︷ ︸
u

+Ax mod e.

This leaves us with the linear polynomial f̄(u, x) = u + Ax and additionally
a relation xy = u − 1 derived from the substitution. Although Coppersmith’s
method is a construction method suited for polynomial equations and does not
give improved bounds in the case of linear equations, we now construct a lattice
basis using exactly the same x-shifts as in the original Boneh-Durfee attack. I.e.,
we construct polynomials

ḡi,k(u, x) := xif̄kem−k for k = 0, . . . , m and i = 0, . . . , m − k, (1)

and use their coefficient vectors as basis vectors. One can show that this leads
to the Wiener bound of N0.25.

However, if we also include y-shifts of the form h̄j,k(u, x, y) := yj f̄kem−k, then
we obtain a benefit. This may sound strange at first glance since the monomial y
is not even present in our new polynomial f̄(u, x). The reason for the improved
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x u x2 ux u2 u2y

e2 e2

xe2 e2X
f̄e eAX eU
x2e2 e2X2

xf̄e eAX2 eUX
f̄2 A2X2 2AUX U2

yf̄2 −A2X −2AU A2UX 2AU2 U2Y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 2. Boneh-Durfee lattice for m = 2, t = 1 using unravelled linearization

bound becomes clear, when we incorporate the induced relation xy = u− 1 and
use it to substitute each occurrence of xy by the term u − 1.

The advantage can be seen by comparing the shift yf2 from the original
analysis with the new shift yf̄2. As noted previously, the improved analysis
uses only the shift yf2 and neither yfe nor ye2. But yf2 introduces three new
monomials y, xy2 and x2y3 in the Boneh-Durfee lattice basis – thereby destroying
the triangular structure.

Let us compare this with our new unravelled linearization approach, which
we depicted in Figure 2 for the same parameters m = 2 and t = 1. The shift
yf̄2 introduces the monomials x2y, uxy and u2y. We replace each occurrence
of xy by u − 1, i.e., we replace x2y by ux − x and uxy by u2 − u. But the
monomials ux, x, u2 and u are already present in the lattice bases. Thus, the
only new monomial that comes from the shift yf̄2 is u2y, thereby retaining the
triangular structure.

In order to keep the triangular structure in general, we look at an arbitrary
shift yif̄ �. Notice that for the ease of notation we will omit the factor em−� as it
does not influence the set of monomials. Since f̄ = u + Ax we can expand yif̄ �

by the binomial theorem

u�yi +
(

�

1

)
Au�−1xyi + . . . +

(
�

�

)
A�x�yi.

The first term introduces a new monomial u�yi. However, we will now derive a
certain restriction under which all other monomials are already present in the
lattice basis. Let us therefore look at the monomials of the second term after the
substitution of xy

u�−1xyi = u�−1(u − 1)yi−1 = u�yi−1 − u�−1yi−1.

The monomials u�yi−1 and u�−1yi−1 appear in yi−1f̄ � and yi−1f̄ �−1, respectively.
In general, the (j+1)th term of the binomial expansion contains monomials that
appear in yi−j f̄ �−k for k = 0, . . . , j.

Therefore, the shift yif̄ � introduces exactly one new monomial u�yi if all shifts
yi−j f̄ �−k for j = 1, . . . , i−1 and k = 0, . . . j were used in the construction of the
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lattice basis. This is exactly to the restriction that was called increasing pattern
in [BM01].

Since the y-shifts hj,k in the original Boneh-Durfee attack satisfy this increas-
ing pattern restriction as shown in [BM01], we take in our analysis the y-shifts
h̄j,k for the same set of indices (j, k) as in [BD99]. I.e., we define the y-shifts

h̄j,k = yj f̄kem−k for j = 1, . . . , t and k =
⌊m

t

⌋
j, . . . , m. (2)

We show that this set of y-shifts h̄j,k satisfies our requirement, i.e. we show that
if yif̄ � is a y-shift, then all of yi−j f̄ �−k for j = 1, . . . , i − 1 and k = 0, . . . , j are
also used as shifts. Notice that it is sufficient to show yi−j f̄ �−j is used as a shift.

Since yif̄ � is in the set of y-shifts, we know that � ∈ {�m
t �i, . . . , m} and

therefore �− j ∈ {�m
t �i− j, . . . , m− j}. For yi−j f̄ �−j on the other hand, we have

� − j ∈ {�m
t �(i − j), . . . , m}. Our requirement is thus fulfilled if the condition⌊m

t

⌋
(i − j) ≤

⌊m

t

⌋
i − j

holds. We can rewrite this as
⌊

m
t

⌋ ≥ 1, which holds if m ≥ t.
Given the set of shift polynomials, we proceed with the computation of the

determinant. For the following asymptotic analysis we let t = τm. Further,
for the optimization we omit roundings as their contribution is negligible for
sufficiently large m.

We are able to directly compute the contributions of the shift polynomials
from (1) and (2). Here, we denote by sx the contribution of X to the determinant.

sx =
m∑

k=0

m−k∑
i=0

i =
1

6
m3 + o(m3)

sy =
τm∑
j=1

m∑
k= 1

τ
j

j =
τ 2

6
m3 + o(m3)

su =
m∑

k=0

m−k∑
i=0

k +
τm∑
j=1

m∑
k= 1

τ
j

k =

(
1

6
+

τ

3

)
m3 + o(m3)

se =

m∑
k=0

m−k∑
i=0

(m − k) +

τm∑
j=1

m∑
k= 1

τ
j

(m − k) =

(
1

3
+

τ

6

)
m3 + o(m3)

dim(L) =
m∑

k=0

m−k∑
i=0

1 +
τm∑
j=1

m∑
k= 1

τ
j

1 =

(
1

2
+

τ

2

)
m2 + o(m2)

Using these values together with the upper bounds X = N δ, Y = N
1
2 , U = N δ+ 1

2

on the variables in the usual enabling condition det(L) = XsxY sy Usuese ≤
em dim(L), we obtain an optimized value of τ = (1 − 2δ) and finally derive the
desired Boneh-Durfee bound1

δ ≤ 1
2

(
2 −√

2
)
≈ 0.292.

1 The given bound is for full size e, i.e. we set e ≈ N .
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Notice that our choice of τ fulfills our previous restriction m ≥ t. To summarize,
the method of unravelled linearization provides a simple and elegant way to
capture the sublattice structure in the Boneh-Durfee attack. In the following
section, we will use the same method to recover the hidden sublattice structure
in the Jochemsz-May attack on small CRT-RSA exponents. This sublattice was
previously unknown and was conjectured to be the key for improving the CRT-
RSA attack bound.

4 CRT Exponents

The task of attacking small CRT exponents was first mentioned as an open
problem in Wiener [Wie90]. At PKC ’06, Bleichenbacher and May [BM06] gave
an attack that worked in the case where e is significantly smaller than N . They
started with the CRT-RSA equations edp = 1 + k(p− 1) and edq = 1 + l(q − 1),
and derived a single polynomial in the unknowns (dp, dq, k, l) by setting q = N

p
and eliminating p:

e2dpdq − e(dp + dq) + e(dqk + dpl) − (k + l − 1) − (N − 1)kl = 0. (3)

This equation can be linearized to

e2x1 + ex2 − (N − 1)x3 − x4 = 0 (4)

with unknowns

x1 = dpdq, x2 = dqk + dpl − dp − dq, x3 = kl, x4 = (k + l − 1).

For dp, dq ≤ N δ we get k, l ≤ N
1
2+δ and Eq. (4) directly leads to a lattice attack

provided that δ ≤ min{ 1
4 , 2

5 − 2
5α}, where α = logN e. However, for a full size e,

i.e. α = 1, this attack does not work.
In 2007, Jochemsz and May [JM07] improved the analysis by exploiting the full

algebraic structure of Eq. (3) with a Coppersmith-type attack. For the case α =
1, they showed that it is possible to find small solutions if δ ≤ 0.073. However,
in their experiments they noticed a big gap between the theoretically predicted
bound and the experimentally observed bound. Namely, the experiments were far
better than theoretically expected indicating the possibility of a better bound.

E.g., using their analysis, a lattice dimension of 56 should not suffice for
attacking small CRT-exponents, while practically it allows for solving up to
dp, dq ≤ N0.01. Jochemsz and May reported that the smallest LLL vectors came
from a sublattice and conjectured that identifying the sublattice structure would
improve the bound – analogous to the case of the Boneh-Durfee attack where
the sublattice lifts the bound from N0.284 to N0.292.

In this section, we show that this conjecture is false. By using the method
of unravelled linearization, we will capture the sublattice structure behind the
Jochemsz-May attack. This will completely explain the experimental behavior
in [JM07] and therefore close the gap between practice and theoretical analysis.



Maximizing Small Root Bounds by Linearization 61

As a result, we construct lattices of much smaller dimension than in [JM07],
whose theoretical analysis exactly matches the experiments that we present in
the subsequent section.

Very disappointingly from a cryptanalytic point of view, the size of the CRT-
exponents dp, dq that we are able to attack in polynomial time converges for
growing lattice dimension to the same bound N0.073 as in [JM07]. Thus, asymp-
totically we are unable to improve on the bound although we fully exploit the
sublattice structure. Nevertheless, we think that our method is of independent
interest and will prove to be useful for other attacks since it is simple and leads
to an easy analysis.

Let us describe the attack in detail. Starting point is the polynomial equa-
tion (3). We proceed similar to [BM06] and perform an (almost) identical
linearization.

e2 dpdq︸︷︷︸
u

−e (dp + dq)︸ ︷︷ ︸
v

+e (dqk + dpl)︸ ︷︷ ︸
w

−(k + l︸ ︷︷ ︸
x

−1) − (N − 1) kl︸︷︷︸
y

= 0 (5)

We now use the method of unravelled linearization with the linear polynomial
f = e2u − ev + ew − x − Ay + 1, where A = N − 1. The next step is to build
up a lattice following the extended strategy from [JM06]. This means we use the
monomials of fm−1 as shifts and furthermore include extrashifts in the variables
u and v up to some parameter t which has to be optimized later.

The benefit in unravelled linearization comes from the fact that the variables
u, v, w, x, y are related. Namely, we have

vwx = (dp + dq)(dpl + dqk)(k + l)
= d2

pkl + d2
pl

2 + dpdq(k + l)2 + d2
qk

2 + d2
qkl

= (d2
p + d2

q)kl + (d2
pl

2 + d2
qk

2) + dpdq(k + l)2

= ((dp + dq)2 − 2dpdq)kl + ((dpl + dqk)2 − 2dpdqkl) + dpdq(k + l)2

= (v2 − 2u)y + w2 − 2uy + ux2. (6)

This non-obvious relation can be computed easily using a Gröbner basis compu-
tation. Recall the equations given by the linearization. These are 5 linearization
equations in 9 unknowns, so we can eliminate via Gröbner basis computation the
four variables dp, dq, k, l and obtain Eq. (6) in the unknowns u, v, w, x, y only.
This equation now serves in the back-substitution step of unravelled lineariza-
tion, where we replace each occurrence of vwx by the monomials v2y, uy, w2

and ux2.
To exemplify our method, we use the parameters m = 2 and t = 1. This is the

smallest choice where Jochemsz and May [JM07] found positive experimental
results. In the framework of unravelled linearization, it is obvious why we do not
obtain a positive result for smaller parameters. In order to improve upon the
bound from Bleichenbacher, May [BM06], we have to use relation (6). However,
the lattice parameters m = 2 and t = 1 are the smallest ones for which the
monomial vwx appears.
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A lattice basis B for (m, t) = (2, 1) is given in Figure 3. We use here the
notation from the original Coppersmith method over the integers – as opposed
to the modular approach taken in Section 3. That is, we construct a lattice basis
with the coefficient vectors of the shift polynomials as column vectors (refer
to [Cop97] for details). For simplicity we omit the left hand side of the basis
matrix, which contains just the inverses of the corresponding upper bounds of
the monomials on its diagonal. The entries that come from the substitution are
printed in bold letters.

For the lattice attack to work, we require the enabling condition det(L) > 1
(see [Cop97]). In our example, computation of the determinant of the basis
matrix yields

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f uf vf xf wf yf u2f uvf uwf uxf yuf v2f vwf vxf yvf

u e2 1
v e 1
w e 1
x 1 1
1 1
u2 e2 1
uv e e2 1
uw e e2 1
ux 1 e2 1
v2 e 1
vw e e 1
vx 1 e 1
wx e 1
x2 1
w2 e 1 e
u3 e2

u2v e e2

u2w e e2

u2x 1 e2

uv2 e e2

uvw e e e2

uvx 1 e e2

uw2 e
uwx 1 e
ux2 1 1 e
v3 e
v2w e e
v2x 1 e
vw2 e
vx2 1
y A 1
yu A e2 1 −4 −4e
yv A e 1
yx A 1
yw A e
y2 A
yu2 A e2

yuv A e e2

yuw A e
yux A 1
y2u A
yv2 A 1 e e
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Fig. 3. Matrix of unravelled linearized polynomial for m = 2, t = 1
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det(B) = U−21V −20W−14X−14A15.

We have upper bounds (U, V, W, X) = (N2δ, N δ, N
1
2+2δ, N

1
2 +δ) for the un-

knowns (dpdq, dp + dq, dqk + dpl, k + l), respectively. Thus, with A ≈ N the
enabling condition det(L) > 1 reduces to δ < 1

104 ≈ 0.01. This perfectly matches
the experimental results of Jochemsz and May for parameters (m, t) = (2, 1).

We now proceed to the asymptotic analysis and start by analyzing the simpler
case without any extrashifts. I.e., we shift in the monomials of fm−1 only, but
we have to exclude all monomials that are divisible by vwx, since these can be
written as the linear combination from Eq. (6).

To compute the value of the determinant we begin by counting the number of
shift polynomials as each one contributes with a factor of A to the determinant.
The number of shift polynomials equals the number of monomials in the set{

ue1ve2we3xe4ye5 | ei ∈ N0,

5∑
i=1

ei ≤ m − 1, e2 = 0 or e3 = 0 or e4 = 0

}
.

Their number can be computed as∣∣∣∣∣
{

(e1, . . . , e5) ∈ N
5
0 |

5∑
i=1

ei ≤ m − 1

}∣∣∣∣∣
−
∣∣∣∣∣
{

(e1, . . . , e5) ∈ N
5
0 |

5∑
i=1

ei ≤ m − 1, e2, e3, e4 ≥ 1

}∣∣∣∣∣ .
Let us derive the size of the first set by counting. Write e1+e2+e3+e4+e5+h =
m−1 for some slack variable h ∈ {0, . . . , m−1} to transform the inequality into
an equality. If we set e′i = ei + 1 and h′ = h + 1 then the number of tuples that
fulfill the equation

e′1 + e′2 + e′3 + e′4 + e′5 + h′ = (m − 1) + 6 with e′i, h
′
i ≥ 1

is exactly the number of ordered partitions of m+5 in 6 partitions. Let us write
m + 5 = 1 + 1 + . . . + 1, then one obtains an ordered 6-partition of m + 5 by
choosing 5 out of the m+4 signs as breakpoints for the partition. We have

(
m+4

5

)
possibilities for this choice.

The size of the second set is derived in a similar fashion, where we require
e′1 + e2 + e3 + e4 + e′5 + h′ = m + 2. In this case, the number of tuples is

(
m+1

5

)
.

Summing up, we obtain for the number of shifts

#shifts =
(

m + 4
5

)
−
(

m + 1
5

)
=

1
8
m4 + o(m4).

The second part contributing to the determinant comes from the monomials
that occur in the lattice basis. This is the product of the diagonal entries in the
submatrix on the left that has been omitted in Figure 3. As mentioned before,
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the diagonal entries consist of the inverses of the upper bound of the monomial
corresponding to that row. The explicit computation is given in Appendix A,
while we only state the results here.

#u =
(

m + 1
2

)
+ 3
(

m + 2
4

)
=

1
8
m4 + o(m4)

#v = #w = #x =
(

m + 2
3

)
+ 2
(

m + 2
4

)
=

1
12

m4 + o(m4).

Recall that the enabling condition for the lattice attack is det(L) > 1. With
the previously derived values and neglecting low order terms as well as setting
A = N , we are able to write the determinant as

det(L) = U− 1
8 m4

V − 1
12m4

W− 1
12 m4

X− 1
12m4

N
1
8m4

.

If we use the upper bounds (U, V, W, X) = (N2δ, N δ, N
1
2+2δ, N

1
2+δ) on the sizes

of the variables, we derive the condition

δ <
1
14

≈ 0.071.

This is the same asymptotic bound that was obtained by Jochemsz and
May [JM07] without extrashifts. So, unfortunately, our new lattice does not im-
prove the asymptotic bound of [JM07]. But, as opposed to [JM07], our approach
requires smaller lattice dimensions. Asymptotically, [JM07] need to LLL-reduce
a lattice of size m3, while our approach requires only lattice dimension 1

2m3.
Figure 4 shows a comparison of the two methods in terms of the size of dp, dq

that can be attacked.
While our approach clearly allows for attacking larger values of CRT-

exponents in practice, we would also like to stress the fact that as opposed

200 400 600 800 1000
Dimension0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Δ

Jochemsz�May

Our approach

Fig. 4. Comparison of the achievable bound depending on the lattice dimension
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to [JM07] the experimental behavior of our attack can be completely explained
by our theoretical analysis – thereby also explaining the experimental behavior
of [JM07]. We will show this in the subsequent section.

If we also use so-called extrashifts then we end up with a slightly improved
bound of dp, dq ≤ N0.073 as in [JM07]. The analysis can be done in a similar fash-
ion to the case without extrashifts. We carry out the calculations in Appendix B.

5 Experiments

The reason for carrying out various experiments for attacking CRT-RSA is
twofold. First, we want to show that our analysis from Section 4 is indeed op-
timal. That is, the experimental behavior can be perfectly predicted by the
analysis and there is no hope to improve the bound by this approach. Second, as
our lattice-based approach is heuristic, we have to verify that the polynomials
that we obtain after the lattice reduction are indeed coprime and thus allow for
efficient recovery of their roots.

Table 1. Experimental Results

N dp, dq δ lattice parameters dim JM LLL-time JM LLL-time(s)

1000 bit 11 bit 0.0096 m = 2, t = 1, dim = 30 56 14 2
1000 bit 18 bit 0.0178 m = 3, t = 1, dim = 60 115 6100 258
1000 bit 22 bit 0.0226 m = 3, t = 2, dim = 93 – – 3393
1000 bit 24 bit 0.0244 m = 4, t = 1, dim = 105 – – 7572
1000 bit 29 bit 0.0291 m = 4, t = 2, dim = 154 – – 61298

2000 bit 21 bit 0.0096 m = 2, t = 1, dim = 30 56 40 4
2000 bit 35 bit 0.0178 m = 3, t = 1, dim = 60 115 20700 613
2000 bit 45 bit 0.0226 m = 3, t = 2, dim = 93 – – 13516
2000 bit 47 bit 0.0244 m = 4, t = 1, dim = 105 – – 34305

5000 bit 48 bit 0.0096 m = 2, t = 1, dim = 30 56 379 39
5000 bit 89 bit 0.0178 m = 3, t = 1, dim = 60 – – 5783
5000 bit 113 bit 0.0226 m = 3, t = 2, dim = 93 – – 74417

10000 bit 96 bit 0.0096 m = 2, t = 1, dim = 30 56 2500 360
10000 bit 179 bit 0.0178 m = 3, t = 1, dim = 60 – – 31226

We reimplemented the attack of [JM07] and used in the experiments the same
modulus sizes and lattice parameters as done in [JM07]. Table 1 clearly shows
the speedup for the LLL reduction. For example with parameters m = 3 and
t = 1 our method is 20 to 30 times faster than the one of Jochemsz and May.
As previously mentioned, this is due to the reduced lattice dimension2. While
Jochemsz and May required the reduction of a lattice of dimension 115, our
lattice only has dimension 60. Because of this smaller lattice dimension we were

2 The lattice we are considering here is the one that serves as input to the LLL reduc-
tion routine. That is the sublattice containing zeros in the coordinates corresponding
to the shift polynomials.
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able to perform experiments on parameter sets that have been out of reach
before.

Notice that the experimental results on the achievable sizes of dp and dq

perfectly match the theoretically predicted bound δ. This is a strong indication
that our approach is indeed optimal.

We ran our experiments using sage 4.1.1. and used the L2 reduction algorithm
from Nguyen and Stehlé [NS09]. The calculations were performed on an Quad
Core Intel Xeon processor running at 2.66 GHz.
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A Counting #u, #v, #w, #x

The monomials that contribute to the determinant are exactly the monomials of
fm that do not contain the variable y. Denote such a monomial by ue1ve2we3xe4 .
In order to count the number of u’s that contribute to the determinant we
proceed as follows.

Let e1 = 0. We have e2 + e3 + e4 ≤ m with ei ∈ N0, which transform into
e′2 + e′3 + e′4 +h′ ≤ m+4 for a slack variable h′ ∈ {1, . . . , m+1} and e′i = ei +1.
The number of such tuples is just the number of 4-partitions of m + 4, which is(
m+3

3

)
. From these tuples we have to remove the ones with ei ≥ 1 for i = 2, 3, 4,

because of the substitutions of vwx. The number of these tuples is
(
m
3

)
. For

e1 = 1, we proceed similarly and obtain
(
m+2

3

) − (m−1
3

)
. We carry this out for

all possibilities of e1 and end up with e1 = m, where we get
(
3
3

)− (03).
Now we know the number of occurences for each power ui, i = 0, . . . , m.

In order to count the total number of u we compute the weighted sum as
follows.

#u =
m+3∑
i=3

(m + 3 − i)
(

i

3

)
−

m∑
i=0

(m − i)
(

i

3

)

=
m+3∑

i=m+1

(m + 3 − i)
(

i

3

)
+

m∑
i=3

((m + 3 − i) − (m − i))
(

i

3

)

= 2
(

m + 1
3

)
+
(

m + 2
3

)
+ 3

m∑
i=3

(
i

3

)
=
(

m + 2
3

)
−
(

m + 1
3

)
+ 3

m+1∑
i=3

(
i

3

)

Using the identities
(
n
k

) − (n−1
k

)
=
(
n−1
k−1

)
and

∑n
i=0

(
i
k

)
=
(
n+1
k+1

)
we eventually

obtain

#u =
(

m + 1
2

)
+ 3
(

m + 2
4

)
.

Thus, #u = 1
8m4 + o(m4).

Counting the number of occurrences of v, w and x can be done in a similar
way and we obtain

#v = #w = #x =
m+3∑
i=3

(m + 3 − i)
(

i

3

)
−

m+1∑
i=1

(m + 1 − i)
(

i

3

)

= 2
m+1∑
i=0

(
i

3

)
+
(

m + 2
3

)
= 2
(

m + 2
4

)
+
(

m + 2
3

)

=
1
12

m4 + o(m4).
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B Improving the Bound Using Extrashifts

In the following we will show that it is possible to improve the bound δ < 1
14 ≈

0.0714 to δ ≈ 0.0734 by using so-called extrashifts. In this case, we use the set
of shifts

S =
t⋃

t1=0

t−t1⋃
t2=0

{ue1+t1ve2+t2we3xe4ye5 | ue1ve2we3xe4ye5 is monomial of fm−1}.

To estimate the number of shifts, one may use a combinatorial proof as in
Section 4 and count the number of all monomials minus the monomials hav-
ing e2, e3, e4 ≥ 1. However, we choose to use a computational approach here and
simply evaluate a series of sums.

The shift monomials can be characterized by the set S1 \ S2, where S1 is
the set of all shifts and S2 are the shifts that have to be removed due to the
substitution of vwx.

ue1ve2we3xe4ye5 ∈ S1 ⇔

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e5 = 0, . . . , m − 1
e4 = 0, . . . , m − 1 − e5

e3 = 0, . . . , m − 1 − e5 − e4

e2 = 0, . . . , m − 1 − e5 − e4 − e3 + t

e1 = 0, . . . , m − 1 − e5 − e4 − e3 − e2 + t

ue1ve2we3xe4ye5 ∈ S2 ⇔

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e5 = 0, . . . , m − 1
e4 = 1, . . . , m − 1 − e5

e3 = 1, . . . , m − 1 − e5 − e4

e2 = 1, . . . , m − 1 − e5 − e4 − e3 + t

e1 = 0, . . . , m − 1 − e5 − e4 − e3 − e2 + t

Setting t = τm, the resulting number of shifts is

|S1 \ S2| =
(

1
8

+
τ

2
+

τ2

2

)
m4 + o(m4).

In a similar fashion we derive the exponents of the variables u, v, w and x con-
tributing to the determinant. For example, to calculate the number of occur-
rences of u, we compute

su =
m∑

e4=0

m−e4∑
e3=0

m−e4−e3+t∑
e2=0

m−e4−e3−e2+t∑
e1=0

e1

−
m∑

e4=1

m−e4∑
e3=1

m−e4−e3+t∑
e2=1

m−e4−e3−e2+t∑
e1=0

e1

=
(

1
8

+
τ

2
+

3τ2

4
+

τ3

3

)
m4 + o(m4).
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For the other values we obtain

sv =
(

1
12

+
τ

3
+

τ2

2
+

τ3

3

)
m4 + o(m4)

sw =
(

1
12

+
τ

3
+

τ2

4

)
m4 + o(m4)

sx =
(

1
12

+
τ

3
+

τ2

4

)
m4 + o(m4).

We use these values together with the upper bounds (U, V, W, X) = (N2δ, N δ,

N
1
2+2δ, N

1
2+δ) to compute the determinant of the lattice. After that, we are able

to solve the enabling condition det(L) > 1 for δ and optimize the value of τ to
maximize δ. We obtain τ ≈ 0.381788, which finally leads to the bound

δ ≤ 0.0734142.
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