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Abstract 25 years ago, Lenstra, Lenstra and Lovász presented their celebrated LLL
lattice reduction algorithm. Among the various applications of the LLL algorithm
is a method due to Coppersmith for finding small roots of polynomial equations.
We give a survey of the applications of this root finding method to the problem of
inverting the RSA function and the factorization problem. As we will see, most of
the results are of a dual nature, they can either be interpreted as cryptanalytic results
or as hardness/security results.
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1 Introduction

The RSA cryptosystem invented by Rivest, Shamir and Adlemanin 1977 [76] is
today’s most important public-key cryptosystem. Let us denote byN = pqan RSA-
modulus which is the product of two primesp,q of the same bit-size. Lete be an
integer co-prime to Euler’s totient functionφ(N) = (p−1)(q− 1). The RSA en-
cryption function takes a messagem to theeth power in the ringZN. The security of
RSA relies on the difficulty of inverting the RSA encryption function on the aver-
age, i.e. extractingeth roots in the ringZN. We call this problem the RSA inversion
problem or the RSA problem for short.

Let d be the inverse ofe moduloφ(N). Computingdth powers inZN inverts the
RSA encryption function. Sinced can be easily computed when the prime factor-
ization ofN is known, the RSA cryptosystem is at most as secure as the problem of
computingd and the problem of factoringN. Indeed, we will see that the last two
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problems are polynomial time equivalent. However, it is oneof the most challenging
problems to prove or disprove the polynomial time equivalence of the RSA prob-
lem and the problem of factoringN. There are results that these problems are not
equivalent under restricted reductions [20]. On the other hand, one can show that in
restricted generic attack models both problems appear to beequivalent [21, 58].

Despite considerable efforts to attack RSA (see [11, 54] forsurveys), the cur-
rently best way is still to factor the RSA modulus. Consequently, researchers fo-
cussed for a long time on the construction of factorization algorithms for attack-
ing RSA. In this factorization line of research, the goal is to minimize the com-
putational complexity in the common Turing machine model. The most impor-
tant milestones in the construction of factorization algorithms in the 80s and 90s
are the invention of the Quadratic Sieve [73], the Elliptic Curve Method [59]
and the Number Field Sieve (NFS) [60]. The NFS is currently the best algo-
rithm for factoring RSA moduli. It factorsN in subexponential time and space

LN[1
3,c] = O(exp(c(logN)

1
3 (log logN)

2
3 )) for c≈ 1.9.

Of course, the ultimate cryptanalyst’s goal is the construction of a polynomial
time algorithm for either the RSA problem or the factorization problem. Since it is
unknown whether there exist algorithms for these problems with Turing complexity
LN[α,c] for α < 1

3, one might ask for polynomial time algorithms inother machine
modelsor for interestingrelaxationsof the RSA and factorization problem.

In 1994, Shor [79] presented an algorithm for solving the factorization prob-
lem in time and space polynomial in the bit-length ofN, provided that the model
of Turing machines is replaced by the model of quantum Turingmachines. This
ground-breaking theoretical result led to intensive engineering efforts for building
quantum computers in practice. However, today it is still unclear whether quantum
computers with a large number of quantum bits can ever be constructed.

In the 90s, another interesting line of research evolved, which usespolynomial
timealgorithms in theTuring machine model. However, in order to achieve polyno-
mial complexity one has to relax the RSA and factorization problem. So instead of
changing the model of computation, one relaxes the problemsthemselves by look-
ing at restricted instances. The most natural restriction is realized by limiting the
parameter set of the instances to an interval which is smaller than in the general
setting, but still of exponential size.

A variation of this limiting approach addresses full parameter sets, but allows
additional access to an oracle for parts of the solution, e.g. for some of the bits.
Notice that the oracle queries have the effect of cutting down the search space for the
solution. The so-calledoracle complexitymeasures the number of oracle queries that
is required in order to solve the underlying problem in polynomial time. Of course,
one is interested in minimizing the number of oracle queriesand in restricting the
oracle’s power, i.e. the type of queries that an oracle replies to. Oracles are motivated
by other cryptographical mechanisms, so-called side-channel attacks, that often leak
partial information of the secrets, and therefore behave inpractice like an oracle.

In the following we will call both approaches, limiting the parameter sets and
allowing for an oracle,relaxationsof the problem instances. In order to solve these
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relaxed instances, one models them as a polynomial equationand tries to find the
integer solutions.

Let us illustrate this approach by a simple example. The RSA factorization prob-
lem is the problem of findingp,q on inputN. This can be modeled by a polynomial
equationf (x,y) = N− xy. The positive integer roots of this polynomial equation
are(1,N),(p,q),(q, p),(N,1). Since we assume thatp,q are of the same bit-size,
finding all integer solutions which are in absolute value smaller than roughly

√
N

suffices to solve the factorization problem. Thus, one only has to findsmall solu-
tions, wheresmallmeans that the size of the root is small compared to the size of
the coefficients of the polynomial. Naturally, one can defineupper boundsX,Y for
the size of the roots inx,y, respectively. The ultimate goal is to find a polynomial
time algorithm which succeeds wheneverXY ≤ N. Since we do not know how to
achieve this bound, we relax the factorization problem.

A natural relaxation of this problem is to narrow down the search space for the
prime factors. Assume that we are given oracle access to the most significant bits
of p. This allows us to compute an approximation ˜p of p such that|p− p̃| is sig-
nificantly smaller than

√
N. Thenq̃ = N

p̃ defines an approximation ofq. Therefore,
we obtain the polynomial equationf (x,y) = N− (p̃+ x)(q̃+ y) with a small root
(p− p̃,q− q̃), where the size of the root depends on the quality of the approxima-
tion. It was shown by Coppersmith in 1996 [24], that the solution of this problem
can be found in polynomial time ifXY≤ N

1
2 .

Building on works in the late 80’s [42, 37], Coppersmith [23,24, 25, 26] derived a
general algorithm for finding small roots of polynomial equations. This root finding
algorithm in turn is essentially based on the famous LLL-reduction algorithm by
Lenstra, Lenstra and Lovász [61]. The key idea is to encode polynomial equations
with small solutions as coefficient vectors that have a smallEuclidean norm. These
coefficient vectors can efficiently be found by an application of the LLL-reduction
algorithm.

We will survey several applications of Coppersmith’s algorithm to relaxations of
the RSA problem and the factorization problem. Many of theseapplications natu-
rally allow for a dual interpretation, both as a cryptanalytic result and as a security
result. Let us give an example for this duality. In 1996, Coppersmith [23] showed
that for RSA withe = 3, an attacker who knows 2/3 of an RSA-encrypted mes-
sagemcan recover the remaining third from the ciphertext in polynomial time. The
cryptanalytic interpretation is that knowing only a 2/3-fraction of the plaintext is
already enough to recover the whole. The security interpretation is that recovering a
2/3-fraction must be hard, provided that solving the RSA problem fore= 3 is hard.
Thus, this result establishes the security of a 2/3-fraction of the underlying plaintext
under the RSA assumption. This security interpretation wasused by Shoup [80] to
show the security of RSA-OAEP fore= 3 under chosen ciphertext attacks. We will
elaborate a bit more on this duality effect in the paper.

This survey is organized as follows. We start in Section 2 by giving a high-level
description of Coppersmith’s algorithm for finding small roots of univariate modular
polynomials. We state a theorem which provides us with an upper bound for the size
of the roots of a univariate polynomial that can efficiently be found.
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The details of the theorem’s proof are given in Section 3. This section is devoted
to people who are interested in the technical details of the method, and those who
want to implement a Coppersmith-type univariate root finding algorithm. It is the
only section that requires some basic knowledge of lattice theory from the reader.
People that are mainly interested in the applications of Coppersmith’s method can
proceed to the subsequent section.

In Section 4, we will extensively use our theorem for finding small roots. We
will model certain relaxed RSA and factorization problems as univariate polyno-
mial equations. For instance, we present Coppersmith’s attack on RSA with stereo-
typed messages [23] and show its dual use in Shoup’s securityproof [80] and for the
construction of an RSA-based pseudorandom number generator proposed by Stein-
feld, Pieprzyk and Wang [82]. Moreover, we will show a generalization of Håstad’s
broadcast attack [42] on RSA-encrypted, polynomially related messages that pro-
vides a natural link to Coppersmith’s attack on stereotypedRSA messages.

We then describe thefactoring with high bits knownresults from Copper-
smith [24] and Boneh, Durfee, Howgrave-Graham [18]. Furthermore, we show a
deterministic polynomial time reduction of factoring to computingd [66, 30], which
establishes the hardness of the so-called RSA secret key recovery problem under
the factorization assumption. We conclude this section by stating Boneh’s algo-
rithm [12] for finding smooth integers in short intervals. The problem of finding
smooth integers is related to classical factorization algorithms such as the Number
Field Sieve.

In Section 5, we will turn our focus to multivariate extensions of Coppersmith’s
LLL-based method. We present Wiener’s attack [88] on RSA with d ≤ N

1
4 as a

bivariate linear equation, which was originally phrased interms of the continued
fraction algorithm. We then present the bivariate polynomial equation of Boneh and
Durfee [14, 15] that led to a heuristic improvement of the bound to d ≤ N0.292.
As an example of an application with more variables, we present a heuristic poly-
nomial time attack of Jochemsz, May [52] for RSA with so-called CRT-exponents
d mod p− 1,d modq− 1 smaller thanN0.073. Dually to these attacks, the server-
based RSA signature generation proposals of Boneh, Durfee,Frankel [16] and Ste-
infeld, Zheng [83] are constructive security applications.

Since the number of applications of Coppersmith’s LLL-based method for the
RSA/factorization problem is already far too large to capture all the different results
in this survey, we try to provide a more comprehensive list ofreferences in Section 6.
We are aware of the fact that it is impossible to achieve completeness of such a list,
but our references will serve the purpose of a good starting point for further reading.

In Section 7, we give some open problems in this area and try tospeculate in
which direction this line of research will go. Especially, we discuss to which extent
we can go from relaxed instances towards general problem instances, and where
the limits of the method are. This discussion naturally leads to speculations whether
any small root finding algorithm based on LLL-reduction willeventually have the
potential to solve general instances of the RSA problem or the factorization problem
in polynomial time.



RSA and Factorization Problems 5

2 How to Find Small Roots: The Univariate Case

We first introduce the problem of finding solutions of a modular univariate poly-
nomial equation. Then we argue that this approach extends topolynomials in more
variables in a heuristic manner.

Let N be a positive integer of unknown factorization with divisorb ≥ Nβ , 0 <
β ≤ 1. 1 Let f (x) be a monic univariate polynomial of degreeδ . We are looking
for all small roots of the polynomialf modulob. I.e., we want to efficiently find all
solutionsx0 satisfying

f (x0) = 0 modb with |x0| ≤ X,

whereX is an upper bound on the size of the solutions. Our goal is to maximize
the boundX, with the restriction that the running time of our method should be
polynomial in the input size, i.e. polynomial in the parameters(logN,δ ).

We would like to stress thatN is an integer ofunknownfactorization, which
makes the above root finding problem hard to solve. If the prime factors ofN are
given, efficient algorithms with finite field arithmetic are known for the problem.

In 1996, Coppersmith [25] proposed an elegant LLL-based method for finding
small solutions of univariate polynomial equations. Here,we describe his approach
using the notion of Howgrave-Graham’s reformulation [48] of the method. Copper-
smith’s approach is basically a reduction of solving modular polynomial equations
to solving univariate polynomials over the integers. I.e. one constructs fromf (x)
another univariate polynomialg(x) that contains all the small modular roots off (x)
over the integers:

f (x0) = 0 modb ⇒ g(x0) = 0 overZ for all |x0| ≤ X.

The algorithmic idea for the construction ofg(x) from f (x) can be described via the
following two steps:

(1)Fix an integerm. Construct a collectionC of polynomialsf1(x), f2(x), . . . , fn(x)
that all have the small rootsx0 modulobm. As an example, take the collection

fi(x) = Nm−i f i(x) for i = 1, . . . ,m
fm+i(x) = xi f m(x) for i = 1, . . . ,m.

(2)Construct an integer linear combinationg(x) = ∑n
i=1ai fi(x), ai ∈ Z such that the

condition
|g(x0)| < bm

holds. Notice thatbm divides all fi(x0) by construction. Therefore,bm also di-
videsg(x0). But theng(x0) = 0 modbm and |g(x0)| < bm, which implies that
g(x0) = 0 over the integers.

1 An important special case isb = N, i.e.β = 1.
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The construction in step (2) is realized by an LLL-based approach. Namely, one
can easily show that every polynomialg whose coefficient vector ofg(xX) has suf-
ficiently small norm fulfills the condition|g(x0)| < bm. The integer linear combi-
nations of the coefficient vectors offi(xX), i = 1. . .n, form a latticeL. Applying a
lattice basis reduction algorithm to a basis ofL yields a small norm coefficient vec-
tor g(xX). One can show that in our case the LLL-reduction algorithm ofLenstra,
Lenstra and Lovász [61] outputs a sufficiently small vector. Therefore,g(x) can be
computed in polynomial time via LLL-reduction.

Eventually, one has to find the roots ofg(x) over the integers. This can be done
by standard polynomial factorization methods like the Berlekamp-Zassenhaus algo-
rithm. Interestingly, the initial application of the LLL algorithm was a deterministic
polynomial time algorithm [61] for factoring polynomials in Q[X]. In 2001, van
Hoeij [46, 47] proposed an improved, highly efficient LLL-based factorization al-
gorithm (see [55] for an introduction). Thus we cannot only use LLL to constructg
but also to find its integer roots.

The details of the proof of the following result can be found in Section 3.

Theorem 1 Let N be an integer of unknown factorization, which has a divisor b≥
Nβ , 0< β ≤ 1. Let f(x) be a univariate monic polynomial of degreeδ and let c≥ 1.
Then we can find all solutions x0 of the equation

f (x) = 0 modb with |x0| ≤ cN
β2

δ

in timeO(cδ 5 log9 N).

Although LLL reduction only approximates a shortest vectorup to some factor
that is exponential in the lattice dimension, it is important to point out that lattice
reduction techniques which give better approximations do not help to improve the
bound given in Theorem 1.

Coppersmith proved this result for the special caseβ = 1, i.e.b = N. The term
β 2 first appeared in Howgrave-Graham’s work [50] for the special caseδ = 1, i.e.
for a linear polynomial. A proof of Theorem 1 first appeared in[65].

Coppersmith’s method generalizes in a natural way to modular multivariate poly-
nomials f (x1, . . . ,xℓ). The idea is to constructℓ algebraically independentpolyno-
mialsg(1), . . . ,g(ℓ) that all share the desired small roots over the integers. Theroots
are then computed by resultant computations. Forℓ ≥ 2, this is a heuristic method
because although the LLL-algorithm guarantees linear independence of the coef-
ficient vectors, it does not guarantee algebraic independence of the corresponding
polynomials.

The case of solving multivariate polynomial equationsover the integers– not
modular – uses similar techniques. In the integer case, the method of finding small
roots of bivariate polynomialsf (x,y) is rigorous, whereas the extension to more
than two variables is again a heuristic. Coron showed in [28,29], that the case of
solving integer polynomials can in principle be reduced to the case of solving mod-
ular polynomials.
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3 Proof of Theorem 1 & Algorithmic Considerations

In this section, we will give a complete proof of Theorem 1. Readers who are mainly
interested in the methods’ applications can skip this section and proceed to Sec-
tion 4.

We provide an algorithm that on input

• an integerN of unknown factorization,
• a monic, univariate polynomialf (x) of degreeδ
• a boundβ ∈ (0,1], such thatb≥ Nβ for some divisorb of N

outputs in time polynomial in logN andδ all solutionsx0 such that

• f (x0) = 0 modb and

• |x0| ≤ N
β2

δ .

Normally, the property thatf (x) is monic is no restriction in practice. Assume
that f (x) has a leading coefficientaδ 6= 1. Then we can either makef (x) monic by
multiplying with the inverse ofaδ moduloN, or we find a non-trivial factorization
of N. In the latter case, we can work modulo the factors ofN.

The following lemma of Howgrave-Graham [48] gives us two criteria under
which we can find a polynomialg(x) that evaluates to zero over the integers at
small roots.

Theorem 2 (Howgrave-Graham) Let g(x) be an univariate polynomial with n
monomials. Further, let m be a positive integer. Suppose that

(1) g(x0) = 0 modbm where|x0| ≤ X
(2) ||g(xX)||< bm√

n

Then g(x0) = 0 holds over the integers.

Proof: We have

|g(x0)| = ∑
i

cix
i
0 ≤ ∑

i

|cix
i
0|

≤ ∑
i
|ci |Xi ≤

√
n||g(xX)|| < bm.

But g(x0) is a multiple ofbm and therefore it must be zero.

Using powers off , we construct a collectionf1(x), . . . , fn(x) of polynomials that
all have the desired rootsx0 modulobm. Thus, for every integer linear combination
g we have

g(x0) =
n

∑
i=1

ai fi(x0) = 0 modbm, ai ∈ Z.
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Hence every integer linear combination satisfies condition(1) of Lemma 2. Among
all integer linear combinations, we search for one that alsosatisfies condition (2).
In other words, we have to search among all integer linear combinations of the
coefficient vectorsfi(xX) for a vector with Euclidean norm smaller thanbm√

n. This
can be achieved by finding a short vector in the latticeL spanned by the coefficient
vectors offi(xX).

Our goal is to ensure that the LLL algorithm finds a vectorv with ||v||< bm√
n in L.

By a theorem of Lenstra, Lenstra and Lovász [61], the norm ofa shortest vector
v in an LLL-reduced lattice basis can by related to the determinant det(L) of the
corresponding latticeL with dimensionn via

||v|| ≤ 2
n−1

4 det(L)
1
n .

The determinant det(L) can be easily computed from the coefficient vectors of
fi(xX). If we could satisfy the condition

2
n−1

4 det(L)
1
n <

Nβ m
√

n
, (1)

then we obtain the desired inequality||v|| < Nβm√
n ≤ bm√

n.
Neglecting low-order terms in (1), i.e. terms that do not depend onN, we obtain

the simplified condition
det(L) < Nβ mn.

Let L be a lattice of dimensionn with basisB satisfying this condition. Then on
average a basis vectorv ∈ B contributes to the determinant with a factor less than
Nβ m. We call such a basis vector ahelpful vector. Helpful vectors will play a central
role for the construction of an optimized lattice basis.

The following theorem of Coppersmith states that for a monicpolynomial f (x)

of degreeδ , all rootsx0 with |x0| ≤ 1
2N

β2

δ −ε can be found in polynomial time. We
will later show that the error termε and the factor12 can be easily eliminated, which
will lead to a proof of Theorem 1.

Theorem 3 (Coppersmith) Let N be an integer of unknown factorization, which
has a divisor b≥ Nβ , 0 < β ≤ 1. Let 0 < ε ≤ 1

7β . Furthermore, let f(x) be a
univariate monic polynomial of degreeδ . Then we can find all solutions x0 for the
equation

f (x) = 0 modb with |x0| ≤
1
2

N
β2

δ −ε .

The running time is dominated by the time to LLL-reduce a lattice basis of dimen-
sion O(ε−1δ ) with entries of bit-sizeO(ε−1 logN). This can be achieved in time
O(ε−7δ 5 log2 N).

Proof: DefineX := 1
2N

β2

δ −ε . Let us apply the two steps of Coppersmith’s method
as described in Section 2. In the first step, we fix
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m=

⌈

β 2

δε

⌉

. (2)

Next, we choose a collectionC of polynomials, where each polynomial has a root
x0 modulobm wheneverf (x) has the rootx0 modulob. In our case, we include inC
the polynomials

Nm, xNm, x2Nm, . . . xδ−1Nm,

Nm−1 f , xNm−1 f , x2Nm−1 f , . . . xδ−1Nm−1 f ,
Nm−2 f 2, xNm−2 f 2, x2Nm−2 f 2, . . . xδ−1Nm−2 f 2,
...

...
...

...
N fm−1, xN fm−1, x2N fm−1, . . . xδ−1N fm−1.

Additionally, we take the polynomials

f m,x fm,x2 f m, . . . ,xt−1 f m

for somet that has to be optimized as a function ofm.
Note that by our ordering thekth polynomial ofC is a polynomial of degree

k. Thus, it introduces the new monomialxk. We could also write the choice of our
polynomials inC in a more compact form. Namely, we have chosen the polynomials

gi, j(x) = x jNi f m−i(x) for i = 0, . . . ,m−1, j = 0, . . . ,δ −1 and
hi(x) = xi f m(x) for i = 0, . . . ,t −1.

In Step 2 of Coppersmith’s method, we construct the latticeL that is spanned by the
coefficient vectors ofgi, j(xX) andhi(xX). As we noticed before, we can order the
polynomialsgi, j andhi in strictly increasing order of their degreek. Therefore, the
basisB of L, that has as row vectors the coefficient vectors ofgi, j(xX) andhi(xX),
can be written as a lower triangular matrix. Letn := δm+ t, then we writeB as the
(n×n)-matrix given in Table 3.

SinceB is in lower triangular form, det(L) is simply the product of all entries on
the diagonal:

det(L) = N
1
2δm(m+1)X

1
2n(n−1). (3)

Now we want to optimize the parametert, which is equivalent to the optimization
of n= δm+ t. Remember that we argued before that every vector which contributes
to the determinant by a factor less thanNβ m is helpful. In our setting this means that
we have to ensure that the entries of the coefficient vectorshi(xX) on the diagonal
are all less thanNβ m, i.e., we have the condition

Xn−1 < Nβ m.

SinceXn−1 < N( β2

δ −ε)(n−1) < N
β2

δ n this condition is satisfied for the choice
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Table 1 BasisB of the latticeL. We use the following notation: Every non-specified entry iszero.
The entries marked with “-” may be non-zero, but the determinant of the lattice does not depend
on these values.

n≤ δ
β

m. (4)

According to(2), we know thatm≤ β 2

δε + 1. Then, we immediately have a bound
for the lattice dimension

n≤ β
ε

+
δ
β

.

Using 7β−1 ≤ ε−1, we obtainn = O(ε−1δ ). We choosen as the maximal integer
that satisfies inequality (4). This yields a lower bound of

n >
δ
β

m−1≥ β
ε
−1≥ 6.

In order to prove the running time, we also need to upper-bound the bit-size of the
entries inB. Notice that for every powerf m−i in the definition ofgi, j andhi , we
can reduce the coefficients moduloNm−i , sincex0 must be a root moduloNm−i .
Thus the largest coefficient in a productNi f m−i has a bit-size of at mostmlog(N) =

O(ε−1 logN). Powers ofX = 1
2N

β2

δ −ε occur with exponents smaller thann. Thus
the bit-size of powers ofX can also be upperbounded by

n · β 2

δ
logN = O

(

δ
ε
· β 2

δ

)

logN = O
(

ε−1 logN
)

.
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Nguyen and Stehlé [72, 81] recently proposed a modified version of the LLL-
algorithm calledL2-algorithm. TheL2-algorithm achieves the same approximation
quality for a shortest vector as the LLL algorithm, but has animproved worst case
running time analysis. It takes timeO(n5(n+ logbm) logbm), where logbm is the
maximal bit-size of an entry inB. Thus, we obtain for our method a running time of

O

(

(

δ
ε

)5(δ
ε

+
logN

ε

)

logN
ε

)

.

Notice that we can assumeδ ≤ logN, since otherwise our bound|x0| ≤ N
β2

δ −ε is
vacuous. Therefore, we obtain a running time ofO(ε−7δ 5 log2N).

It remains to show that LLL’s approximation quality is sufficient for our purpose.
In order to apply the theorem of Howgrave-Graham (Theorem 2), we have to ensure
that the LLL algorithm finds a vector inL with norm smaller thanbm√

n. Since the

LLL algorithm finds a vectorv in ann-dimensional lattice with||v|| ≤ 2
n−1

4 det(L)
1
n ,

we have to satisfy the condition

2
n−1

4 det(L)
1
n <

bm
√

n
.

Using the term for det(L) in (3) and the factb≥ Nβ , we obtain the new condition

N
δm(m+1)

2n X
n−1

2 ≤ 2−
n−1

4 n−
1
2 Nβ m.

This gives us a condition on the size ofX:

X ≤ 2−
1
2 n−

1
n−1 N

2βm
n−1−

δm(m+1)
n(n−1) .

Notice thatn−
1

n−1 = 2−
logn
n−1 ≥ 2−

1
2 for n > 6. Therefore, our condition simplifies to

X ≤ 1
2

N
2βm
n−1−

δm(m+1)
n(n−1) .

Remember that we made the choiceX = 1
2N

β2

δ −ε . Hence in order to finish the proof
of the theorem, it suffices to show that

2βm
n−1

− δm2(1+ 1
m)

n(n−1)
≥ β 2

δ
− ε.

We obtain a lower bound for the left-hand side by multiplyingwith n−1
n . Then, we

usen≤ δ
β mwhich gives us
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2
β 2

δ
− β 2

δ

(

1+
1
m

)

≥ β 2

δ
− ε.

This simplifies to

−β 2

δ
· 1
m

≥−ε.

This in turn gives us the conditionm≥ β 2

δε , which holds by the choice ofm that we
made in (2).

Let us briefly summarize the whole algorithm which finds all roots of f (x) mod-
ulo b that are in absolute value smaller thanX.'

&

$

%

Coppersmith’s method in the univariate case
INPUT: Polynomialf (x) of degreeδ , modulusN of unknown factorization that is
a multiple ofb, a lower boundb≥ Nβ , ε ≤ 1

7β

Step 1: Choosem= ⌈ β 2

δε ⌉ andt = ⌊δm( 1
β −1)⌋.

Compute the polynomials

gi, j(x) = x jNi f m−i(x) for i = 0, . . . ,m−1, j = 0, . . . ,δ −1 and
hi(x) = xi f m(x) for i = 0, . . . ,t −1.

Step 2: Compute the boundX = 1
2⌈N

β2

δ −ε⌉. Construct the lattice basisB, where
the basis vectors ofB are the coefficient vectors ofgi, j(xX) andhi(xX).

Step 3: Apply the LLL algorithm to the lattice basisB. Letv be the shortest vector
in the LLL reduced basis. The vectorv is the coefficient vector of some polyno-
mial g(xX). Constructg(x) from v.

Step 4: Find the setRof all roots ofg(x) over the integers using standard methods.
For every rootx0 ∈ Rcheck whether gcd(N, f (x0)) ≥ Nβ . If this condition is not
satisfied then removex0 from R.

OUTPUT: SetR, wherex0 ∈ R wheneverf (x0) = 0 modb for an|x0| ≤ X.

As we noticed before, all steps of the algorithm can be done intimeO(ε−7δ 5 log2N),
which concludes the proof of the theorem.

One should remark that the polynomialg(x) that we construct in Coppersmith’s
method may contain integer roots that are not roots off (x) modulob. Therefore, we
use in Step 4 of the above algorithm a simple test whetherf (x0) contains a divisor
of N of size at leastNβ .

It is also worth noticing the following point: The LLL approximation factor of
2

n−1
4 for the shortest vector is exponentially in the lattice dimensionn, but this factor

essentially translates in the analysis of Theorem 3 to the term 1
2 for the upper bound

of the size of the rootsx0. Thus, computing a shortest vector instead of an LLL
approximate version would only improve the bound by a factorof roughly 2 (i.e.,
only one bit).
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Moreover, Theorem 1 is a direct implication of Theorem 3 and shows that we
can avoid the terms12 andε from the upper bound onx0. The proof uses a simple
brute-force search.

Theorem 1 Let N be an integer of unknown factorization, which has a divisor
b ≥ Nβ , 0 < β ≤ 1. Furthermore, let f(x) be a univariate monic polynomial of
degreeδ . Then we can find all solutions x0 for the equation

f (x) = 0 modb with |x0| ≤ cN
β2

δ .

in timeO(cδ 5 log9 N).

Proof: An application of Theorem 3 with the parameter choiceε = 1
logN shows that

we can find all rootsx0 with

|x0| ≤
1
4

N
β2

δ

in timeO(δ 5 log9N).

In order to find all roots that are of size at mostcN
β2

δ in absolute value, we di-

vide the interval[−cN
β2

δ ,cN
β2

δ ] into 4c subintervals of size12N
β2

δ centered at some
xi . For each subinterval with centerxi , we apply the algorithm of Theorem 3 to the
polynomial f (x−xi) and output the roots in this subinterval.

For completeness reasons and since it is one of the most interesting cases of
Coppersmith’s method, we explicitly state the special caseb = N andc = 1, which
is given in the work of Coppersmith [25].

Theorem 4 (Coppersmith) Let N be an integer of unknown factorization. Further-
more, let fN(x) be a univariate monic polynomial of degreeδ . Then we can find all
solutions x0 for the equation

fN(x) = 0 modN with |x0| ≤ N
1
δ

in timeO(δ 5 log9N).

4 Modeling RSA Problems as Univariate Root Finding Problems

We address several RSA related problems that can be solved byfinding small roots
of univariate modular polynomial equations. Throughout this section, we will as-
sume thatN = pq is a product of two primes, and thate∈ Z∗

φ(N). BothN ande are
publically known.
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4.1 Relaxed RSA Problem: Stereotyped Messages

The RSA problem is the problem of inverting the RSA function.Givenme modN,
one has to find the uniqueeth rootm∈ ZN. TheRSA assumptionstates that the RSA
problem is difficult to solve for randomly chosenm∈ ZN.

Notice that the RSA problem is trivial to solve forsmall m and small e. Namely,
if m< N

1
e thenme modN = me overZ. Therefore, computation of theeth roots over

the integers yields the desired root.'

&

$

%

RSA problem

Given: me modN
Find : m∈ ZN

Relaxed RSA problem: Smalle, High Bits Known

Given: me,m̃ with |m− m̃| ≤ N
1
e

Find : m∈ ZN

Coppersmith extended this result to the case wherem is not small but we know
m up to a small part. Namely, we assume knowledge of an approximationm̃ such
that m = m̃+ x0 for some unknown part|x0| ≤ N

1
e . This can be modeled as the

polynomial equation
f (x) = (m̃+x)e−me modN.

Let us apply Theorem 1. We setβ = 1, δ = e andc = 1. Therefore, we can recover
x0 as long as|x0| ≤ N

1
e . This extends the trivial attack wherem is small to the

inhomogenous case: The most significant bits ofmare not zero, but they are known
to an attacker.

Clearly, one can interpret this as a cryptanalytic result. E.g., if e= 3 then an at-
tacker who can guess the first 2/3-fraction of the messagem is able to reconstruct
the last 1/3-fraction ofm in polynomial time. This might happen in situations were
the plaintext has a stereotype form like “The password for today is: xxxx”. There-
fore, this is often called anattack on stereotyped messages. Loosely speaking, the
cryptanalytic meaning is that an attacker gets an1

e-fraction of the RSA message
efficiently. We will see in Section 4.4 that this cryptanalytic interpretation can be
generalized to the case where the same messagem is sent several times.

On the other hand, one can interpret this result in a dual sense as a security result
for a 2/3-fraction of the plaintext bits in an RSA ciphertext. It is as difficult to com-
pute a 2/3-fraction ofmas inverting the RSA problem fore= 3. In general, there is
a tight reduction from the RSA problem to the problem of finding an e−1

e -fraction
of the most significant bits. Under the RSA assumption, this shows that the most
significant bits of an RSA plaintext are hard to find. Even stronger results on the
security of RSA bits were given by Håstad and Näslund [43].
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4.2 Constructive Applications of the Relaxed RSA Problem:
RSA-OAEP and RSA Pseudorandom Generator

The dual security interpretation of the Relaxed RSA problemwas used by Shoup [80]
in 2001. He gave a security proof of the padding scheme OAEP [2] when instanti-
ated with the RSA trapdoor function. Here, we only sketch Shoup’s proof. More
details on the proof and on cryptographic security notations can be found in Gen-
try’s survey [40].

In RSA-OAEP, the plaintext is split into two partssandt. The first partsdepends
on the messagem, a fixed padding and some randomization parameterr of length
k bits. The fixed padding ensures thats fulfills a well-defined format that can be
checked. The second partt is simply h(s)⊕ r for some hash functionh, which is
modeled as a random oracle. One encrypts the padded messages·2k + t. Let c be
the corresponding ciphertext.

Bellare and Rogaway [2] showed that RSA-OAEP is CCA1-secure, i.e. secure
against so-called lunch-time attacks. It was widely believed that RSA-OAEP is also
CCA2-secure, i.e. that it provides security against adaptive chosen ciphertext at-
tacks. In 2001, Shoup [80] showed that the original proof of Bellare and Rogaway
does not offer this level of security. However, using an analogous reasoning as in the
stereotyped message attack, he could easily derive CCA2-security for RSA-OAEP
with exponent 3.

In order to prove CCA2-security, we assume the existence of an adversary that
successfully attacks RSA-OAEP under chosen ciphertext attacks. This adversary is
then used to invert the RSA function. One defines a simulator in order to answer
the adversary’s decryption and hash queries. Shoup showed that any adversary that
never explicitly queriesh ons has a negligible probability to pass the format check
for the s-part. Thus, one can assume that the first parts has to appear among the
attacker’s queries. This in turn is already sufficient to extractt as a root of

f (t) = (s·2k + t)e−c modN,

provided that|t| < N
1
e which is fulfilled wheneverk < logN/e. This condition is

satisfied fore= 3 by the RSA-OAEP parameters. One should notice the correspon-
dence to the Relaxed RSA problem:s plays the role of the known message part ˜m,
whereast is the small unknown part.

We have reduced the RSA problem to an algorithm for attackingRSA-OAEP.
The reduction is tight up to a factor ofqh, the number of hash queries an adversary
is allowed to ask. Namely, the running time isqh times the time to run the LLL-based
algorithm for finding smalleth roots. The success probability of the RSA inverter
is roughly the same as the success probability of the adversary. This reduction is
tighter than the original reduction by Bellare-Rogaway forCCA1-security.

RSA-OAEP was shown to be CCA2-secure for arbitrarye by Fujisaki et al [36]
in 2001, using a 2-dimensional lattice technique. However,their reduction is also
less tight than Shoup’s: If the RSA attacker has success probability ε, then the RSA
inversion algorithm of [36] has success probability onlyε2.
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Another constructive application of Coppersmith’s attackon stereotyped messages
is used for the definition of an efficient RSA-based pseudorandom number genera-
tor (PRNG) in a recent paper by Steinfeld, Pieprzyk and Wang [82], which in turn
builds on a work of Fischlin and Schnorr [34]. In the Fischlin-Schnorr RSA-PRNG,
one starts with a random seedx0 and generates a sequencex1,x2, . . . by successively
applying the RSA function, i.e.xi = xe

i−1 modN. In each iteration, one outputs the
r least significant bits ofxi .

In the security proof, Fischlin and Schnorr show that any efficient algorithm that
distinguishes the generator’s output from the uniform distribution can be used to
invert the RSA function, i.e. to solve the RSA problem. However, the reduction
is not tight. Namely, ifTD is the running time of the distinguisher, then the in-
version algorithm’s running time is roughly 22rTD. Therefore, one can only output
r = O(loglogN) in each iteration in order to preserve a polynomial reduction.

In 2006, Steinfeld, Pieprzyk and Wang showed that one can securely output
Θ(logN) bits if one replaces the RSA assumption in the Fischlin-Schnorr proof
by a relaxed RSA inversion assumption. Namely, we already know that one can re-
cover an1

e-fraction of the message from an RSA ciphertext given the rest of the
plaintext. Steinfeld et al. make the assumption that this bound is essentially tight.
More precisely, they assume that any algorithm that recovers an 1

e + ε-fraction for
some constantε already requires at least the same running time as the best factoring
algorithm forN.

In fact, one replaces the RSA assumption by a stronger assumption which states
that the bound1

e for the Coppersmith attack on stereotyped messages cannot be
significantly improved. This stronger assumption is sufficient to increase the gener-
ator’s output rate fromr = O(loglogN) to the full-size ofr = Θ(logN) bits. The
efficiency of the Steinfeld, Piepryzk, Wang construction iscomparable to the effi-
ciency of the Micali-Schnorr generator [69] from 1988, but uses a weaker assump-
tion than in [69].

Another construction of an efficient PRNG and a MAC based on small root prob-
lems was proposed by Boneh, Halevi and Howgrave-Graham [19]. Its security is
proved under the hardness of the so-called modular inversion hidden number prob-
lem. The best algorithmic bound for attacking this problem is based on an LLL-
approach. The security proofs for the PRNG and the MAC again assume that one
cannot go significantly beyond this bound.

4.3 Affine Padding: Franklin-Reiter’s Attack

The following attack was presented by Franklin and Reiter [35] in 1995. The attack
was one year later extended by Coppersmith, Franklin, Patarin and Reiter [27].

Assume that two RSA plaintextsm, m′ satisfy an affine relationm′ = m+ r.
Let c = m3 modN andc′ = (m+ r)3 modN their RSA ciphertexts, respectively.
Franklin and Reiter showed that any attacker with knowledgeof c,c′, r andN can
efficiently recovermby carrying out the simple computation
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c′r +2cr− r4

c′−c+2r3 =
3m3r +3m2r2 +3mr3

3m2r +3mr2 +3r3 = m modN.

What happens in the case wherer is unknown but small?�

�

�

�

Affine related messages

Given: c1 = me modN,c2 = (m+ r)e modN with |r| ≤ N
1
e2

Find : m

If one is able to determiner from the ciphertexts, thenmcan be computed efficiently.
The resultant computation

Resm(c−m3,c′−(m+r)3)= r9+3(c−c′)r6+3(c2+c′2+7cc′)r3+(c−c′)3 modN

yields a monic univariate polynomialf (r) of degree 9. An application of Theorem 1

shows thatr can be recovered as long as|r| ≤ N
1
9 . For arbitrarye, the bound gener-

alizes to|r| ≤ N
1
e2 .

4.4 Related RSA messages: Extending Håstad’s attack

Assume that we want to broadcast a plain RSA encrypted message to a group of
k receivers all having public exponente and co-prime moduliN1, . . . ,Nk. I.e., we
send the messagesme modN1, . . . ,me modNk. From this information an attacker
can computeme mod ∏k

i=1Ni . If me is smaller than the product of the moduli, he
can computem by eth root computation over the integers. If allNi are of the same
bit-size we needk≥ e RSA encrypted messages in order to recoverm.

So naturally, an attacker gains more and more information byreceiving differ-
ent encryptions of the same message. Notice that this observation nicely links with
the attack on stereotyped RSA messages from Section 4.1. Recall that the cryptan-
alytic interpretation of the attack in Section 4.1 was that one gets an1

e-fraction of
the plaintext efficiently. The above broadcast attack can thus be interpreted as an
accumulation of this result. If one getsk ≥ e times an1

e-fraction of m efficiently,
then one eventually obtains the wholem.

The question is whether this is still true when the public exponents are differ-
ent and when the messages are preprocessed by simple paddingtechniques, e.g. an
affine transformation with a fixed known padding pattern. We show that whenever
the messages are polynomially related, then the underlyingplaintext can still be dis-
covered given sufficiently many encryptions. This result isan extension of Håstad’s
original result [42] due to May, Ritzenhofen [68].

Assume that the messagem is smaller than minj{Nj}. We preprocess the message
by known polynomial relationsg1, . . . ,gk with degreesδ1, . . . ,δk, respectively.
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�

�

�
Polynomially related RSA messages

Given: ci = gi(m)ei modNi for i = 1, . . . ,k with ∑k
i=1

1
δiei

≥ 1.
Find : m

Assume thatgi(x) has leading coefficientai 6= 1. Computea−1
i modNi . If this com-

putation fails, we obtain the factorization ofNi , which enables us to computem.
Otherwise we replaceci andgi(x) by a−ei

i ci anda−1
i gi(x), respectively. This makes

all gi(x) monic.

Let δ = lcmi{δiei} be the least common multiple of allδiei . DefineN = ∏k
i=1N

δ
δi ei
i .

We know that for alli = 1, . . . ,k we have

(gi(m)ei −ci)
δ

δi ei = 0 modN
δ

δi ei
i .

Let us compute by Chinese Remaindering a polynomial

f (x) =
k

∑
i=1

bi(gi(x)
ei −ci)

δ
δi ei modN,

where thebi are the Chinese remainder coefficients satisfyingbi modNj =

{

1 for i = j
0 else

.

Notice thatf (m) = 0 modN and thatf (x) is by construction a univariate monic
polynomial of degreeδ . Let us now upper-bound the size of our desired rootm.
Using the condition 1≤ ∑k

i=1
1

δiei
, we obtain

m< min
j
{Nj} ≤

(

min
j
{Nj}

)∑k
i=1

1
δi ei ≤

k

∏
i=1

N
1

δi ei
i .

By applying Theorem 1 with the parametersβ ,c = 1, we can find all rootsm up
to the same bound

m≤ N
1
δ =

k

∏
i=1

N
1

δi ei
i ,

which completes the description of the attack.

Let us look at our condition∑k
i=1

1
δiei

≥ 1 when we encrypt the plain messagem
without any further transformation. Thengi(x) = x is the identity with degreeδi = 1,
i.e. we obtain the simplified condition

k

∑
i=1

1
ei

≥ 1.
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Again this can be interpreted as an accumulation of the results for stereotyped RSA
messages in Section 4.1. Recall that for each encryption ofm under exponentei ,
we can compute an1ei

-fraction ofm efficiently. This information accumulates such

that whenever the sum∑i
1
ei

of all the fractions exceeds 1, we eventually obtain the
whole plaintextm.

4.5 Factoring with High Bits Known

Let N = pq, w.l.o.g. p > q. Assume that we are given an oracle for the most sig-
nificant bits ofp. Our task is to find the factorization ofN in time polynomial in
the bit-size ofN with a minimal number of queries to the oracle, i.e. we want to
minimize the oracle complexity.

One can view this problem as a natural relaxation of the factorization problem.
Without knowing any bits of the prime factorp, i.e. without using the oracle, we
have to solve the general factorization problem. For the general problem it is unclear
whether there exists a polynomial time algorithm in the Turing machine model. So
we provide the attacker with an additional sufficiently strong hint given by the oracle
answers that allows him to find the factorization in polynomial time.

In 1985, Rivest and Shamir [75] published an algorithm that factorsN given a
2
3-fraction of the bits ofp. Coppersmith [22] improved this bound to3

5 in 1995. One
year later, Coppersmith [24, 25] gave an algorithm using only half of the bits ofp.

Thefactoring with high bits knownproblem can again be reduced to the problem
of solving modular univariate polynomial equations with the LLL algorithm. Let us
assume that we are given half of the high-order bits ofp. Omitting constants, we
know an approximation ˜p of p that satisfies|p− p̃| ≤ N

1
4 .'

&

$

%

Factorization problem

Given: N = pq
Find : p

Relaxed Factorization: High Bits Known

Given: N = pq, p̃ with |p− p̃| ≤ N
1
4

Find : p

Our goal is to recover the least-significant bits ofp, i.e. we want to find the root of
the univariate, linear modular polynomial

f (x) = p̃+x mod p.

Observe thatp− p̃ is a root of f (x) with absolute value smaller thanN
1
4 .

We apply Theorem 1 withf (x) = p̃+ x, i.e. we have degreeδ = 1, β = 1
2 and

c = 1. Therefore, we can find all rootsx0 with size
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|x0| ≤ N
β2

δ = N
1
4 .

This enables us to recover the low-order bits ofp in polynomial time with the LLL
algorithm, which yields the factorization.

Thefactorization with high bits knownapproach can be extended to moduliN =
prq, wherep andq have the same bit-size. This extension was proposed by Boneh,
Durfee and Howgrave-Graham [18]. For simplicity, we assumethat p and q are
of the same bit size. For fixed bit-size ofN and growingr, these moduli should
be – from an information theoretical point of view – easier tofactor than usual
RSA moduli. Moreover, an attacker should learn from an approximation of p more
information than in the standard RSA case. This intuition turns out to be true.
We model this variant of the factorization problem as the univariate polynomial

f (x) = (p̃+x)r mod pr .

Setβ = r
r+1, δ = r andc = 1. An application of Theorem 1 shows that the LLL

algorithm recovers all rootsx0 with

|x0| ≤ M
β2

δ = N
r

(r+1)2 .

SinceN is roughly of sizepr+1, this means that we need an approximation ˜p with
|p− p̃| ≤ p

r
r+1 . Or in other words, we need a1r+1-fraction of the most significant

bits in order to factorN in polynomial time. I.e., for the RSA caser = 1 we need
half of the bits, whereas e.g. forr = 2 we only need a third of the most significant

bits of p. Forr = Ω(
√

logN
loglogN ), one only has to guessO(loglogN) bits of p, which

can be done in polynomial time.

4.6 Computingd ≡ Factoring

Our next application of the LLL algorithm addresses the difficulty of computing the
RSA secret exponent from the public information(N,e). We show that any algo-
rithm that computesd in deterministic polynomial timecan be transformed into an
algorithm that factorsN in deterministic polynomial time.

Let N = pqbe an RSA-modulus. Lete,d∈ Zφ(N) be the public/secret exponents,
satisfying the equationed = 1 modφ(N). If we are given the public information
(N,e) and the factorization ofN, thend can be computed in polynomial time using
the Euclidean algorithm. Rivest, Shamir and Adleman showedthat the converse is
also true: Given(N,e,d), one can factorN in probabilisticpolynomial time by an
algorithm due to Miller [70].

In 2004, it was shown in [66, 30] that there is also adeterministicreduction of
factoring to computingd using Coppersmith’s method. This establishes thedeter-
ministic polynomial time equivalenceof both problems.
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It is not hard to see that the knowledge ofφ(N) = N− (p+ q− 1) yields the
factorization ofN in polynomial-time. Our goal is to computeφ(N). Sincep,q are

of the same bit-size, the termN is an approximation ofφ(N) up to roughlyN
1
2 .

Therefore, the polynomial

f (x) = N−x modφ(N)

has a rootx0 = p+ q−1 of sizeN
1
2 . Let M = ed−1 = Nα for someα ≤ 2. We

know thatM is a multiple ofφ(N).
Now, we can apply the LLL algorithm via Theorem 1 with the parameter setting

δ ,c = 1, b = φ(N), M = Nα the integer of unknown factorization andβ = 1
α . We

conclude that we can find all rootsx0 within the bound

|x0| ≤ M
β2

δ = (Nα)
1

α2 = N
1
α .

Sinceα ≤ 2, we can find all roots within the boundN
1
2 , as desired.

4.7 Finding Smooth Numbers and Factoring

The following link between finding smooth integers with Coppersmith’s LLL-based
algorithm and factoring composite integersN was introduced by Boneh [12] in
2001.

Many classic factorization algorithms such as the Quadratic Sieve and the Num-
ber Field Sieve have to find values slightly larger than

√
N such that their square

modulo N isB-smooth. A number is calledB-smooth if it splits into prime factors
p1, p2, . . . , pn smaller thanB. We can model this by a univariate polynomial equation

fc(x) = (x+
√

cN)2−cN,

for small values ofc. Given an interval sizeX, the task is to find all solutions|x0| ≤X
such thatfc(x0) has a largeB-smooth factor. Whenever this factor is as large as
fc(x0) itself, thenfc(x0) factors completely over the factor basep1, . . . , pn.�

�

�

�

Finding Integers with Large Smooth Factor

Given: fc(x),B,X
Find : |x0| ≤ X such thatfc(x0) has a largeB-smooth factor.

Let us defineP = ∏n
i=1 pei

i . For simplicity reasons, we will assume hereei = 1 for
all exponents, although we could handle arbitrary multiplicities as well. We are
interested in integersx0 such that manypi divide fc(x0), i.e. fc(x0) = 0 modb for a
modulusb = ∏i∈I pi , whereI ⊆ {1, . . . ,n} is a large index set.
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Applying Theorem 1, it is easy to see thatb≥ P

√

2 logX
logP is sufficient to find all

|x0| ≤ P
β2

δ = P
2 logX
2 logP = 2logX = X.

Boneh [12] illustrates his result by giving numerical examples were just one appli-
cation of LLL on a 50-dimensional lattice yields all numbersin an interval of size
X = 2500 that have a sufficiently large smooth factor.

At the moment however, the technique does not lead to improvements to clas-
sical factorization algorithms, since it is unlikely that randomly chosen intervals of
the given size contain sufficiently many smooth numbers. Moreover, classical algo-
rithms usually need fully smooth numbers, whereas with the present method one
only finds numbers with a large smooth factor.

5 Applications of Finding Roots of Multivariate Equations

In this section, we study applications of the LLL algorithm for solving multi-
variate polynomial equations. We start by presenting the two most famous RSA
applications for solving bivariate modular polynomial equations: The attacks of
Wiener [88] and Boneh-Durfee [14] on RSA with small secret exponentd.'

&

$

%

RSA Key Recovery Problem

Given: N,e
Find : d with ed= 1 modφ(N)

Relaxed RSA Key Recovery Problem: Small key

Given: N,e with ed= 1 modφ(N) for somed ≤ Nδ

Find : d

Let us briefly describe Wiener’s polynomial time attack on RSA for secret keys
d≤N

1
4 . Although this attack was originally presented using continued fractions, we

will describe it within the framework of small solutions to linear bivariate equations.
We can write the RSA key equationed= 1 modφ(N) in the form

ed+k(p+q−1)−1= kN, (5)

for somek∈ N. This leads to a linear bivariate polynomialf (x,y) = ex+y that has
the root(x0,y0) = (d,k(p+q−1)−1) moduloN. It is not hard to see thatk < d. In

the case of balanced prime factors, we havep+ q≈
√

N. Ford ≤ N
1
4 , the product

x0y0 of the desired roots can therefore be upper-bounded byN.
It is well-known that linear modular polynomial equations can be heuristically

solved by lattice reduction whenever the product of the unknowns is smaller than
the modulus. For the bivariate case, this lattice techniquecan be made rigorous. In
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our case, one has to find a shortest vector in the latticeL spanned by the row vectors
of the following lattice basis

B =

(

NX 0
eX Y

)

, whereX = N
1
4 andY = N

3
4 .

Using an argumentation similar to the one in Section 2, one can see that a shortest
vectorv = (c0,c1) ·B yields a polynomialc0Nx+ c1 f (x,y) that evaluates to zero
over the integers at the point(x0,y0) = (d,k(p+q−1)−1). Since f (x0,y0) = kN,
we have

c0Nd = −c1Nk.

Becausev is a shortest vector, the coefficientsc0 andc1 must be co-prime. Therefore,
we conclude that|c0| = k and |c1| = d. From this information, we can derive via
Eq. (5) the termp+ q which in turn yields the factorization ofN in polynomial
time.

Instead of using a two-dimensional lattice, one could compute the tuple(k,d)
by looking at all convergents of the continued fraction expansion ofe andN. This
approach was taken in Wiener’s original work.

In 1999, Boneh and Durfee improved Wiener’s bound tod ≤ N1−
√

1
2 ≈ N0.292.

This result was achieved by writing the RSA equation as

k(N +1− (p+q))+1= ed.

This in turn yields a bivariate polynomialf (x,y) = x(N + 1− y)+ 1 with the root
(x0,y0) = (k, p+ q) moduloe. Notice thatf has the monomialsx,xy and 1. As in

Wiener’s attack, the productx0 ·x0y0 can be bounded byN wheneverd ≤ N
1
4 . Thus

for e of size roughlyN, we obtain the same bound as in the Wiener attack if we lin-
earize the polynomial. However, Boneh and Durfee used the polynomial structure
of f (x,y) in order to improve the bound toN0.292 by a Coppersmith-type approach.

Wiener as well as Boneh and Durfee posed the question whetherthere is also
a polynomial time attack for RSA with small secret CRT-exponent d. We call d
a small CRT-exponent if the valuesdp = d mod p− 1 anddq = d modq− 1 are
small. This enables a receiver to efficiently decrypt modulop andq and combine
the results using the Chinese remainder theorem (CRT) [74].'

&

$

%

RSA Key Recovery Problem

Given: N,e
Find : d with ed= 1 modφ(N)

Relaxed RSA Key Recovery Problem: Small CRT-key

Given: N,e with edp = 1 modp−1 andedq = 1 modq−1 for dp,dq ≤ Nδ

Find : d with d = dp mod p−1 andd = dq modq−1
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Recently, Jochemsz and May[52] presented a polynomial timeattack for RSA with
dp,dq ≤N0.073, building on an attack of Bleichenbacher and May [5]. The basic idea
is to write the RSA key equation in the form

∣

∣

∣

∣

edp +kp−1 = kpp
edq +kq−1 = kqq

∣

∣

∣

∣

,

with the unknownsdp,dq,kp,kq, p andq. We eliminate the unknownsp,q by multi-
plying both equations. Rearranging terms yields

e2dpdq +e(dp(kq−1)+dq(kp−1))+kpkq(1−N)+ (kp+kq+1) = 0.

In [5], the authors linearize this equation and derive attacks for variants of the RSA
cryptosystem wheree is significantly smaller thanN. In [52], the full polynomial
structure is exploited using a Coppersmith technique in order to extend the lineariza-
tion attack to full sizee.

By assigning the variablesx1,x2,x3,x4 to the unknownsdp,dq,kp,kq, respec-
tively, one obtains a 4-variate polynomial equation which evaluates to zero over
the integers. A Coppersmith-type analysis results in a heuristic polynomial time at-
tack that works fordp,dq ≤ N0.073.

EJMW
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Fig. 1 Partial Key Exposure attack

Several results in the literature also ad-
dress the inhomogenous case of small RSA
secret key relaxations, whered is not small
but parts ofd’s bits are known to an attacker.
Boneh, Durfee and Frankel introduced sev-
eral of these so-called Partial Key Exposure
attacks, which were later extended in Blömer,
May [7] and EJMW [33]. In the latter work,
the authors showed that the Boneh-Durfee at-
tack naturally extends to the inhomogenous
case for alld smaller thanφ(N). The largerd
is, the more bits ofd an attacker has to know
(see Fig. 1).

Again, the former cryptanalytic results
have a dual interpretation as security results.
They establish the security of certain parts of
the bits of the RSA secret key. More precisely, the results state that recovering
these bits is as hard as factoring the RSA modulus given only the public infor-
mation (N,e). This opens the possibility to publish the remaining bits ofthe se-
cret key, which can be used e.g. in server-aided RSA systems,where parts of an
RSA signature computation are outsourced to an untrusted server. This dual appli-
cation was first proposed by Boneh, Durfee and Frankel [18]. Later, Steinfeld and
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Zheng [83] proposed another server-based RSA system, whichprovides provable
security against Partial Key Exposure attacks.

6 Survey and References for LLL-based RSA and Factoring
Results

The following table gives an overview and references of various applications of
Coppersmith’s LLL-based methods for finding small roots when applied to relaxed
RSA or factorization problems. Although not all of these results are originally de-
scribed in terms of small root problems, they all more or lessfit in this framework
and might serve as useful pointers for further reading.

Method

Method/variants Håstad 88[42], Girault,Toffin,Vallée 88[37]
Coppersmith 96,97,01[23, 24, 25, 26], Howgrave-
Graham 98,01[48, 49], Jutla 98[53], May 03[65],
Bernstein 04[3], Coron 05,07[28, 29], Bauer, Joux 07[1]

Optimize bounds Blömer,May[10] , Jochemsz, May[52]

RSA

Inverting RSA Håstad 89[42], Coppersmith 96[23, 25],
May, Ritzenhofen 08[68]

Smalld Wiener 90[88], Boneh, Durfee 98[14, 15],
Durfee, Nguyen 00[32], Blömer, May 01[9],
de Weger 02[87], Hinek 02[45], May 04[67]

Known bits ofd Boneh, Durfee, Frankel 96[16], Blömer, May 03[7],
Ernst, Jochemsz, May, de Weger 05[33]

Key recovery May 04[66], Coron, May 07[30],
Kunihiro, Kurosawa 07[57]

Small CRT-d May 02[64], Hinek, Sun, Wu 05[85],
Galbraith, Heneghan, McKee 05[38, 39],
Bleichenbacher, May 06[5], Jochemsz, May 06[51, 52]

Proving Security Shoup 01[80], Boneh 01[13], Steinfeld, Zheng 04[83]
PRNG, MAC Boneh, Halevi, Howgrave-Graham 99[19],

Steinfeld, Pieprzyk, Wang 06[82]

Factoring

High Bits known Rivest, Shamir 86[75], Coppersmith 95,96[22, 23],
Boneh, Durfee, Howgrave-Graham 99[18],
Crépeau, Slakmon 03[31],
Santoso, Kunihiro, Kanayama, Ohta 06[77],
Herrmann, May 08[44]

Finding relations Schnorr 01[78], Boneh 00[12]
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7 Open Problems & Speculations

7.1 Optimizing bounds: On Newton polytopes and Error Terms

In this section, we will explain how to optimize the upper bounds up to which small
roots can be found. Here, a polynomial’s Newton polytope will play a central role.
We will also see that the upper bounds usually incorporate some error term, which
in many cases can be eliminated by splitting the search interval into smaller pieces
and treating each subinterval separately (see e.g. the proof of Theorem 1).

In all applications of Coppersmith’s method, one starts with either a polyno-
mial modular equationf (x1, . . . ,xm) = 0 modb or a polynomial integer equation
f (x1, . . . ,xm) = 0. Using this equation, one defines algebraic multiplesf1, . . . , fn of
f which contain the same small roots. For instance, iff is a univariate polynomial
equation inx as in Section 2, this is done by multiplyingf with powers ofx and
by taking powers off itself. In the univariate case, it is clear which set of algebraic
multiples maximizes the size of the rootsx0 that we can efficiently recover. Indeed,

we will argue in Section 7.3, that the bound|x0| ≤ N
β2

δ from Section 2 cannot be
improved in general, since beyond this boundf may have too many roots to output
them in polynomial time.

For univariate modular polynomial equationsf (x), one looks for an integer linear
combinationg(x) = ∑i ai fi(x), ai ∈ Z, such thatg(x0) = 0 over the integers for all
sufficiently small roots. These roots can then be found by standard root finding
methods.

For irreducible bivariate polynomialsf (x,y), one similarly defines algebraic mul-
tiples f1(x,y), . . . , fn(x,y). The goal is to find a polynomialg(x,y) = ∑i ai fi(x,y) by
LLL-reduction such thatgi(x,y) is not a multiple off (x,y). Then the roots can be
found by resultant computations.

Whereas the choice of the algebraic multiples is quite straightforward for univari-
ate polynomials, for multivariate polynomials the choice of the algebraic multiples
appears to be a complex optimization problem. The bounds forthe roots that one
computes mainly depend on the largest coefficient of the polynomial and the poly-
nomial’s Newton polytope - i.e. the convex hull of the monomials’ exponents when
regarded as points in the Euclidean space.

Let us give an example for this. As explained in Section 4, we can factor
N = pq with known high bits ofp by using the univariate polynomial equation
f (x) = p̃+ x mod p, wherep̃ is an approximation ofp up toN

1
4 . The same result

can be achieved by computing ˜q = N
p̃ and solving the bivariate integer polynomial

f (x,y) = (p̃+x)(q̃+y)−N. The largest coefficient in this equation is ˜pq̃−N, which

is roughly of sizeW = N
3
4 . The monomials off (x,y) are 1,x,y andxy, i.e. the New-

ton polytope is a square defined by the points(0,0),(0,1),(1,0) and(1,1). Opti-
mizing the upper boundsX,Y for the size of the roots inx,y, respectively, yields the
conditionXY≤W

2
3 . This is equivalent toXY≤N

1
2 or X,Y ≤ N

1
4 . Thus, we achieve

the same result as in the univariate modular case.
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We could however also look at the bivariate polynomialf (x,y) = (p̃+ x)y−N.
The largest coefficient isW = N and the Newton polytope defined by(0,0),(0,1),(1,1)
is a triangle. Optimizing the bounds for this shape of the Newton polytope yields the
condition(XY)4 ≤W3. SettingY = N

1
2 andW = N yieldsX4 ≤N which leads again

to X ≤ N
1
4 .

Interestingly, we do not need the approximation ofq for achieving the same re-
sult. Since we do not need the bits ofq, one should ask whether we indeed need to
know the bits ofp. Let us look at the polynomial equationf (x,y) = xy−N, where
W = N and the Newton polytope is a line formed by(0,0) and(1,1). Applying a
Coppersmith-type analysis to this polynomial yields the boundXY≤W1−ε = N1−ε ,
for some error termε. Notice that a bound ofXY≤ 2N would easily allow to factor
N = pq if p,q have equal bit-size, sincep≤

√
N = X andq≤ 2

√
N = Y.

What does the boundXY ≤ N1−ε imply? Can we remove the error termε and
derive the desired bound by running the algorithm on 2Nε copies, where we search
in each copy for the roots in an interval of sizeN1−ε? I.e. can we factor in time
Õ(Nε )? And provided that the error termε satisfiesε = O( 1

logN), can we factor in
polynomial time?

(Un)fortunately, the answer is NO, at least with this approach. The reason is
that as opposed to other polynomials, we cannot simply guessa few bits of the
desired small root(x0,y0) = (p,q), since this would either change the structure of
the Newton polytope or the size ofW. If we guess bits ofx0, we introduce the
monomialy and symmetrically fory0 we introduce thex-monomial. But as shown
above, this changes our bound to an inferiorXY ≤ N

3
4 . On the other hand, if we

guess bits ofx0y0 our largest coefficient decreases accordingly.
Notice that e.g. for the polynomial(p̃+ x)y−N guessing bits ofx0 is doable

since the guessing does not introduce new monomials. Thus, in this case a small
error term in the bound can be easily eliminated by a brute-force search technique.

7.2 Applying the Method to Multivariate Polynomial Equations

Another challenging problem is to obtain provability of thealgorithm in the mul-
tivariate setting. This problem is not only of theoretical interest. There have been
cases reported, where the heuristic method – which computesthe roots by resultant
computations – for multivariate polynomials systematically fails [9].

Let us see why the method provably works for the bivariate integer case and
what causes problems when extending it to a third variable. Coppersmith’s original
method for bivariate integer polynomials constructs on input f (x,y) a polynomial
g(x,y), such thatg(x,y) cannot be a polynomial multiple off (x,y). In other words,
g(x,y) does not lie in the ideal〈 f 〉 generated byf and therefore the resultant off
andg cannot be the zero polynomial.

Heuristically, one extends this approach to three variables by constructing two
polynomialsg1,g2 with LLL-reduction. The resultantsr1 = Res( f ,g1) and r2 =
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Res( f ,g2) are bivariate polynomials. The resultant Res(r1, r2) is then univariate and
yields one coordinate of the roots, provided that the resultant does not vanish. The
other coordinates of the roots can be found by back-substitution. The resultant is
non-vanishing iffg1 andg2 are algebraically independent.

Recently, Bauer and Joux [1] proposed a twist in the above construction which
in some cases enables to guarantee algebraic independence also for polynomials in
three and more variables. Basically, their approach is an iterative application of Cop-
persmith’s original technique for bivariate polynomials.Given a trivariate polyno-
mial f (x,y,z), one constructs a polynomialg(x,y,z) such thatg does not lie in〈 f 〉.
Afterwards, one uses a Gröbner Basis approach and another iteration of the LLL
procedure to construct a third polynomialh(x,y,z), which does not lie in〈 f ,g〉.

Unfortunately, Bauer and Joux’s approach still incorporates a heuristic assump-
tion. For trivariate polynomials of a special shape however, the approach can be
made fully rigorous.

7.3 What Are the Limitations of the Method?

Coppersmith’s method outputsall sufficiently small solutions of a polynomial equa-
tion. Since the method runs in polynomial time, it can only output a polynomial
number of solutions. Thus, the method proves in a constructive way a limit for the
number of roots within a certain interval. This limit matches for univariate modular
polynomials the bounds by Konyagin, Steeger [56]. The number of roots of each
polynomial equation thus limits the size of the interval that we are able to search
through in polynomial time. Let us demonstrate this effect for univariate modular
polynomial equations.

Let N = pr . Assume that we want to solve the equationf (x) = xr modN.
Clearly, allx0 = kp,k ∈ N, are solutions. Hence solving this equation for solutions
|x0| ≤ p1+ε would imply that one has to outputpε solutions, an exponential number.

This argument serves as an explanation why the bound|x0|= N
1
δ from Section 2

cannot be improved in general. On the other hand, for the following two reasons this
argument does not fundamentally rule out improvements for any of the applications’
current bounds mentioned in this survey.

First, the factorization ofN = pr can be easily determined. Hence, there might be
an improved method which exploits this additional information. Indeed, Bleichen-
bacher and Nguyen [6] describe a lattice-based method forChinese remaindering
with errorsthat goes beyond the Coppersmith-type bound in cases where the factor-
ization of the modulus is known.

Second, in all the applications we studied so far, an improvement of the bound
would not immediately imply an exponential number of solutions. Look for instance
at thefactoring with high bits problemand let us take the polynomialf (x) = p̃+
x mod p. The solution of this polynomial is unique up to the bound|x0| ≤ p. So
although we have no clue how to solve the factorization problem with the help of
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lattice reduction techniques, there is also no limiting argument which tells us that it
is impossible to extend our bounds to the general case.

As a second example, look at the Boneh-Durfee attack on RSA with d ≤
N0.292 which introduces the bivariate polynomial equationsf (x,y) = x(N+1−y)+
1 mode. Assume thate is roughly of sizeN. Sincey is the variable forp+ q, its
size can be roughly bounded by

√
N. Assume that for a fixed candidatey the map-

ping g : x 7→ x(N +1−y)+1 mode takes on random values inZe. If we map
√

N
candidates forx for every of the

√
N choices ofy, we expect to map to zero at most

a constant number of times.
This counting argument let Boneh and Durfee conjecture thatone can achieve a

bound ofd ≤
√

N in polynomial time attacks on RSA with small secretd. More-
over, if one used the fact thaty representsp+ q, which implies thaty0 is already
fully determined byN, then the counting argument would not rule out a bound be-
yond

√
N. If we could make use of this information abouty0, then there would be

a unique candidate forx0 in Zφ(N) and recovering this candidate would solve the
RSA problem as well as the factorization problem. However, despite considerable
research efforts the boundd ≤ N0.292 is still the best bound known today. It remains
an open problem to further push it.

8 Summary

The invention of the LLL algorithm in 1982 was the basis for the construction of
an efficient algorithm due to Coppersmith for finding small solutions of polynomial
equations in 1996. This in turn opened a whole new line of research and enabled
new directions for tackling challenging problems such as the RSA problem or the
factorization problem from a completely different angle. As opposed to traditional
approaches like the Elliptic Curve Method and the Number Field Sieve, the LLL-
based approach is polynomial time but solves only relaxed versions of the RSA and
the factorization problem.

Today, the relaxed versions are still pretty far away from the general instances.
But there appears to be a steady progress in finding new interesting applications and
the existing bounds are continuously pushed. From a research point of view, it is
likely that the young field of LLL-based root finding still hides many fascinating
results that await their discovery.

Acknowledgments:The author thanks Mathias Herrmann, Ellen Jochemsz, Phong
Nguyen, Maike Ritzenhofen and Damien Stehlé for comments and discussions.
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