Using LLL-Reduction for Solving RSA
and Factorization Problems

Alexander May

Abstract 25 years ago, Lenstra, Lenstra and Lovasz presented tebrated LLL
lattice reduction algorithm. Among the various applicai®f the LLL algorithm
is a method due to Coppersmith for finding small roots of poiyial equations.
We give a survey of the applications of this root finding metiw the problem of
inverting the RSA function and the factorization problens. e will see, most of
the results are of a dual nature, they can either be integbieet cryptanalytic results
or as hardness/security results.
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1 Introduction

The RSA cryptosystem invented by Rivest, Shamir and Adlemak®77 [76] is
today’s most important public-key cryptosystem. Let usateyN = pgan RSA-
modulus which is the product of two primgsq of the same bit-size. Let be an
integer co-prime to Euler’s totient functiopf(N) = (p—1)(qg—1). The RSA en-
cryption function takes a messageo thee power in the ringZy. The security of
RSA relies on the difficulty of inverting the RSA encryptiamiction on the aver-
age, i.e. extracting” roots in the ringZy. We call this problem the RSA inversion
problem or the RSA problem for short.

Letd be the inverse o modulo@(N). Computingd™ powers inZy inverts the
RSA encryption function. Sinceé can be easily computed when the prime factor-
ization ofN is known, the RSA cryptosystem is at most as secure as théepnaij
computingd and the problem of factoriniy. Indeed, we will see that the last two
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problems are polynomial time equivalent. However, it is ofigne most challenging
problems to prove or disprove the polynomial time equive¢eaf the RSA prob-
lem and the problem of factoring. There are results that these problems are not
equivalent under restricted reductions [20]. On the otlagidh one can show that in
restricted generic attack models both problems appear ¢égbigalent [21, 58].

Despite considerable efforts to attack RSA (see [11, 54ktoweys), the cur-
rently best way is still to factor the RSA modulus. Consedlyeresearchers fo-
cussed for a long time on the construction of factorizatityo@thms for attack-
ing RSA. In this factorization line of research, the goalasntinimize the com-
putational complexity in the common Turing machine modéie Tmost impor-
tant milestones in the construction of factorization aidpons in the 80s and 90s
are the invention of the Quadratic Sieve [73], the Elliptiar@& Method [59]
and the Number Field Sieve (NFS) [60]. The NFS is currently best algo-
rithm for factoring RSA moduli. It factordN in subexponential time and space
Ln[2,¢ = @(exp(c(logN) (loglogN)?)) for c ~ 1.9,

Of course, the ultimate cryptanalyst’'s goal is the consimncof a polynomial
time algorithm for either the RSA problem or the factoripatproblem. Since it is
unknown whether there exist algorithms for these probleitis Turing complexity
Ln[a,c] fora < % one might ask for polynomial time algorithmsather machine
modelsor for interestingelaxationsof the RSA and factorization problem.

In 1994, Shor [79] presented an algorithm for solving thedezation prob-
lem in time and space polynomial in the bit-lengthNyf provided that the model
of Turing machines is replaced by the model of quantum Tunraghines. This
ground-breaking theoretical result led to intensive eagiing efforts for building
quantum computers in practice. However, today it is stitlear whether quantum
computers with a large number of quantum bits can ever bermesd.

In the 90s, another interesting line of research evolvedchvasespolynomial
timealgorithms in theTuring machine modeHowever, in order to achieve polyno-
mial complexity one has to relax the RSA and factorizatiosbpgm. So instead of
changing the model of computation, one relaxes the probteemselves by look-
ing at restricted instances. The most natural restrictorealized by limiting the
parameter set of the instances to an interval which is smién in the general
setting, but still of exponential size.

A variation of this limiting approach addresses full paréenesets, but allows
additional access to an oracle for parts of the solution, fergsome of the bits.
Notice that the oracle queries have the effect of cuttingrdtiwe search space for the
solution. The so-calledracle complexityneasures the number of oracle queries that
is required in order to solve the underlying problem in paolyral time. Of course,
one is interested in minimizing the number of oracle quesiad in restricting the
oracle’s power, i.e. the type of queries that an oracleespt. Oracles are motivated
by other cryptographical mechanisms, so-called sidefoélaritacks, that often leak
partial information of the secrets, and therefore behayeawtice like an oracle.

In the following we will call both approaches, limiting theameter sets and
allowing for an oraclerelaxationsof the problem instances. In order to solve these
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relaxed instances, one models them as a polynomial equatidiries to find the
integer solutions.

Let us illustrate this approach by a simple example. The R&fofization prob-
lem is the problem of finding, g on inputN. This can be modeled by a polynomial
equationf(x,y) = N —xy. The positive integer roots of this polynomial equation
are(1,N),(p,q),(q,p),(N,1). Since we assume thatq are of the same bit-size,
finding all integer solutions which are in absolute value #enghan roughlyy/N
suffices to solve the factorization problem. Thus, one omly to findsmall solu-
tions wheresmall means that the size of the root is small compared to the size of
the coefficients of the polynomial. Naturally, one can detipper boundX,Y for
the size of the roots iR, y, respectively. The ultimate goal is to find a polynomial
time algorithm which succeeds whenev€Y < N. Since we do not know how to
achieve this bound, we relax the factorization problem.

A natural relaxation of this problem is to narrow down thershapace for the
prime factors. Assume that we are given oracle access to ¢is¢ significant bits
of p. This allows us to compute an approximatipmf™p such thatp— p| is sig-
nificantly smaller than/N. Theng'= % defines an approximation of Therefore,
we obtain the polynomial equatiof(x,y) = N — (f+ x)(§+y) with a small root
(p— P,q— §), where the size of the root depends on the quality of the aqpias
tion. It was shown by Coppersmith in 1996 [24], that the dolubf this problem

can be found in polynomial time KXY < NZ.

Building on works in the late 80's [42, 37], Coppersmith [28, 25, 26] derived a
general algorithm for finding small roots of polynomial etjoas. This root finding
algorithm in turn is essentially based on the famous LLLuetbn algorithm by
Lenstra, Lenstra and Lovasz [61]. The key idea is to encadigmpmial equations
with small solutions as coefficient vectors that have a siadllidean norm. These
coefficient vectors can efficiently be found by an applicatid the LLL-reduction
algorithm.

We will survey several applications of Coppersmith’s aithon to relaxations of
the RSA problem and the factorization problem. Many of thegselications natu-
rally allow for a dual interpretation, both as a cryptanialyésult and as a security
result. Let us give an example for this duality. In 1996, Gensmith [23] showed
that for RSA withe = 3, an attacker who knows/3 of an RSA-encrypted mes-
sagem can recover the remaining third from the ciphertext in polyieal time. The
cryptanalytic interpretation is that knowing only #@32fraction of the plaintext is
already enough to recover the whole. The security inteaficet is that recovering a
2/3-fraction must be hard, provided that solving the RSA peabfore = 3 is hard.
Thus, this result establishes the security of 8-Fraction of the underlying plaintext
under the RSA assumption. This security interpretationwgzsl by Shoup [80] to
show the security of RSA-OAEP fer= 3 under chosen ciphertext attacks. We will
elaborate a bit more on this duality effect in the paper.

This survey is organized as follows. We start in Section 2iling a high-level
description of Coppersmith’s algorithm for finding smalbte of univariate modular
polynomials. We state a theorem which provides us with aruppund for the size
of the roots of a univariate polynomial that can efficientyfbund.
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The details of the theorem’s proof are given in Section 3sBerction is devoted
to people who are interested in the technical details of ththod, and those who
want to implement a Coppersmith-type univariate root figdahgorithm. It is the
only section that requires some basic knowledge of lattieety from the reader.
People that are mainly interested in the applications ofpg@ogmith’s method can
proceed to the subsequent section.

In Section 4, we will extensively use our theorem for findimgad roots. We
will model certain relaxed RSA and factorization problenssuaivariate polyno-
mial equations. For instance, we present Coppersmitl@slatin RSA with stereo-
typed messages [23] and show its dual use in Shoup’s sepuoity [80] and for the
construction of an RSA-based pseudorandom number generaposed by Stein-
feld, Pieprzyk and Wang [82]. Moreover, we will show a getizadion of Hastad’s
broadcast attack [42] on RSA-encrypted, polynomially texlamessages that pro-
vides a natural link to Coppersmith’s attack on stereotyR8é messages.

We then describe théctoring with high bits knowrresults from Copper-
smith [24] and Boneh, Durfee, Howgrave-Graham [18]. Furtigre, we show a
deterministic polynomial time reduction of factoring taeputingd [66, 30], which
establishes the hardness of the so-called RSA secret keyemgcproblem under
the factorization assumption. We conclude this sectionthying Boneh'’s algo-
rithm [12] for finding smooth integers in short intervals.elTproblem of finding
smooth integers is related to classical factorization fétlgms such as the Number
Field Sieve.

In Section 5, we will turn our focus to multivariate extensamf Coppersmith’s

LLL-based method. We present Wiener’s attack [88] on RSAwlit< N7 as a
bivariate linear equation, which was originally phrasederms of the continued
fraction algorithm. We then present the bivariate polyradregquation of Boneh and
Durfee [14, 15] that led to a heuristic improvement of the fbto d < N%292,
As an example of an application with more variables, we preaéeuristic poly-
nomial time attack of Jochemsz, May [52] for RSA with so-edlCRT-exponents
d modp—1,d modq— 1 smaller tharN®%73, Dually to these attacks, the server-
based RSA signature generation proposals of Boneh, Dufaakel [16] and Ste-
infeld, Zheng [83] are constructive security applications

Since the number of applications of Coppersmith’s LLL-lsheeethod for the
RSA/factorization problem is already far too large to captll the different results
in this survey, we try to provide a more comprehensive liseédérences in Section 6.
We are aware of the fact that it is impossible to achieve cetepkss of such a list,
but our references will serve the purpose of a good stariiigy for further reading.

In Section 7, we give some open problems in this area and tepéaulate in
which direction this line of research will go. Especiallyg wiscuss to which extent
we can go from relaxed instances towards general probletanoss, and where
the limits of the method are. This discussion naturally $edspeculations whether
any small root finding algorithm based on LLL-reduction vallentually have the
potential to solve general instances of the RSA problemefébtorization problem
in polynomial time.
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2 How to Find Small Roots: The Univariate Case

We first introduce the problem of finding solutions of a moduwiaivariate poly-
nomial equation. Then we argue that this approach extengpislymomials in more
variables in a heuristic manner.

Let N be a positive integer of unknown factorization with divigor NP, 0 <
B < 1.! Let f(x) be a monic univariate polynomial of degrée We are looking
for all small roots of the polynomidl modulob. I.e., we want to efficiently find all
solutionsxg satisfying

f(xo) =0 modb with [Xo] <X,

whereX is an upper bound on the size of the solutions. Our goal is timmae
the boundX, with the restriction that the running time of our method whobe
polynomial in the input size, i.e. polynomial in the paraerstlogN, J).

We would like to stress thall is an integer ofunknownfactorization, which
makes the above root finding problem hard to solve. If the eriattors ofN are
given, efficient algorithms with finite field arithmetic aradwn for the problem.

In 1996, Coppersmith [25] proposed an elegant LLL-basedatkfor finding
small solutions of univariate polynomial equations. Heve describe his approach
using the notion of Howgrave-Graham'’s reformulation [4Bjree method. Copper-
smith’s approach is basically a reduction of solving modplalynomial equations
to solving univariate polynomials over the integers. |.ee @onstructs fronf (x)
another univariate polynomig(x) that contains all the small modular rootsfdik)
over the integers:

f(x))=0modb = g(xo) =0overZ forall |xo| <X.

The algorithmic idea for the constructiong(i) from f(x) can be described via the
following two steps:

(1)Fix an integem. Construct a collectio® of polynomialsfy(x), f2(X),..., fn(X)
that all have the small rootg modulob™. As an example, take the collection

fix) =N™fi(x) fori=1,...,m
fri (X) = X £M(x) fori=1,...,m.

(2)Construct an integer linear combinatigix) = 31, a; fi(x), a € Z such that the
condition

|9(x0)| < b™
holds. Notice thab™ divides all fi(xg) by construction. Thereford™ also di-

videsg(xo). But theng(xp) = 0 modb™ and |g(xo)| < b™, which implies that
g(xo) = 0 over the integers.

1 An important special case is= N, i.e. 3 = 1.
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The construction in step (2) is realized by an LLL-based agpih. Namely, one
can easily show that every polynom@givhose coefficient vector af(xX) has suf-
ficiently small norm fulfills the conditiong(xo)| < b™. The integer linear combi-
nations of the coefficient vectors &f(xX), i = 1...n, form a latticeL. Applying a
lattice basis reduction algorithm to a basid ofields a small norm coefficient vec-
tor g(xX). One can show that in our case the LLL-reduction algorithrherfstra,
Lenstra and Lovasz [61] outputs a sufficiently small vecitrereforeg(x) can be
computed in polynomial time via LLL-reduction.

Eventually, one has to find the rootsgix) over the integers. This can be done
by standard polynomial factorization methods like the Blesimp-Zassenhaus algo-
rithm. Interestingly, the initial application of the LLL@dbrithm was a deterministic
polynomial time algorithm [61] for factoring polynomials iQ[X]. In 2001, van
Hoeij [46, 47] proposed an improved, highly efficient LLLdwal factorization al-
gorithm (see [55] for an introduction). Thus we cannot ordg LLLL to construcy
but also to find its integer roots.

The details of the proof of the following result can be foun®iection 3.

Theorem 1 Let N be an integer of unknown factorization, which has asdivb >
NP, 0< B <1 Let f(x) be a univariate monic polynomial of degréand let c> 1.
Then we can find all solutiong »f the equation

2
f(x) =0 modb with |xo| <cN'

in time &(c5°log®N).

Although LLL reduction only approximates a shortest vectprto some factor
that is exponential in the lattice dimension, it is impottempoint out that lattice
reduction techniques which give better approximations atohelp to improve the
bound given in Theorem 1.

Coppersmith proved this result for the special c8se 1, i.e.b = N. The term
B2 first appeared in Howgrave-Graham’s work [50] for the spemaged = 1, i.e.
for a linear polynomial. A proof of Theorem 1 first appearebs].

Coppersmith’s method generalizes in a natural way to moduldtivariate poly-
nomialsf(xy,...,%). The idea is to constructalgebraically independergolyno-
mialsg\V),...,g!¥ that all share the desired small roots over the integersratts
are then computed by resultant computations./#or2, this is a heuristic method
because although the LLL-algorithm guarantees lineargaddence of the coef-
ficient vectors, it does not guarantee algebraic indeperelehthe corresponding
polynomials.

The case of solving multivariate polynomial equatianver the integers- not
modular — uses similar techniques. In the integer case, #thad of finding small
roots of bivariate polynomial$(x,y) is rigorous, whereas the extension to more
than two variables is again a heuristic. Coron showed in 228, that the case of
solving integer polynomials can in principle be reduced¢ase of solving mod-
ular polynomials.
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3 Proof of Theorem 1 & Algorithmic Considerations

In this section, we will give a complete proof of Theorem laBers who are mainly
interested in the methods’ applications can skip this sacind proceed to Sec-
tion 4.

We provide an algorithm that on input

e anintegeiN of unknown factorization,
e amonic, univariate polynomidl(x) of degreed
e aboundB € (0,1], such thab > N for some divisobb of N

outputs in time polynomial in loly and¢ all solutionsxg such that
e f(xg) =0 modband

2
o [l <N%.

Normally, the property thaf (x) is monic is no restriction in practice. Assume
that f (x) has a leading coefficiemis # 1. Then we can either makex) monic by
multiplying with the inverse o5 moduloN, or we find a non-trivial factorization
of N. In the latter case, we can work modulo the factorslof

The following lemma of Howgrave-Graham [48] gives us twateria under
which we can find a polynomiaj(x) that evaluates to zero over the integers at
small roots.

Theorem 2 (Howgrave-Graham) Let g(x) be an univariate polynomial with n
monomials. Further, let m be a positive integer. Suppose tha

(1) g(x0) =0 m%dbm where|xg| < X
@) o)) < &

Then dxp) = 0 holds over the integers.
Proof: We have
90x0) = Y exo < Y [eixg)
| |

< 3 6[XT < VAilgox)| < b™

But g(xo) is a multiple ofb™ and therefore it must be zero.

Using powers off, we construct a collectiofy (x), ..., fa(x) of polynomials that
all have the desired rooxs modulob™. Thus, for every integer linear combination
gwe have

n
g(%o) = ziaa fi(xo) =0 modb™, & €Z.
i=
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Hence every integer linear combination satisfies cond{tlgrf Lemma 2. Among
all integer linear combinations, we search for one that a#sfies condition (2).
In other words, we have to search among all integer linearb@mations of the
coefficient vectord;(xX) for a vector with Euclidean norm smaller th%%. This
can be achieved by finding a short vector in the latticganned by the coefficient
vectors offj (xX).

Our goal is to ensure that the LLL algorithm finds a vectarith ||v|| < bT: inL.
By a theorem of Lenstra, Lenstra and Lovasz [61], the norra shortest vector
v in an LLL-reduced lattice basis can by related to the deteamii defL) of the
corresponding lattice with dimensiom via

n—1 1
v < 2" det(L).
The determinant dét) can be easily computed from the coefficient vectors of
fi(xX). If we could satisfy the condition

1 NBm
n < —,
vn

then we obtain the desired inequaljtyj| < N—ﬂ" < b

2" defl) (1)

n —n’
Neglecting low-order terms in (1), i.e. terms that do noteteponN, we obtain
the simplified condition
det(L) < NP™",

Let L be a lattice of dimension with basisB satisfying this condition. Then on
average a basis vectore B contributes to the determinant with a factor less than
NA™ We call such a basis vectohalpful vector Helpful vectors will play a central
role for the construction of an optimized lattice basis.

The following theorem of Coppersmith states that for a mguoiynomial f (x)

. B2 . I
of degreed, all rootsxg with |xg| < %NT*S can be found in polynomial time. We
will later show that the error termand the facto% can be easily eliminated, which
will lead to a proof of Theorem 1.

Theorem 3 (Coppersmith) Let N be an integer of unknown factorization, which
has a divisor b> NP, 0 < B < 1. Let0 < & < 3. Furthermore, let fx) be a
univariate monic polynomial of degre® Then we can find all solutiong %or the
equation

. 1 82 .
f(x) =0 modb with |xo|§§N6 .

The running time is dominated by the time to LLL-reduce aclatbasis of dimen-
sion ¢(¢715) with entries of bit-sizeZ (¢ tlogN). This can be achieved in time
O(e78%log’N).

2
Proof: DefineX := %NBT‘S. Let us apply the two steps of Coppersmith’s method
as described in Section 2. In the first step, we fix
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m— [g_:] | @)

Next, we choose a collectidd of polynomials, where each polynomial has a root
Xo modulob™ wheneverf (x) has the rookg modulob. In our case, we include i@
the polynomials

N XN xENM L xOTINT,
N™-1f  xN™1f x@N™1f  x0-INT-1f
Nm72f2 XNm72f2 X2Nm72f2 X571Nm72f2

N1 Nf™L Nl oI
Additionally, we take the polynomials
fM X M2 M )L Em

for somet that has to be optimized as a functionaf

Note that by our ordering the" polynomial ofC is a polynomial of degree
k. Thus, it introduces the new monomiél We could also write the choice of our
polynomialsinC in a more compact form. Namely, we have chosen the polynemial

Gij(x) =xIN'f™i(x)  fori=0,....m-1, j=0,...,6—1and
hi(x) =xf"(x) fori=0,...,t—1

In Step 2 of Coppersmith’s method, we construct the lattiteat is spanned by the
coefficient vectors o j (xX) andh;(xX). As we noticed before, we can order the
polynomialsg; ; andhj in strictly increasing order of their degr&eTherefore, the
basisB of L, that has as row vectors the coefficient vectorg;gfxX) andh;(xX),
can be written as a lower triangular matrix. lret= dm-t, then we writeB as the
(nx n)-matrix given in Table 3.

SinceBis in lower triangular form, dét) is simply the product of all entries on
the diagonal:

defL) = NZOM(m+1)y 3n(n-1) 3)

Now we want to optimize the parametemwhich is equivalent to the optimization
of n=dm+t. Remember that we argued before that every vector whichibatgs
to the determinant by a factor less tHd¢f™ is helpful In our setting this means that
we have to ensure that the entries of the coefficient vetioxX) on the diagonal
are all less thaiN®™, i.e., we have the condition

X1 < NBm,

. g2 B%, . o - .
Sincex"™1 < N('5 =81 - N's " this condition is satisfied for the choice



10 Alexander May

N
N™X

. me5fl

. X5m+t—l

Table 1 BasisB of the latticeL. We use the following notation: Every non-specified entrgago.
The entries marked with “-” may be non-zero, but the deteamirof the lattice does not depend
on these values.

n< gm. 4)

According to(2), we know thatm < g—z + 1. Then, we immediately have a bound
for the lattice dimension

n<fy
€

I

Using 787! < €71, we obtainn = ¢(¢715). We choosen as the maximal integer
that satisfies inequality (4). This yields a lower bound of

o B

n>-m-1>—-—-1>6.
B £

In order to prove the running time, we also need to upper-tale bit-size of the

entries inB. Notice that for every powef™ ' in the definition ofgi j andhj, we

can reduce the coefficients mod\5* !, sincexg must be a root modul&™ .

Thus the largest coefficient in a proddtf ™' has a bit-size of at mostlog(N) =

B2 .
0(e~tlogN). Powers ofX = %NT‘S occur with exponents smaller than Thus
the bit-size of powers oX can also be upperbounded by

n-—zlogN:fJ’ i logN = & (¢ tlogN)
o ) '



RSA and Factorization Problems 11

Nguyen and Stehlé [72, 81] recently proposed a modifiediamersf the LLL-
algorithm called_2-algorithm. Thel.2-algorithm achieves the same approximation
quality for a shortest vector as the LLL algorithm, but hasraproved worst case
running time analysis. It takes tim@(n®(n+ logbm)logbm), where lody, is the
maximal bit-size of an entry iB. Thus, we obtain for our method a running time of

((2)(2ro) ).

: . , B .
Notice that we can assun@e< logN, since otherwise our bourjgy| < N& ¢ is
vacuous. Therefore, we obtain a running timetfe—’5°log?N).

It remains to show that LLL's approximation quality is suiist for our purpose.
In order to apply the theorem of Howgrave-Graham (Theorerwéhgve to ensure
that the LLL algorithm finds a vector ib with norm smaller tha%. Since the

LLL algorithm finds a vectow in ann-dimensional lattice withv|| < 2" det(L)r’11 ,
we have to satisfy the condition

Using the term for dét.) in (3) and the facb > N8, we obtain the new condition

d 1 — _
N G o ot < ot

n-zNAm,
This gives us a condition on the sizeXf

1 1 2Bm _ om(m+1)
XSZ*jn*nTINn_—I nn-1)

I
Notice than™ 71 — 2~ -t > 273 forn> 6. Therefore, our condition simplifies to

2Bm  dm(m+1)
NI~ "n(n-1) .

1
X< =
-2
) B2 . i
Remember that we made the choite- %NT*E. Hence in order to finish the proof
of the theorem, it suffices to show that

2Bm 5mz(1+n%)>32
n—1 nn-1 -8 °

We obtain a lower bound for the left-hand side by multiplyimigh “;nl Then, we

usen < gmwhich gives us
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This simplifies to

This in turn gives us the conditian > g—j, which holds by the choice ah that we
made in (2).

Let us briefly summarize the whole algorithm which finds aditeoof f (x) mod-
ulo b that are in absolute value smaller thén

/ Coppersmith’s method in the univariate case \
INPUT: Polynomialf (x) of degreed, modulusN of unknown factorization that i
a multiple ofb, a lower bound > Nf, ¢ < %[3

p

Step 1: Choose= (’g—z] andt = [om(5 —1)].
Compute the polynomials

gi,j(x) = xIN'f™i(x) fori=0,....m—1, j=0,..,6—1and
hi(x) =X fM(x) fori=0,...,t—1

2

Step 2: Compute the bounti= %(N%‘ﬂ. Construct the lattice basiB where
the basis vectors @ are the coefficient vectors gf ; (xX) andh;j(xX).

Step 3:  Apply the LLL algorithm to the lattice ba®sLetv be the shortest vectgr
in the LLL reduced basis. The vectois the coefficient vector of some polyn¢-
mial g(xX). Construcig(x) fromv.

Step 4:  Find the sé®of all roots ofg(x) over the integers using standard methods.
For every rookg € R check whether gdiN, f(x)) > NA. If this condition is not
satisfied then remoweg from R.

@TPUT: SetR, wherexy € Rwheneverf (xg) = 0 modb for an|xo| < X. /

As we noticed before, all steps of the algorithm can be dotimi@& (e~ 75°log? N),
which concludes the proof of the theorem.

One should remark that the polynomggk) that we construct in Coppersmith’s
method may contain integer roots that are not root(®f modulob. Therefore, we
use in Step 4 of the above algorithm a simple test whetley) contains a divisor
of N of size at leas?.

It is also worth noticing the following point: The LLL apprioration factor of
2"7* for the shortest vector is exponentially in the lattice dirsienn, but this factor
essentially translates in the analysis of Theorem 3 to time %e‘or the upper bound
of the size of the rootgg. Thus, computing a shortest vector instead of an LLL
approximate version would only improve the bound by a faofaioughly 2 (i.e.,
only one bit).
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Moreover, Theorem 1 is a direct implication of Theorem 3 anowss that we
can avoid the term% ande from the upper bound ory. The proof uses a simple
brute-force search.

Theorem 1 Let N be an integer of unknown factorization, which has astivi
b > NP, 0 < B < 1. Furthermore, let fx) be a univariate monic polynomial of
degreed. Then we can find all solutiong %or the equation

2
f(x) =0modb with |xo| < N .

in time & (c5°log®N).

Proof: An application of Theorem 3 with the parameter chaice @ shows that

we can find all rootsg with
1 s
< -N73o
ol < 7

in time ¢'(8°log®N).
) . g .
In order to find all roots that are of size at masdt & in absolute value, we di-
2

. . B B2 . . . g2
vide the interva[—cN's ,cN's | into 4c subintervals of sizgN's centered at some
X;. For each subinterval with center, we apply the algorithm of Theorem 3 to the
polynomial f (x— x;) and output the roots in this subinterval.

For completeness reasons and since it is one of the moséstitey cases of
Coppersmith’s method, we explicitly state the special taseN andc = 1, which
is given in the work of Coppersmith [25].

Theorem 4 (Coppersmith) Let N be an integer of unknown factorization. Further-
more, let f(X) be a univariate monic polynomial of degréeThen we can find all
solutions x for the equation

fy(x) =0 modN  with |xo| < N3

in time ¢(5°log®N).

4 Modeling RSA Problems as Univariate Root Finding Problems

We address several RSA related problems that can be solvigndirtyg small roots
of univariate modular polynomial equations. Throughoig gection, we will as-
sume thalN = pqis a product of two primes, and that Z’(;(N). BothN ande are
publically known.
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4.1 Relaxed RSA Problem: Stereotyped Messages

The RSA problem is the problem of inverting the RSA functi@ivenm® mod N,
one has to find the uniqué rootm € Zy. TheRSA assumptiostates that the RSA
problem is difficult to solve for randomly chosemc Zy.

Notice that the RSA problem is trivial to solve femall m and small . eNamely,

if m< N< thenm® modN = e overZ. Therefore, computation of the roots over
the integers yields the desired root.

/ RSA problem \

Given: m® modN
Find : meZy
Relaxed RSA problem: Smalle, High Bits Known

Given:  m®,mwith [m— | < N@

(ind . meZn /

Coppersmith extended this result to the case wheignot small but we know
m up to a small part. Namely, we assume knowledge of an appeddmm such
thatm = M+ xg for some unknown parixg| < N<. This can be modeled as the
polynomial equation

f(x) = (M+x)*—m® modN.

Let us apply Theorem 1. We sBt= 1, d = eandc = 1. Therefore, we can recover
Xo as long agxp| < N=<. This extends the trivial attack whera is small to the
inhomogenous case: The most significant bitsxafre not zero, but they are known
to an attacker.

Clearly, one can interpret this as a cryptanalytic resuf. &f e = 3 then an at-
tacker who can guess the first2fraction of the message is able to reconstruct
the last ¥ 3-fraction ofmin polynomial time. This might happen in situations were
the plaintext has a stereotype form like “The password fdayois: xxxx”. There-
fore, this is often called aattack on stereotyped messagesosely speaking, the
cryptanalytic meaning is that an attacker gets%afnaction of the RSA message
efficiently We will see in Section 4.4 that this cryptanalytic intetpt®n can be
generalized to the case where the same messagisent several times.

On the other hand, one can interpret this result in a duaksass security result
for a 2/3-fraction of the plaintext bits in an RSA ciphertext. It sdifficult to com-
pute a 23-fraction ofmas inverting the RSA problem fer= 3. In general, there is
a tight reduction from the RSA problem to the problem of firgdan e;el—fraction
of the most significant bits. Under the RSA assumption, thsas that the most
significant bits of an RSA plaintext are hard to find. Evenrsgj@r results on the
security of RSA bits were given by Hastad and Naslund [43].
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4.2 Constructive Applications of the Relaxed RSA Problem:
RSA-OAEP and RSA Pseudorandom Generator

The dual security interpretation of the Relaxed RSA problera used by Shoup [80]
in 2001. He gave a security proof of the padding scheme OAERI2n instanti-
ated with the RSA trapdoor function. Here, we only sketchugfsproof. More
details on the proof and on cryptographic security notatican be found in Gen-
try’s survey [40].

In RSA-OAEP, the plaintext is split into two pagsndt. The first parsdepends
on the message, a fixed padding and some randomization paranretériength
k bits. The fixed padding ensures ttefulfills a well-defined format that can be
checked. The second parts simply h(s) @r for some hash functioh, which is
modeled as a random oracle. One encrypts the padded mes&get. Let c be
the corresponding ciphertext.

Bellare and Rogaway [2] showed that RSA-OAEP is CCAl-sedwesecure
against so-called lunch-time attacks. It was widely beléethat RSA-OAEP is also
CCAZ2-secure, i.e. that it provides security against aslapthosen ciphertext at-
tacks. In 2001, Shoup [80] showed that the original proof ellde and Rogaway
does not offer this level of security. However, using an agals reasoning as in the
stereotyped message attable could easily derive CCA2-security for RSA-OAEP
with exponent 3.

In order to prove CCA2-security, we assume the existence @fdversary that
successfully attacks RSA-OAEP under chosen cipherteatlet This adversary is
then used to invert the RSA function. One defines a simulatarder to answer
the adversary’s decryption and hash queries. Shoup shdwaedry adversary that
never explicitly queries on s has a negligible probability to pass the format check
for the s-part. Thus, one can assume that the first pdras to appear among the
attacker’s queries. This in turn is already sufficient toa&stt as a root of

f(t) = (s-2¢+t)®—c modN,

provided thaflt| < N< which is fulfilled whenevek < logN/e. This condition is
satisfied fore = 3 by the RSA-OAEP parameters. One should notice the comespo
dence to the Relaxed RSA problesplays the role of the known message part ~
whereag is the small unknown part.

We have reduced the RSA problem to an algorithm for attackiSg\-OAEP.
The reduction is tight up to a factor gf, the number of hash queries an adversary
is allowed to ask. Namely, the running timegjstimes the time to run the LLL-based
algorithm for finding smalEh roots. The success probability of the RSA inverter
is roughly the same as the success probability of the adyerBais reduction is
tighter than the original reduction by Bellare-Rogaway@@Al-security.

RSA-OAEP was shown to be CCA2-secure for arbitraby Fujisaki et al [36]
in 2001, using a 2-dimensional lattice technique. Howetresir reduction is also
less tight than Shoup’s: If the RSA attacker has successpility €, then the RSA
inversion algorithm of [36] has success probability ogdy
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Another constructive application of Coppersmith’s attackstereotyped messages
is used for the definition of an efficient RSA-based pseuddwannumber genera-
tor (PRNG) in a recent paper by Steinfeld, Pieprzyk and Wa&a2g, which in turn
builds on a work of Fischlin and Schnorr [34]. In the Fischiohnorr RSA-PRNG,
one starts with a random sergland generates a sequemngexz, ... by successively
applying the RSA function, i.e¢ = x° ; modN. In each iteration, one outputs the
r least significant bits o;.

In the security proof, Fischlin and Schnorr show that angffit algorithm that
distinguishes the generator’s output from the uniformriistion can be used to
invert the RSA function, i.e. to solve the RSA problem. Hoem\the reduction
is not tight. Namely, ifTp is the running time of the distinguisher, then the in-
version algorithm’s running time is roughly#"ap. Therefore, one can only output
r = 0(loglogN) in each iteration in order to preserve a polynomial redunctio

In 2006, Steinfeld, Pieprzyk and Wang showed that one cauarskgcoutput
O(logN) bits if one replaces the RSA assumption in the Fischlin-8ohproof
by a relaxed RSA inversion assumption. Namely, we alreadyhat one can re-
cover an—é—fraction of the message from an RSA ciphertext given the otthe
plaintext. Steinfeld et al. make the assumption that thisniblois essentially tight.
More precisely, they assume that any algorithm that retsmta% + e-fraction for
some constarg already requires at least the same running time as the lotstifay
algorithm forN.

In fact, one replaces the RSA assumption by a stronger asgmyhich states
that the boun(% for the Coppersmith attack on stereotyped messages caenot b
significantly improved. This stronger assumption is sudfitito increase the gener-
ator’s output rate fromn = &'(loglogN) to the full-size ofr = ©(logN) bits. The
efficiency of the Steinfeld, Piepryzk, Wang constructiocasnparable to the effi-
ciency of the Micali-Schnorr generator [69] from 1988, baes a weaker assump-
tion than in [69].

Another construction of an efficient PRNG and a MAC based ocallsimot prob-
lems was proposed by Boneh, Halevi and Howgrave-Graham [ts9%ecurity is
proved under the hardness of the so-called modular invetsaden number prob-
lem. The best algorithmic bound for attacking this problenbased on an LLL-
approach. The security proofs for the PRNG and the MAC agssarae that one
cannot go significantly beyond this bound.

4.3 Affine Padding: Franklin-Reiter’s Attack

The following attack was presented by Franklin and ReitBt {3 1995. The attack
was one year later extended by Coppersmith, Franklin, iRaead Reiter [27].

Assume that two RSA plaintexts, m' satisfy an affine relatiom’ = m+r.
Let c= m® modN andc = (m+r)3 modN their RSA ciphertexts, respectively.
Franklin and Reiter showed that any attacker with knowleofgg c’,r andN can
efficiently recovem by carrying out the simple computation
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cr+2cr—r%  3mPr+3mPr?+ 3mr

= = mmodN.
¢ —c+2r3 3mér 4+ 3mr2 + 3r3

What happens in the case wherie unknown but small?

Affine related messages

1
Given: ¢; =m*modN,c; = (m+r)® modN with |r| < N&
Find : m

If one is able to determirrefrom the ciphertexts, themcan be computed efficiently.
The resultant computation

Resn(c—m?,d — (m+1)) =r®4+3(c—)r®+3(c? + 2+ 7cc)r3 + (c— ) modN

yields a monic univariate polynomié[r) of degree 9. An application of Theorem 1
shows that can be recovered as long [as< NS, For arbitrarye, the bound gener-

1
alizes tor| < N&.

4.4 Related RSA messages: Extendin@stiad’s attack

Assume that we want to broadcast a plain RSA encrypted medsag group of
k receivers all having public exponeatand co-prime modullNg,...,Ng. l.e., we
send the messages modNg,...,m® modNy. From this information an attacker
can computer® mod [1¥_; N;. If m® is smaller than the product of the moduli, he
can computen by €M root computation over the integers. If &lf are of the same
bit-size we nee#t > e RSA encrypted messages in order to recaner

So naturally, an attacker gains more and more informatiorebgiving differ-
ent encryptions of the same message. Notice that this adgamnicely links with
the attack on stereotyped RSA messages from Section 4.4l et the cryptan-
alytic interpretation of the attack in Section 4.1 was tha¢ gets aré—fraction of
the plaintext efficiently. The above broadcast attack cas the interpreted as an
accumulation of this result. If one gets> e times an%-fraction of m efficiently,
then one eventually obtains the whaohe

The question is whether this is still true when the publicangnts are differ-
ent and when the messages are preprocessed by simple ptaltingjues, e.g. an
affine transformation with a fixed known padding pattern. \Wevs that whenever
the messages are polynomially related, then the underpjaigtext can still be dis-
covered given sufficiently many encryptions. This resudtrisextension of Hastad’s
original result [42] due to May, Ritzenhofen [68].

Assume that the messagnes smaller than mip{N; }. We preprocess the message
by known polynomial relationgy, . .., gk with degree®y, ..., &, respectively.
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Polynomially related RSA messages

Given: ¢ =gi(m)® modN; fori =1,... kwith 3, z& > 1.
Find : m

Assume thagj (X) has leading coefficiers # 1. Computa{l modN,;. If this com-
putation fails, we obtain the factorization bf, which enables us to compute
Otherwise we replacg andgi(x) by a(a Ci andai‘lgi (x), respectively. This makes
all gi(x) monic.

5
Letd = Ilcmi{e} be the least common multiple of ale. DefineN = [, N .
We know that for ali = 1,... k we have
5 0
(gi(m)® —ci) 3% =0 modN. .

Let us compute by Chinese Remaindering a polynomial
K 5
f(x) = 21bi(gi(x)eq —¢)34 modN,
i=

1 fori=j
0 else

Notice thatf (m) = 0 modN and thatf (x) is by construction a univariate monic
polynomial of degree. Let us now upper-bound the size of our desired oot
Using the condition K Sk ; %, we obtain

where theb; are the Chinese remainder coefficients satisthinmod N; = {

Zikzlﬁ k1
m< min{N;} < (mjn{Nj}) < |_lNi’iq .
J J i=

By applying Theorem 1 with the paramet@&sx = 1, we can find all rootenup
to the same bound

=~

1
i€
i )

(S

=[|N

m<N

which completes the description of the attack.
Let us look at our conditiorzik=l % > 1 when we encrypt the plain message

without any further transformation. Thenx) = xis the identity with degreg§ =1,
i.e. we obtain the simplified condition

267t
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Again this can be interpreted as an accumulation of the tsefrl stereotyped RSA
messages in Section 4.1. Recall that for each encryption ohder exponeng,
we can compute aér—fraction of m efficiently. This information accumulates such

that whenever the sury; é of all the fractions exceeds 1, we eventually obtain the
whole plaintexim.

4.5 Factoring with High Bits Known

Let N = pg, w.l.o.g.p > g. Assume that we are given an oracle for the most sig-
nificant bits of p. Our task is to find the factorization of in time polynomial in
the bit-size ofN with a minimal nhumber of queries to the oracle, i.e. we want to
minimize the oracle complexity.

One can view this problem as a natural relaxation of the fazton problem.
Without knowing any bits of the prime factqg, i.e. without using the oracle, we
have to solve the general factorization problem. For thegsproblem it is unclear
whether there exists a polynomial time algorithm in the fignnachine model. So
we provide the attacker with an additional sufficiently agdint given by the oracle
answers that allows him to find the factorization in polynahtime.

In 1985, Rivest and Shamir [75] published an algorithm tlaatdrsN given a
%-fraction of the bits ofp. Coppersmith [22] improved this bound gdn 1995. One
year later, Coppersmith [24, 25] gave an algorithm using balf of the bits ofp.

Thefactoring with high bits knowproblem can again be reduced to the problem
of solving modular univariate polynomial equations witk ttLL algorithm. Let us
assume that we are given half of the high-order bitp.oDmitting constants, we

know an approximatiop &f p that satisfiesp— p| < N7,

/ Factorization problem \

Given: N=pq
Find : p
Relaxed Factorization: High Bits Known

Given: N =pg,pwith [p—p| < NE

N /

Our goal is to recover the least-significant bitsppi.e. we want to find the root of
the univariate, linear modular polynomial

f(x) = p+xmodp.

Observe thap — fis a root off (x) with absolute value smaller thai .
We apply Theorem 1 with (x) = p+ X, i.e. we have degreé=1, 8 = % and
¢ = 1. Therefore, we can find all rooxg with size
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BZ
Xo| <N'& =N,

This enables us to recover the low-order bitgan polynomial time with the LLL
algorithm, which yields the factorization.

Thefactorization with high bits knowapproach can be extended to moduik=
p"g, wherep andq have the same bit-size. This extension was proposed by Boneh
Durfee and Howgrave-Graham [18]. For simplicity, we assuh@ p andq are
of the same bit size. For fixed bit-size Nf and growingr, these moduli should
be — from an information theoretical point of view — easieffdotor than usual
RSA moduli. Moreover, an attacker should learn from an axpration of p more
information than in the standard RSA case. This intuitian$wout to be true.
We model this variant of the factorization problem as thevamnate polynomial

f(x) = (p+x)" modp'.

Setf = ri—l 0 =r andc = 1. An application of Theorem 1 shows that the LLL
algorithm recovers all rootg with

BZ r
[Xo| <M'& = N+D2,

SinceN is rqughly of sizep'™%, this means that we need an approximagionith
|p— p| < p™I. Or in other words, we need é—l-fraction of the most significant
bits in order to factoN in polynomial time. l.e., for the RSA case= 1 we need
half of the bits, whereas e.g. for= 2 we only need a third of the most significant

bits of p. Forr = Q( Io'gl%';N ), one only has to guegs(loglogN) bits of p, which

can be done in polynomial time.

4.6 Computingd = Factoring

Our next application of the LLL algorithm addresses the difiy of computing the
RSA secret exponent from the public informatigv, e). We show that any algo-
rithm that computed in deterministic polynomial timean be transformed into an
algorithm that factor$\ in deterministic polynomial time

LetN = pgbe an RSA-modulus. Letd € Z, be the public/secret exponents,
satisfying the equatioed = 1 mod@(N). If we are given the public information
(N, e) and the factorization dfl, thend can be computed in polynomial time using
the Euclidean algorithm. Rivest, Shamir and Adleman shatvatithe converse is
also true: Giver(N, e, d), one can factoN in probabilistic polynomial time by an
algorithm due to Miller [70].

In 2004, it was shown in [66, 30] that there is alsdeterministicreduction of
factoring to computingl using Coppersmith’s method. This establishesdéter-
ministic polynomial time equivalenoé both problems.
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It is not hard to see that the knowledge@fN) = N — (p+qg— 1) yields the
factorization ofN in polynomial-time. Our goal is to computgN). Sincep, q are
of the same bit-size, the terid is an approximation ofp(N) up to rougthN%.
Therefore, the polynomial

f(x) =N—x mod@(N)

has a rootg = p+q— 1 of sizeNZ. LetM = ed— 1 = N for somea <2.We
know thatM is a multiple of@(N).

Now, we can apply the LLL algorithm via Theorem 1 with the paeder setting
0,c=1,b=@(N), M =N the integer of unknown factorization aiftd= % We
conclude that we can find all roots within the bound

g2 a2 1
Xo| <ME = (N%)aZ = Na.

Sincea < 2, we can find all roots within the bourndﬁ, as desired.

4.7 Finding Smooth Numbers and Factoring

The following link between finding smooth integers with Cepgmith’s LLL-based
algorithm and factoring composite integeMswas introduced by Boneh [12] in
2001.

Many classic factorization algorithms such as the Quadl&igve and the Num-
ber Field Sieve have to find values slightly larger thaN such that their square
modulo N isB-smooth A number is calledB-smooth if it splits into prime factors
P1, P2, - - ., pn SMaller tharB. We can model this by a univariate polynomial equation

fe(X) = (x+ VeN)? —cN,

for small values o€. Given an interval siz¥, the task is to find all solutiongg| < X
such thatfc(Xp) has a largeB-smooth factor. Whenever this factor is as large as
fe(xo) itself, thenfc(xo) factors completely over the factor basg. .., pn.

Finding Integers with Large Smooth Factor

Given:  f¢(x),B,X
Find : |xo| < X such thatf;(xp) has a larg8-smooth factor.

Let us define® = i, piei. For simplicity reasons, we will assume here= 1 for
all exponents, although we could handle arbitrary multipés as well. We are
interested in integerg such that manyy; divide fc(Xp), i.e. fc(Xp) = 0 modb for a
modulusb = [i¢| pi, wherel C {1,...,n} is a large index set.
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2logX
Applying Theorem 1, it is easy to see that PV ™9 s sufficient to find all

2 2logX
I¥o| < PT = P2iogP — 2l0gX — x_

Boneh [12] illustrates his result by giving numerical exd@spvere just one appli-
cation of LLL on a 50-dimensional lattice yields all numbarsn interval of size
X = 2500that have a sufficiently large smooth factor.

At the moment however, the technique does not lead to impnews to clas-
sical factorization algorithms, since it is unlikely thandomly chosen intervals of
the given size contain sufficiently many smooth numbers.@dweer, classical algo-
rithms usually need fully smooth numbers, whereas with ttesgnt method one
only finds numbers with a large smooth factor.

5 Applications of Finding Roots of Multivariate Equations

In this section, we study applications of the LLL algorithor fsolving multi-
variate polynomial equations. We start by presenting the twost famous RSA
applications for solving bivariate modular polynomial atjans: The attacks of
Wiener [88] and Boneh-Durfee [14] on RSA with small secrgianxentd.

/ RSA Key Recovery Problem \

Given: N,e
Find : dwithed=1 mod@(N)
Relaxed RSA Key Recovery Problem: Small key

Given: N,ewith ed=1 mod@(N) for somed < N°

NG /

Let us briefly describe Wiener’s polynomial time attack onARBr secret keys
da< N7 Although this attack was originally presented using awned fractions, we
will describe it within the framework of small solutions faéar bivariate equations.
We can write the RSA key equati@td = 1 mod@(N) in the form

ed+k(p+q—1)—1=KkN, (5)

for somek € N. This leads to a linear bivariate polynomidl,y) = ex+y that has
the root(Xo, Yo) = (d,k(p+qg— 1) — 1) moduloN. Itis not hard to see th&t< d. In
the case of balanced prime factors, we hpveq~ +/N. Ford < N%, the product
XoYo oOf the desired roots can therefore be upper-bounded.by

It is well-known that linear modular polynomial equatioremcbe heuristically
solved by lattice reduction whenever the product of the wmkrs is smaller than
the modulus. For the bivariate case, this lattice technéguebe made rigorous. In
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our case, one has to find a shortest vector in the ldttgy@anned by the row vectors
of the following lattice basis

B= (':))(( 3) ,  whereX = Nf11 andY = N%.
Using an argumentation similar to the one in Section 2, omesea that a shortest
vectorv = (cp,C1) - B yields a polynomiakoNx+c; f(x,y) that evaluates to zero
over the integers at the poifio, yo) = (d,k(p+0q—1) —1). Sincef (Xo,Yo) = kN,
we have

coNd = —c;Nk

Because is a shortest vector, the coefficiesgsandc; must be co-prime. Therefore,
we conclude thajcy| = k and |c;| = d. From this information, we can derive via
Eq. (5) the termp+ q which in turn yields the factorization dfl in polynomial
time.

Instead of using a two-dimensional lattice, one could cam@ple tuple(k,d)
by looking at all convergents of the continued fraction exgan ofe andN. This
approach was taken in Wiener’s original work.

1
In 1999, Boneh and Durfee improved Wiener’s bound te Nl’\/; ~ N0-292,
This result was achieved by writing the RSA equation as

kIN+1—(p+q)+1=ed

This in turn yields a bivariate polynomidilx,y) = x(N + 1 —y) + 1 with the root
(x0,¥o0) = (k, p+ ) moduloe. Notice thatf has the monomialg,xy and 1. As in
Wiener’s attack, the produgg - xgyo can be bounded by wheneved < N7. Thus

for e of size roughlyN, we obtain the same bound as in the Wiener attack if we lin-
earize the polynomial. However, Boneh and Durfee used thepmial structure

of f(x,y) in order to improve the bound t4°2°2 by a Coppersmith-type approach.

Wiener as well as Boneh and Durfee posed the question whitbes is also
a polynomial time attack for RSA with small secret CRT-expotd. We call d
a small CRT-exponent if the valuely = d modp— 1 anddg = d modg— 1 are
small. This enables a receiver to efficiently decrypt modukndqg and combine
the results using the Chinese remainder theorem (CRT) [74].

f RSA Key Recovery Problem \

Given: N,e
Find : dwithed=1 modg(N)
Relaxed RSA Key Recovery Problem: Small CRT-key

Given: N,ewith ed, = 1 modp— 1 anded, = 1 modq— 1 for dp, dgq < N°
(ind: d with d = dp mod p—1 andd = dy modq—1 /
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Recently, Jochemsz and May[52] presented a polynomialaittaek for RSA with
dp, dq < N%973, building on an attack of Bleichenbacher and May [5]. Thediagea
is to write the RSA key equation in the form

ethtky—1=kea |’

with the unknownsl,, dg, kp, kg, p andg. We eliminate the unknowns g by multi-
plying both equations. Rearranging terms yields

#dpdy + e(dp(kg — 1) + dg(Kp — 1)) + Kpkq(1 — N) + (kp+ kg + 1) = 0.

In [5], the authors linearize this equation and derive &ddor variants of the RSA
cryptosystem where is significantly smaller thai. In [52], the full polynomial
structure is exploited using a Coppersmith technique ieai@extend the lineariza-
tion attack to full sizee.

By assigning the variables;,x2,X3, X4 to the unknownslp, dq, Kp, kg, respec-
tively, one obtains a 4-variate polynomial equation whivhleates to zero over
the integers. A Coppersmith-type analysis results in aisgétpolynomial time at-
tack that works fodp, dq < N°973,

Several results in the literature also ad-
dress the inhomogenous case of small RSAL
secret key relaxations, whetkis not small |
but parts ofd’s bits are known to an attacker,
Boneh, Durfee and Frankel introduced sey
eral of these so-called Partial Key Exposur
attacks, which were later extended in Blomer
May [7] and EJMW [33]. In the latter work, .
the authors showed that the Boneh-Durfee a
tack naturally extends to the inhomogenoﬂi
case for ald smaller tharp(N). The larged
is, the more bits ofl an attacker has to know’" |
(see Flg 1) ‘ 01 02 03 3.4 1;.5 10.5 10.7 10.8 01.9 10

Again, th? former _cryptanalytic_: reSUItSFig. 1 Partial Key Exposure attack
have a dual interpretation as security results.

They establish the security of certain parts of

the bits of the RSA secret key. More precisely, the resulitesthat recovering
these bits is as hard as factoring the RSA modulus given drdypublic infor-

mation (N,e). This opens the possibility to publish the remaining bitshef se-

cret key, which can be used e.g. in server-aided RSA systehese parts of an
RSA signature computation are outsourced to an untrustedrsd@his dual appli-
cation was first proposed by Boneh, Durfee and Frankel [18fel,. Steinfeld and

ired fraction of MSBs of d

logy d
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Zheng [83] proposed another server-based RSA system, vpnahdes provable
security against Partial Key Exposure attacks.

6 Survey and References for LLL-based RSA and Factoring
Results

The following table gives an overview and references ofousiapplications of
Coppersmith’s LLL-based methods for finding small roots whgplied to relaxed
RSA or factorization problems. Although not all of theseutesare originally de-
scribed in terms of small root problems, they all more or fésa this framework
and might serve as useful pointers for further reading.

Method

Method/variants| Hastad 88[42], Girault, Toffin,Vallée 88[37]
Coppersmith 96,97,01[23, 24, 25, 26], Howgrave-
Graham 98,01[48, 49], Jutla 98[53], May 03[65],
Bernstein 04[3], Coron 05,07[28, 29], Bauer, Joux O/[1]
Optimize bounds Blomer,May[10] , Jochemsz, May[52]

RSA

Inverting RSA Hastad 89[42], Coppersmith 96[23, 25],

May, Ritzenhofen 08[68]

Smalld Wiener 90[88], Boneh, Durfee 98[14, 15],

Durfee, Nguyen 00[32], Blomer, May 01[9],

de Weger 02[87], Hinek 02[45], May 04[67]

Known bits ofd | Boneh, Durfee, Frankel 96[16], Blomer, May 03[7],
Ernst, Jochemsz, May, de Weger 05[33]

Key recovery May 04[66], Coron, May 07[30],
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7 Open Problems & Speculations

7.1 Optimizing bounds: On Newton polytopes and Error Terms

In this section, we will explain how to optimize the upper bhds up to which small
roots can be found. Here, a polynomial’s Newton polytopé pidy a central role.
We will also see that the upper bounds usually incorporateeserror term, which
in many cases can be eliminated by splitting the searchviaiterto smaller pieces
and treating each subinterval separately (see e.g. thé girdbeorem 1).

In all applications of Coppersmith’s method, one startdhvaither a polyno-
mial modular equatiorf(xs,...,Xm) = 0 modb or a polynomial integer equation
f(xq,...,Xm) = 0. Using this equation, one defines algebraic multigies. ., f, of
f which contain the same small roots. For instancé, ig a univariate polynomial
equation inx as in Section 2, this is done by multiplyinigwith powers ofx and
by taking powers of itself. In the univariate case, it is clear which set of algéb

multiples maximizes the size of the rootsthat we can efficiently recover. Indeed,
2

we will argue in Section 7.3, that the bouhd| < N from Section 2 cannot be
improved in general, since beyond this bounghay have too many roots to output
them in polynomial time.

For univariate modular polynomial equatiofix), one looks for an integer linear
combinationg(x) = 5 & fi(x), a € Z, such thag(xg) = 0 over the integers for all
sufficiently small roots. These roots can then be found bgdsted root finding
methods.

Forirreducible bivariate polynomiafgx,y), one similarly defines algebraic mul-
tiples f1(x,y),..., fa(X,y). The goal is to find a polynomial(x,y) = 3; & fi(x,y) by
LLL-reduction such thag;(x,y) is not a multiple off (x,y). Then the roots can be
found by resultant computations.

Whereas the choice of the algebraic multiples is quitegttitéorward for univari-
ate polynomials, for multivariate polynomials the choidele algebraic multiples
appears to be a complex optimization problem. The boundthéoroots that one
computes mainly depend on the largest coefficient of therotyal and the poly-
nomial’s Newton polytope - i.e. the convex hull of the monalsiexponents when
regarded as points in the Euclidean space.

Let us give an example for this. As explained in Section 4, \aa tactor
N = pq with known high bits ofp by using the univariate polynomial equation
f(x) = p+xmod p, wherep'is an approximation op up toN#. The same result
can be achieved by computimg:ﬂ[3 and solving the bivariate integer polynomial
f(x,y) = (p+x)(§+y) —N. The largest coefficient in this equationg§ =N, which
is roughly of sizeV = N#. The monomials of (x,y) are 1x,y andxy, i.e. the New-
ton polytope is a square defined by the poif@), (0,1),(1,0) and(1,1). Opti-
mizing the upper bounds, Y for the size of the roots ir,y, respectively, yields the
conditionXY SW%. This is equivalent tXY < Nz orX,Y < N, Thus, we achieve
the same result as in the univariate modular case.
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We could however also look at the bivariate polynonfigt,y) = (f+ x)y — N.
The largest coefficient M/ = N and the Newton polytope defined (,0), (0,1),(1,1)
is a triangle. Optimizing the bounds for this shape of the devpolytope yields the
condition(XY)* <W8. SettingY = Nz andW = N yieldsX* < N which leads again
toX < Ni.

Interestingly, we do not need the approximatiorqdbr achieving the same re-
sult. Since we do not need the bitsgfone should ask whether we indeed need to
know the bits ofp. Let us look at the polynomial equatiditx,y) = xy— N, where
W = N and the Newton polytope is a line formed (§,0) and (1,1). Applying a
Coppersmith-type analysis to this polynomial yields tharXY < W& = N1-¢,
for some error terng. Notice that a bound oY < 2N would easily allow to factor
N = pqif p,q have equal bit-size, singg< /N = X andq < 2y/N =Y.

What does the boundY < N1~¢ imply? Can we remove the error tergnand
derive the desired bound by running the algorithm di§ 2opies, where we search
in each copy for the roots in an interval of siké—¢? l.e. can we factor in time
©'(N#)? And provided that the error termsatisfiess = ﬁ(ﬁ), can we factor in
polynomial time?

(Un)fortunately, the answer is NO, at least with this apploalrhe reason is
that as opposed to other polynomials, we cannot simply gadssv bits of the
desired small roofxg,Yo) = (p,q), since this would either change the structure of
the Newton polytope or the size ®¥. If we guess bits ofg, we introduce the
monomialy and symmetrically fogg we introduce thex-monomial. But as shown
above, this changes our bound to an infedof < Ni. On the other hand, if we
guess bits okgyp our largest coefficient decreases accordingly.

Notice that e.g. for the polynomidp + x)y — N guessing bits okp is doable
since the guessing does not introduce new monomials. Thuhkjs case a small
error term in the bound can be easily eliminated by a bruteefsearch technique.

7.2 Applying the Method to Multivariate Polynomial Equatis

Another challenging problem is to obtain provability of thigorithm in the mul-
tivariate setting. This problem is not only of theoretiaateirest. There have been
cases reported, where the heuristic method — which comgheesots by resultant
computations — for multivariate polynomials systematyctdlils [9].

Let us see why the method provably works for the bivariategat case and
what causes problems when extending it to a third variald@p€rsmith’s original
method for bivariate integer polynomials constructs oruinfyx,y) a polynomial
g(x,y), such thag(x,y) cannot be a polynomial multiple df(x,y). In other words,
g(x,y) does not lie in the idealf) generated byf and therefore the resultant 6f
andg cannot be the zero polynomial.

Heuristically, one extends this approach to three varg@bieconstructing two
polynomialsgs, g2 with LLL-reduction. The resultants; = Regf,g1) andr, =
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Reg f,g») are bivariate polynomials. The resultant Rgsry) is then univariate and
yields one coordinate of the roots, provided that the rastilioes not vanish. The
other coordinates of the roots can be found by back-substituThe resultant is
non-vanishing iffg; andg, are algebraically independent.

Recently, Bauer and Joux [1] proposed a twist in the abovstoaction which
in some cases enables to guarantee algebraic independsmnéergpolynomials in
three and more variables. Basically, their approach issatitze application of Cop-
persmith’s original technique for bivariate polynomiaBven a trivariate polyno-
mial f(x,y,z), one constructs a polynomiglx,y,z) such thaig does not lie in(f).
Afterwards, one uses a Grobner Basis approach and ant¢hation of the LLL
procedure to construct a third polynomiek, y, z), which does not lie if{ f, g).

Unfortunately, Bauer and Joux’s approach still incorpesat heuristic assump-
tion. For trivariate polynomials of a special shape howetles approach can be
made fully rigorous.

7.3 What Are the Limitations of the Method?

Coppersmith’s method outpuadl sufficiently small solutions of a polynomial equa-
tion. Since the method runs in polynomial time, it can onlypot a polynomial
number of solutions. Thus, the method proves in a consteigtay a limit for the
number of roots within a certain interval. This limit matsHer univariate modular
polynomials the bounds by Konyagin, Steeger [56]. The nurobbeoots of each
polynomial equation thus limits the size of the intervalttive are able to search
through in polynomial time. Let us demonstrate this effectunivariate modular
polynomial equations.

Let N = p". Assume that we want to solve the equatibfx) = X" modN.
Clearly, allxg = kp,k € N, are solutions. Hence solving this equation for solutions
Ixo| < pt*¢ would imply that one has to outppf solutions, an exponential number.

This argument serves as an explanation why the bawhe- N3 from Section 2
cannot be improved in general. On the other hand, for theviafig two reasons this
argument does not fundamentally rule out improvementsrfgiodthe applications’
current bounds mentioned in this survey.

First, the factorization ol = p" can be easily determined. Hence, there might be
an improved method which exploits this additional inforioat Indeed, Bleichen-
bacher and Nguyen [6] describe a lattice-based metho@amese remaindering
with errorsthat goes beyond the Coppersmith-type bound in cases wiefadtor-
ization of the modulus is known.

Second, in all the applications we studied so far, an imprem of the bound
would notimmediately imply an exponential number of sauos. Look for instance
at thefactoring with high bits problenand let us take the polynomiélx) = p+
x mod p. The solution of this polynomial is unique up to the boyrgl < p. So
although we have no clue how to solve the factorization mablvith the help of
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lattice reduction techniques, there is also no limitinguangnt which tells us that it
is impossible to extend our bounds to the general case.

As a second example, look at the Boneh-Durfee attack on RSA avi<
NO292which introduces the bivariate polynomial equatidifs y) = x(N+1—y) +
1 mode. Assume that is roughly of sizeN. Sincey is the variable fop + q, its
size can be roughly bounded RyN. Assume that for a fixed candidatehe map-
pingg: x+— X(N+1—y)+ 1 mode takes on random values #. If we mapy/N
candidates fox for every of they/N choices ofy, we expect to map to zero at most
a constant number of times.

This counting argument let Boneh and Durfee conjecturedhatcan achieve a
bound ofd < /N in polynomial time attacks on RSA with small seccetMore-
over, if one used the fact thgtrepresent® + g, which implies thaty, is already
fully determined byN, then the counting argument would not rule out a bound be-
yond+/N. If we could make use of this information abayt then there would be
a unique candidate fof in Zyny and recovering this candidate would solve the
RSA problem as well as the factorization problem. Howevespite considerable
research efforts the boumid< N°292s still the best bound known today. It remains
an open problem to further push it.

8 Summary

The invention of the LLL algorithm in 1982 was the basis foe ttonstruction of
an efficient algorithm due to Coppersmith for finding smalugons of polynomial
equations in 1996. This in turn opened a whole new line ofareteand enabled
new directions for tackling challenging problems such &sRI$SA problem or the
factorization problem from a completely different angles. dpposed to traditional
approaches like the Elliptic Curve Method and the NumbeldFseeve, the LLL-
based approach is polynomial time but solves only relaxesiames of the RSA and
the factorization problem.

Today, the relaxed versions are still pretty far away from gleneral instances.
But there appears to be a steady progress in finding new stitegeapplications and
the existing bounds are continuously pushed. From a rdseaiat of view, it is
likely that the young field of LLL-based root finding still led many fascinating
results that await their discovery.

Acknowledgments: The author thanks Mathias Herrmann, Ellen Jochemsz, Phong
Nguyen, Maike Ritzenhofen and Damien Stehlé for commeamistiscussions.
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