
Attacking Power Generators Using Unravelled
Linearization: When Do We Output Too Much??

Mathias Herrmann, Alexander May

Horst Görtz Institute for IT-Security
Faculty of Mathematics

Ruhr University Bochum, Germany
mathias.herrmann@rub.de, alex.may@rub.de

Abstract. We look at iterated power generators si = se
i−1 mod N for a

random seed s0 ∈ ZN that in each iteration output a certain amount of
bits. We show that heuristically an output of (1− 1

e
) logN most signifi-

cant bits per iteration allows for efficient recovery of the whole sequence.
This means in particular that the Blum-Blum-Shub generator should be
used with an output of less than half of the bits per iteration and the
RSA generator with e = 3 with less than a 1

3
-fraction of the bits.

Our method is lattice-based and introduces a new technique, which com-
bines the benefits of two techniques, namely the method of linearization
and the method of Coppersmith for finding small roots of polynomial
equations. We call this new technique unravelled linearization.

Keywords: power generator, lattices, small roots, systems of equations

1 Introduction

Pseudorandom number generators (PRGs) play a crucial role in cryptography.
An especially simple construction is provided by iterating the RSA function
si = sei−1 mod N for an RSA modulus N = pq of bit-size n and a seed s0 ∈ ZN .
This so-called power generator outputs in each iteration a certain amount of
bits of si, usually the least significant bits. In order to minimize the amount of
computation per iteration, one typically uses small e such as e = 3. With slight
modifications one can choose e = 2 as well when replacing the iteration function
by the so-called absolute Rabin function [3, 4], where s2 mod N is defined to
be min{s2 mod N,N − s2 mod N}, N is a Blum integer and s0 is chosen from
{0, . . . , N−1

2 } with Jacobi symbol +1.
It is well-known that under the RSA assumption one can safely output up

to Θ(log n) = Θ(log logN) bits per iteration [1, 8]. At Asiacrypt 2006, Steinfeld,
Pieprzyk and Wang [14] showed that under a stronger assumption regarding the
optimality of some well-studied lattice attacks, one can securely output (1

2 −
? This research was supported by the German Research Foundation (DFG) as part

of the project MA 2536/3-1 and by the European Commission through the ICT
programme under contract ICT-2007-216676 ECRYPT II.
c©International Association for Cryptologic Research 2009

1
e − ε − o(1))n bits. The assumption is based on a specific RSA one-wayness
problem, where one is given an RSA ciphertext c = me mod N together with
a certain fraction of the plaintext bits of m, and one has to recover the whole
plaintext m. We call this generator the SPW generator. The SPW generator has
the desirable property that one can output a constant fraction Ω(logN) of all
bits per iteration. Using an even stronger assumption, Steinfeld, Pieprzyk and
Wang could improve the output size to (1

2 −
1
2e − ε− o(1))n bits.

A natural question is whether the amount of output bits of the SPW gener-
ator is maximal. Steinfeld et al.’s security proof uses in a black-box fashion the
security proof of Fischlin and Schnorr for RSA bits [8]. This proof unfortunately
introduces a factor of 1

2 for the output rate of the generator. So, Steinfeld et
al. conjecture that one might improve the rate to (1− 1

e − ε)n using a different
proof technique. Here, ε is a security parameter and has to be chosen such that
performing 2εn operations is infeasible. We show that this bound is essentially
the best that one can hope for by giving an attack up to the bound (1− 1

e)n.
In previous cryptanalytic approaches, upper bounds for the number of out-

put bits have been studied by Blackburn, Gomez-Perez, Gutierrez and Shpar-
linski [2]. For e = 2 and a class of PRGs similar to power generators (but with
prime moduli), they showed that provably 2

3n bits are sufficient to recover the
secret seed s0. As mentioned in Steinfeld et al., this bound can be generalized
to (1− 1

e+1)n using the heuristic extension of Coppersmith’s method [7] to mul-
tivariate equations.

Our contribution: We improve the cryptanalytic bound to (1− 1
e)n bits using a

new heuristic lattice-based technique. Notice that the two most interesting cases
are e = 2, 3, the Blum-Blum-Shub generator and the RSA generator. For these
cases, we improve on the best known attack bounds from 2

3n to 1
2n and from 3

4n
to 2

3n, respectively. Unfortunately — similar to the result of Blackburn et al. [2]
— our results are restricted to power generators that output most significant
bits in each iteration. It remains an open problem to show that the bounds hold
for least significant bits as well.

Our improvement comes from a new technique called unravelled linearization,
which is a hybrid of lattice-based linearization (see [13] for an overview) and
the lattice-based technique due to Coppersmith [7]. Let us illustrate this new
technique with a simple example. Assume we want to solve a polynomial equation
x2 + ax + b = y mod N for some given a, b ∈ ZN and some unknowns x, y.
This problem can be considered as finding the modular roots of a univariate
polynomial f(x) = x2 + ax+ b with some error y.

It is a well-known heuristic that a linear modular equation can be easily
solved by computing a shortest lattice vector, provided that the absolute value
of the product of the unknowns is smaller than the modulus [13]. In order to
linearize our equation, we substitute u := x2 and end up with a linear equation
in u, x, y. This can be solved whenever |uxy| < N . If we assume for simplicity
that the unknowns x, y are of the same size, this yields the condition |x| < N

1
4 .

However, in the above case it is easy to see that this linearization is not
optimal. A better linearization would define u := x2−y, leaving us with a linear

equation in u, x only. This yields the superior condition |x| < N
1
3 . So one benefits

from the fact that one can easily glue variables together, in our case x2 and y,
whenever this does not change the size of the larger variable. In our example
this would also work when y had a known coefficient c of size |c| ≈ |y|.

The main benefit from the attack of Blackburn et al. [2] comes from a clever
linearization of the variables that occur in the case of power generators. While
on the one hand such a linearization of a polynomial equation offers some ad-
vantages, on the other hand we lose the algebraic structure. Performing e.g. the
substitution u := x2, one obtains a linear equation in u, x, y but the property
that u and x are algebraically dependent — one being the square of the other
— is completely lost. Naturally, this drawback becomes more dramatic when
looking at higher degree polynomials.

As a consequence, Coppersmith [6, 5, 7] designed in 1996 a lattice-based
method that is well-suited for exploiting polynomial structures. The underlying
idea is to additionally use algebraic relations before linearization. Let us illus-
trate this idea with our example polynomial f(x, y) = x2 + ax+ b− y. We know
that whenever f has a small root modulo N , then also xf = x3 + ax2 + bx− xy
shares this root. Using xf as well, we obtain two modular equations in five un-
knowns x3, x2, x, y, xy. Notice that the unknowns x2 and x are re-used in the
second equation which reflects the algebraic structure. So even after linearizing
both equations, Coppersmith’s method preserves some polynomial structure. In
addition to multiplication of f by powers of x and y — which is often called
shifting in the literature — one also allows for powers f i with the additional
benefit of obtaining equations modulo larger moduli N i.

When we compute the enabling condition with Coppersmith’s method for
our example f(x, y) using an optimal shifting and powering, we obtain a bound
of |x| < N

1
3 . So the method yields a better bound than naive linearization,

but cannot beat the bound of the more clever linearization with u := x2 − y.
Even worse, Coppersmith’s method results in the use of lattices of much larger
dimension.

To summarize, linearization makes use of the similarity of coefficients in a
polynomial equation, whereas Coppersmith’s method basically makes use of the
structure of the polynomial’s monomial set.

Motivation for unravelled linearization: Our new technique of unravelled
linearization aims to bring together the best of both worlds. Namely, we al-
low for clever linearization but still exploit the polynomial structure. Unravelled
linearization proceeds in three steps: linearization, basis construction, and un-
ravellation. Let us illustrate these steps with our example f(x, y), where we use
the linearization u := x2 − y in the first step. In this case, we end up with a
linear polynomial g(u, x). Similar to Coppersmith’s approach, in the second step
we use shifts and powers of this polynomial. E.g., g2 defines an equation in the
unknowns u2, ux, x2, u, x modulo N2. But since we start with a linear polyno-
mial g, this alone will not bring us any benefits, because the algebraic structure
got lost in the linearization process from f to g.

Therefore, in the third step we partially unravel the linearization for g2 using
the relation x2 = y+u. The unravelled form of g2 defines a modular equation in
the unknowns u2, ux, y, u, x, where we basically substitute the unknown x2 by
the unknown y. Notice here, that we can reuse the variable u which occurs in g2

anyway. This substitution leads to a significant gain, since y is much smaller in
size than x2.

In the present paper, we elaborate on this simple observation that unravelling
of linearization brings benefits to lattice reduction algorithms. We use the equa-
tions that result from the power generator as a case study for demonstrating the
power of unravelled linearization, but we are confident that our new technique
will also find new applications in various other contexts.

The paper is organized as follows. In Section 2 we will fix some very basic
notions for lattices. In Section 3 we define our polynomials from the power
generator with e = 2 and give a toy example with only two PRG iterations
that illustrates how unravelled linearization works. This already leads to an
improved bound of 7

11n. In Section 4 we generalize to arbitrary lattice dimension
(bound 3

5n) and in Section 5 we generalize to an arbitrary number of PRG
iterations (bound 1

2n). In Section 6 we finally generalize to an arbitrary exponent
e. Since our attacks rely on Coppersmith-type heuristics, we verify the heuristics
experimentally in Section 7.

2 Basics on Lattices

Let b1, . . . ,bd ∈ Qd be linearly independent. Then the set

L :=

{
x ∈ Qd | x =

d∑
i=1

aibi, ai ∈ Z

}

is called a lattice L with basis matrix B ∈ Qd×d, having the vectors b1, . . . ,bd as
row vectors. The parameter d is called the lattice dimension, denoted by dim(L).
The determinant of the lattice is defined as det(L) := |det(B)|.

The famous LLL algorithm [10] computes a basis consisting of short and pair-
wise almost orthogonal vectors. Let v1, . . . ,vd be an LLL-reduced lattice basis
with Gram-Schmidt orthogonalized vectors v∗1, . . . ,v

∗
d. Intuitively, the property

of pairwise almost orthogonal vectors v1, . . . ,vd implies that the norm of the
Gram-Schmidt vectors v∗1, . . . ,v

∗
d cannot be too small. This is quantified in the

following theorem of Jutla [9] that follows from the LLL paper [10].

Theorem 1 (LLL). Let L be a lattice spanned by B ∈ Qd×d. On input B, the
L3-algorithm outputs an LLL-reduced lattice basis {v1, . . . ,vd} with

||v∗i || ≥ 2
1−i
4

(
det(L)
bd−imax

) 1
i

for i = 1, . . . , d

in time polynomial in d and in the bit-size of the largest entry bmax of the basis
matrix B.

3 Power Generators with e = 2 and Two Iterations

Let us consider power generators defined by the recurrence sequence

si = sei−1 mod N,

where N is an RSA modulus and s0 ∈ ZN is the secret seed.
Suppose that the power generator outputs in each iteration the most signifi-

cant bits ki of si, i.e. si = ki + xi, where the ki are known for i ≥ 1 and the xi
are unknown.

Our goal is to recover all xi for a number of output bits ki that is as small
as possible. In other word, if we define xi < Nδ then we have to find an attack
that maximizes δ.

Let us start with the most simple case of two iterations and e = 2. The best
known bound is δ = 1

3 due to Blackburn et al. [2]. We will later generalize to an
arbitrary number of iterations and also to an arbitrary e.

For the case of two iterations, we obtain

s1 = k1 + x1 and s2 = k2 + x2,

for some unknown si, xi. The recurrence relation of the generator s2 = s21 mod N
yields k2 + x2 = (k1 + x1)2 mod N , which results in the polynomial equation

x2
1 − x2 + 2k1︸︷︷︸

a

x1 + k2
1 − k2︸ ︷︷ ︸
b

= 0 mod N.

Thus, we search for small modular roots of f(x1, x2) = x2
1−x2 +ax1 + b modulo

N .
Let us first illustrate our new technique called unravelled linearization with a

small-dimensional lattice attack before we apply it in full generality in Section 4.

Step 1: Linearize f(x1, x2) into g.
We make the substitution u := x2

1 − x2. This leaves us with a linear polynomial
g(u, x1) = u+ ax1 + b.
Step 2: Basis construction.
Defining standard shifts and powers for g is especially simple, since g is a linear
polynomial. If we fix a total degree bound of m = 2, then we choose g, xg and
g2.

Let X := Nδ be an upper bound for x1, x2. Then U := N2δ is an upper
bound for u. The choice of the shift polynomials results in a lattice L spanned
by the rows of the lattice basis B depicted in Figure 1.

Let (u0, x0) be a root of g. Then the vector v = (1, x0, x
2
0, u0, u0x0, u

2
0, k1, k2, k3)B

has its right-hand three last coordinates equal to 0 for suitably chosen ki ∈ Z.
Hence we can write v as v = (1, x0

X , . . . ,
u2

0
U2 , 0, 0, 0). Since |u0| ≤ U and |x0| ≤ X,

we obtain ||v|| ≤
√

6.

0BBBBBBBBBBBB@

g x1g g2

1 b b2
1
X

a b ab
1

X2 a a2

1
U

1 b
1

UX
1 a

1
U2 1

N
N

N2

1CCCCCCCCCCCCA
Fig. 1: After linearization and standard shifts and
powers for m = 2.

To summarize, we are looking for a short vector v in the 6-dimensional sublat-
tice L′ = L ∩ (Q6×03) with ||v|| ≤

√
dim(L′). Let b1, . . . ,b6 be an LLL-reduced

basis of L′ with orthogonalized basis b∗1, . . . ,b
∗
6. Coppersmith [7] showed that

any vector v ∈ L′ that is smaller than b∗6 must lie in the sub-space spanned
by b1, . . . ,b5, i.e. v is orthogonal to b∗6. This immediately yields a coefficient
vector of a polynomial h(u, x1), which has the same roots as g(u, x1), but over
the integers instead of modulo N . Assume that we can find two such polynomials
h1, h2, then we can compute all small roots by resultant computation provided
that h1, h2 do not share a common divisor. The only heuristic of our method is
that the polynomials h1, h2 are indeed coprime.

By the LLL-Theorem (Theorem 1), an orthogonalized LLL-basis contains a
vector b∗d in L′ with ||b∗d|| ≥ c(d) det(L′)

1
d , where c(d) = 2

1−d
4 . Thus, if the

condition

c(d) det(L′)
1
d ≥
√
d

holds, then v̄ = (1, x0
X , . . . ,

u2
0

U2) will be orthogonal to the vector b∗d.
Since det(L′) is a function of N , we can neglect d = dim(L′) for large enough

N . This in turn simplifies our condition to

det(L′) ≥ 1.

Moreover, one can show by a unimodular transformation of B that det(L′) =
det(L).

For our example, the enabling condition det(L) ≥ 1 translates to U4X4 ≤
N4. Plugging in the values of X := Nδ and U := N2δ, this leads to the condition
δ ≤ 1

3 . Notice that this is exactly the condition from Blackburn et al. [2]. Namely,
if the PRG outputs 2

3n bits per iteration, then the remaining 1
3n bits can be found

in polynomial time.
We will now improve on this result by unravelling the linearization of g.

Step 3: Unravel g’s linearization.
We unravel the linearization by back-substitution of x2

1 = u + x2. This slightly
changes our lattice basis (see Fig. 2).

0BBBBBBBBBBBB@

g x1g g2

1 b b2
1
X

a b ab
1
X

a a2

1
U

1 a a2 + b
1

UX
1 a

1
U2 1

N
N

N2

1CCCCCCCCCCCCA
Fig. 2: After unravelling the linearization.

The main difference is that the determinant of the new lattice Lu increases by
a factor of X. Thus our enabling condition det(Lu) ≥ 1 yields U4X3 ≤ N4 or
equivalently δ ≤ 4

11 . This means that if the PRG outputs 7
11n of the bits in

each of two iterations, then we can reconstruct the remaining 4
11n bits of both

iterations in polynomial time. This beats the previous bound of 1
3n.

We would like to stress again that our approach is heuristic. We construct
two polynomials h1, h2. 1 The polynomials h1, h2 contain a priori three variables
x1, x2, u, but substituting u by x2

1 − x2 results in two bivariate polynomials
h′1, h

′
2. Then, we hope that h′1 and h′2 are coprime and thus allow for efficient

root finding. We verified this heuristic with experiments in Section 7.

4 Generalization to Lattices of Arbitrary Dimension

The linearization step from f(x1, x2) to g(u, x1) is done as in the previous section
using u := x2

1−x2. For the basis construction step, we fix an integer m and define
the following collection of polynomials

gi,j(u, x1) := xj1g
i(u, x1) for i = 1, . . . ,m and j = 0, . . . ,m− i. (1)

In the unravelling step, we substitute each occurrence of x2
1 by u + x2 and

change the lattice basis accordingly. It remains to compute the determinant of
the resulting lattice. This appears to be a non-trivial task due to the various

1 The polynomial h2 can be constructed from b∗d−1 with a slightly more restrictive
condition on det(L) coming from Theorem 1. However, in practical experiments the
simpler condition det(L) ≥ 1 seems to suffice for h2 as well. In the subsequent
chapters, this minor detail is captured by the asymptotic analysis.

back-substitutions. Therefore, we did not compute the lattice determinant as a
function of m by hand. Instead, we developed an automated process that might
be useful in other contexts as well.

We observe that the determinant can be calculated by knowing first the prod-
uct of all monomials that appear in the collection of the gi,j after unravelling,
and second the product of all N . Let us start with the product of the N , since
it is easy to compute from Equation (1):

m∏
i=1

m−i∏
j=0

N i =
m∏
i=1

N (m+1)i−i2 = N
1
6m

3+o(m3).

Now let us bound the product of all monomials. Each variable x1, x2, u appears
in the unravelled form of gi,j with power at most 2m. Therefore, the product of
all monomials that appear in all 1

2m
2 + o(m2) polynomials has in each variable

degree at most m3. Thus, we can express the exponent of each variable as a
polynomial function in m of degree 3 with rational coefficients — similar to the
exponent of N .

But since we know that the exponents are polynomials in m of degree at
most 3, we can uniquely determine them by a polynomial interpolation at 4
points. Namely, we explicitly compute the unravelled basis for m = 1, . . . , 4 and
count the number of variables that occur in the unravelled forms of the gi,j .
From these values, we interpolate the polynomial function for arbitrary m.

This technique is much less error-prone than computing the determinant
functions by hand and it allows for analyzing very complicated lattice basis
structures. Applying this interpolation process to our unravelled lattice basis,
we obtain det(L) = X−p1(m)U−p2(m)Np3(m) with

p1(m) =
1
12
m3 + o(m3), p2(m) =

1
6
m3 + o(m3), p3(m) =

1
6
m3 + o(m3).

Our condition det(L) ≥ 1 thus translates into 5
12δ ≤

1
6 resp. δ ≤ 2

5 . Interestingly,
this is exactly the bound that Blackburn et al. [2] conjectured to be the best
possible bound one can obtain by looking at two iterations of the PRG.

In the next section, we will also generalize our result to an arbitrary fixed
number of iterations of the PRG. This should intuitively help to further improve
the bounds and this intuition turns out to be true. To the best of our knowledge,
our attack is the first one that is capable of exploiting more than two equations
in the contexts of PRGs.

5 Using an Arbitrary Fixed Number of PRG Iterations

We illustrate the basic idea of generalizing to more iterations by using three
iterations of the generator before analyzing the general case.

Let si = ki+xi for i = 1, 2, 3, where the ki are the output bits and the xi are
unknown. For these values, we are able to use two iterations of the recurrence
relation, namely

s2 = s21 mod N s3 = s22 mod N

from which we derive two polynomials

f1 : x2
1 − x2︸ ︷︷ ︸
u1

+ 2k1︸︷︷︸
a1

x1 + k2
1 − k2︸ ︷︷ ︸
b1

= 0 mod N

f2 : x2
2 − x3︸ ︷︷ ︸
u2

+ 2k1︸︷︷︸
a2

x2 + k2
2 − k3︸ ︷︷ ︸
b2

= 0 mod N.

We perform the linearization step f1 → g1 and f2 → g2 by using the substitutions
u1 := x2

1 − x2 and u2 := x2
2 − x3.

In the basis construction step, we have to define a collection for the polyno-
mials g1(u1, x1) and g2(u2, x2) using suitable shifts and powers. We will start by
doing this in some generic but non-optimal way, which is depicted in Figure 3
for the case of fixed total degree m = 2 in g1, g2. In this basis matrix for better
readability we leave out the left-hand diagonal consisting of the inverses of the
upper bounds of the corresponding monomials.

0BB@

g1 x1g1 g2
1 g2 x2g2 g2

2 x2g1 x1g2 g1g2

1 b1 b21 b2 b22 b1b2
x1 a1 b1 a1b1 b2 a1b2
x2 a1 a2

1 a2 b2 a2b2 b1 a2b1
x3 a2 a2

2

u1 1 a1 a2
1 + b1 b2

u1x1 1 a1

u2
1 1
u2 1 a2 a2

2 + b2 b1
u2x2 1 a2

u2
2 1
x1x2 a1 a2 a1a2

u1x2 1 a2

u2x1 1 a1

u1u2 1
N

N
N2

N
N

N2

N
N

N2

1CCA
Fig. 3: Generic lattice basis for 2 polynomials

The reader may verify that the bound obtained from this collection of polynomi-
als is δ ≤ 4

11 ≈ 0.364, which is exactly the same bound as in our starting example

in Section 3. A bit surprisingly, our generic lattice basis construction does not
immediately improve on the bound that we derived from a single polynomial.

It turns out, however, that we improve when taking just a small subset of the
collection in Fig. 3. If we only use the shifts g1, x1g1, g

2
1 and additionally g2, then

we obtain a superior bound of δ ≤ 5
13 ≈ 0.385. The reason for the improvement

comes from the fact that the monomial x2 of g2 can be reused as it already
appeared in the shifts x1g1 and g2

1 .
For the asymptotic analysis, we define the following collection of polynomials

gi,j,k := xk1g
i
1g
j
2 for

i = 0, . . . ,m
j = 0, . . . ,

⌊
m−i

2

⌋
k = 0, . . . ,m− i− 2j

with i+ j ≥ 1.

The intuition behind the definition of this collection of polynomials follows the
same reasoning as in the example for m = 2. We wish to keep small the number
of new monomials introduced by the shifts with g2. Notice that the monomials xi2
for i = 0, . . .

⌊
m
2

⌋
already appeared in the g1 shifts — since we back-substituted

x2
1 → u1 + x2. Therefore, it is advantageous to use the g2 shifts only up to

⌊
m
2

⌋
.

With the interpolation technique introduced in Section 4, we derive a bound
of δ ≤ 6

13 for the case of 2 polynomials, i.e. three output values of the generator.

5.1 Arbitrary Number of PRG Iterations

Given n + 1 iterations of the PRG, we select a collection of shift polynomials
following the intuition given in the previous section:

gi1,...,in,k := xk1g
i1
1 . . . ginn

for

i1 = 0, . . . ,m
i2 = 0, . . . ,

⌊
m−i1

2

⌋
...

in = 0, . . . ,
⌊
m−

Pn−1
j=1 2j−1ij

2n−1

⌋
k = 0, . . . ,m−

∑n
j=1 2j−1ij

with i1 + . . .+ in ≥ 1.

To perform the asymptotic analysis we need to determine the value of the de-
terminant of the corresponding lattice basis. This means, we have to count the
exponents of all occurring monomials in the set of shift polynomials. We would
like to point out that because of the range of the index k, the shifts with xk1
do not introduce additional monomials over the set defined by the product of
the gi alone. For this product the monomials can be enumerated as follows (see
Appendix A for a proof):

xa1
1 . . . xan

n ui1−a1
1 . . . u

in−1−an−1
n−1 uin−2bn−an

n xbn
n+1

with

i1 = 0, . . . ,m a1 = 0, 1
i2 = 0, . . . ,

⌊
m−i1

2

⌋
a2 = 0, 1

...
...

in = 0, . . . ,
⌊
m−

Pn−1
j=1 2j−1ij

2n−1

⌋
an = 0, 1

bn = 0, . . . ,
⌊
in−an

2

⌋
.

We are only interested in the asymptotic behavior, i.e. we just consider the
highest power of m. We omit the floor function as it only influences a lower
order term. Analogously, we simplify the exponents of uj by omitting the value
aj , since it is a constant polynomial in m. Furthermore, for the same reason the
contribution to the determinant of all xi with i ≤ n can be neglected.

To derive the final condition, we have to compute the polynomials pj(m) of
the following expression for the determinant (resp. the coefficients of the highest
power of m):

det(L) = X
−px(m)
n+1 U

−p1(m)
1 . . . U−pn(m)

n NpN (m).

It seems to be a complicated task to compute these polynomials explicitly. There-
fore, we follow a different approach and compute the sizes of their leading coeffi-
cients in relation to each other. This turns out to be enough to derive a bound on
the sizes of the unknowns. In Appendix B we explain how to derive the following
expressions for the polynomials:

pj(m) =
1

2j−1
p1(m) for j ≤ n, px(m) =

1
2n
p1(m), pN (m) =

2n − 1
2n−1

p1(m),

where we again omit low order terms. We use these expressions in the enabling
condition det(L) ≥ 1 and plug in upper bounds Xn+1 ≤ Nδ and Ui ≤ N2δ. It is
sufficient to consider the condition for the exponents:

δ
1
2n
p1(m) + 2δ

n∑
j=1

1
2j−1

p1(m) ≤ 2n − 1
2n−1

p1(m).

Simplifying this condition and solving for δ, we obtain

δ ≤ 2n+1 − 2
2n+2 − 3

,

which converges for n→∞ to δ ≤ 1
2 .

6 Extending to Higher Powers

In the previous sections, we have considered PRGs with exponent e = 2 only,
i.e. a squaring operation in the recurrence relation. A generalization to arbitrary
exponents is straight forward.

Suppose the PRG has the recurrence relation s2 = se1 mod N . Let, as in
Section 3, the output of the generator be k1, k2, i.e. we have s1 = k1 + x1 and
s2 = k2 + x2, for some unknown si, xi.
Using the recurrence relation, this yields the polynomial equation

xe1 − x2︸ ︷︷ ︸
u

+ek1x
e−1
1 + . . .+ eke−1

1 x1 + ke1 − k2︸ ︷︷ ︸
b

= 0 mod N.

The linearization step is analog to the case where e = 2, however, the unravelling
of the linearization only applies for higher powers of x1, in this case xe1.
The collection of shift polynomials using n PRG iterations is

gi1,...,in,k := xk1g
i1
1 . . . ginn

for

i1 = 0, . . . ,m
i2 = 0, . . . ,

⌊
m−i1
e

⌋
...

in = 0, . . . ,
⌊
m−

Pn−1
j=1 e

j−1ij

en−1

⌋
k = 0, . . . ,m−

∑n
j=1 e

j−1ij

with i1 + . . .+ in ≥ 1.

Taking a closer look at the analysis in Appendix A and B shows that the general-
ization for arbitrary e is straightforward. Working through the analysis we obtain
for arbitrary e an asymptotic bound for an arbitrary number of polynomials of
δ ≤ 1

e .

7 Experiments

Since our technique uses a heuristic concerning the algebraic independence of the
obtained polynomials, we have to experimentally verify our results. Therefore,
we implemented the unravelled linearization using SAGE 3.4.1. including the L2

reduction algorithm from Nguyen and Stehlé [12]. In Table 1 some experimental
results are given for a PRG with e = 2 and 256 bit modulus N .

polys m δ exp. δ dim(L) time(s)

1 4 0.377 0.364 15 1
1 6 0.383 0.377 28 5
1 8 0.387 0.379 45 45
2 4 0.405 0.390 22 10
2 6 0.418 0.408 50 1250
3 4 0.407 0.400 23 5

Table 1: Experimental Results for e = 2

In the first column we denote the number of polynomials. The second column
shows the chosen parameter m, which has a direct influence on how close we
approach the asymptotic bound. On the other hand, the parameter m increases
the lattice dimension and therefore the time required to compute a solution. The
theoretically expected δ is given in the third column, whereas the actually verified
δ is given in the fourth column. The last column denotes the time required to
find the solution on a Core2 Duo 2.2 GHz running Linux 2.6.24.

It is worth mentioning that most of the time to find the solution is not spend
on doing the lattice reduction, but for extracting the common root from the
set of polynomials using resultant computations. The resultant computations
yielded the desired solutions of the power generators.

Acknowledgement: We would like to thank Dan Bernstein for bringing this
research topic to our attention during an Ecrypt meeting.

References

1. Michael Ben-Or, Benny Chor, and Adi Shamir. On the cryptographic security of
single rsa bits. In STOC, pages 421–430. ACM, 1983.

2. Simon R. Blackburn, Domingo Gomez-Perez, Jaime Gutierrez, and Igor Shparlin-
ski. Reconstructing noisy polynomial evaluation in residue rings. J. Algorithms,
61(2):47–59, 2006.

3. Lenore Blum, Manuel Blum, and Mike Shub. A simple unpredictable pseudo-
random number generator. SIAM J. Comput., 15(2):364–383, 1986.

4. Manuel Blum and Silvio Micali. How to generate cryptographically strong se-
quences of pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984.

5. Don Coppersmith. Finding a small root of a bivariate integer equation; factoring
with high bits known. In Maurer [11], pages 178–189.

6. Don Coppersmith. Finding a small root of a univariate modular equation. In
Maurer [11], pages 155–165.

7. Don Coppersmith. Small solutions to polynomial equations, and low exponent rsa
vulnerabilities. J. Cryptology, 10(4):233–260, 1997.

8. Roger Fischlin and Claus-Peter Schnorr. Stronger security proofs for rsa and rabin
bits. J. Cryptology, 13(2):221–244, 2000.

9. Charanjit S. Jutla. On finding small solutions of modular multivariate polynomial
equations. In EUROCRYPT, pages 158–170, 1998.

10. Arjen K. Lenstra, Hendrik W. Lenstra, and László Lovász. Factoring Polynomials
with Rational Coefficients. Mathematische Annalen, 261(4):515–534, 1982.

11. Ueli M. Maurer, editor. Advances in Cryptology - EUROCRYPT ’96, International
Conference on the Theory and Application of Cryptographic Techniques, Saragossa,
Spain, May 12-16, 1996, Proceeding, volume 1070 of Lecture Notes in Computer
Science. Springer, 1996.

12. Phong Q. Nguyen and Damien Stehlé. Floating-point lll revisited. In EURO-
CRYPT, pages 215–233, 2005.

13. Phong Q. Nguyen and Jacques Stern. The two faces of lattices in cryptology. In
Joseph H. Silverman, editor, CaLC, volume 2146 of Lecture Notes in Computer
Science, pages 146–180. Springer, 2001.

14. Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang. On the provable security of an
efficient rsa-based pseudorandom generator. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT, volume 4284 of Lecture Notes in Computer Science, pages 194–209.
Springer, 2006.

A Describing the Set of Monomials

Theorem 1 Suppose we have n polynomials of the form

fi(xi, xi+1) = x2
i + aixi + bi − xi+1

and define the collection of polynomials

f i11 . . . f inn for

i1 = 0, . . . ,m
i2 = 0, . . . ,

⌊
m−i1

2

⌋
...

in = 0, . . . ,
⌊
m−

Pn−1
j=1 2j−1ij

2n−1

⌋
.

After performing the substitutions x2
i 7→ ui+xi+1, the set of all occurring mono-

mials can be described as

xa1
1 . . . xan

n ui1−a1
1 . . . u

in−1−an−1
n−1 uin−2bn−an

n xbn
n+1

with

i1 = 0, . . . ,m a1 = 0, 1
i2 = 0, . . . ,

⌊
m−i1

2

⌋
a2 = 0, 1

...
...

in = 0, . . . ,
⌊
m−

Pn−1
j=1 2j−1ij

2n−1

⌋
an = 0, 1

bn = 0, . . . ,
⌊
in−an

2

⌋
.

Proof. By induction: Basic step: n = 1
For one polynomial f1(x1, x2) = x2

1 +a1x1 + b1−x2 we perform the substitution
x2

1 7→ u1 + x2 to obtain g1(u1, x1) = u1 + a1x1 + b1. The set of all monomials
that are introduced by the powers of g1(u1, x1) can be described as

xj11 u
i1−j1
1 for

{
i1 = 0, . . . ,m
j1 = 0, . . . , i1.

It remains to perform the substitution on this set. Therefore, we express the
counter j1 by two counters a1 and b1 and let j1 = 2b1 + a1, i.e. we write the set
as

(x2
1)b1xa1

1 u
i1−2b1−a1
1 for

i1 = 0, . . . ,m
a1 = 0, 1
b1 = 0, . . . ,

⌊
i1−a1

2

⌋
.

Imagine that we enumerate the monomials for fixed i1, a1 and increasing b1,
and simultaneously perform the substitution x2

1 7→ u1 + x2. The key point to
notice is that all monomials that occur after the substitution, i.e. all of (u1 +
x2)b1xa1

1 u
i1−2b1−a1
1 , have been enumerated by a previous value of b1, except for

the single monomial xb12 x
a1
1 u

i1−2b1−a1
1 .

Thus, the set of monomials after the substitution can be expressed as

xb12 x
a1
1 u

i1−2b1−a1
1 for

i1 = 0, . . . ,m
a1 = 0, 1
b1 = 0, . . . ,

⌊
i1−a1

2

⌋
.

This concludes the basic step.

Inductive Step: n− 1→ n
Suppose the assumption is correct for n− 1 polynomials. By the construction of
the shift polynomials and the induction hypothesis, we have the set of monomials

xa1
1 . . . x

an−1
n−1 u

i1−a1
1 . . . u

in−2−an−2
n−2 u

in−1−2bn−1−an−1
n−1 xbn−1

n︸ ︷︷ ︸
Hypothesis

xjnn u
in−jn
n︸ ︷︷ ︸
fn

for

i1 = 0, . . . ,m a1 = 0, 1
i2 = 0, . . . ,

⌊
m−i1

2

⌋
a2 = 0, 1

...
...

in−1 = 0, . . . ,
⌊
m−

Pn−2
j=1 2j−1ij

2n−2

⌋
an−1 = 0, 1

bn−1 = 0, . . . ,
⌊
in−1−an−1

2

⌋
in = 0, . . . ,

⌊
m−

Pn−1
j=1 2j−1ij

2n−1

⌋
jn = 0, . . . , in.

By adding the n-th polynomial, we also get the new relation x2
n = un + xn+1.

Before performing the substitutions, however, we have to take a closer look at
the powers of xn. The problem seems to be that we have a contribution from
the n-th polynomial as well as from some previous substitutions. It turns out
that this can be handled quite elegantly. Namely, we will show that all occurring
monomials are enumerated by just taking bn−1 = 0.
Consider the set of monomials for bn−1 = c for some constant c ≥ 1:

xa1
1 . . . u

in−1−2c−an−1
n−1 xjn+c

n for jn ∈ {0, . . . , in}.

Exactly the same set of monomials is obtained by considering the index i′n−1 =
in−1 − 2 and bn−1 = c− 1. Notice that in this case the counter i′n, which serves
as an upper bound of j′n, runs from 0 through⌊

m−
∑n−2
j=1 2j−1ij − 2n−2i′n−1

2n−1

⌋
=

⌊
m−

∑n−2
j=1 2j−1ij − 2n−2in−1 + 2n−1

2n−1

⌋
= in + 1.

Thus, we have the same set of monomials as with bn−1 = c− 1:

xa1
1 . . . u

i′n−1−2(c−1)−an−1

n−1 x
j′n+(c−1)
n for j′n ∈ {0, . . . , i′n}.

Iterating this argument, we conclude that all monomials are enumerated by
bn−1 = 0.

Having combined the occurring powers of xn, we continue by performing an
analog step as in the basic step: introduce an and bn representing jn. This leads
to

xa1
1 . . . u

in−1−an−1
n−1 (x2

n)bnxan
n uin−2bn−an

n

for

i1 = 0, . . . ,m a1 = 0, 1
i2 = 0, . . . ,

⌊
m−i1

2

⌋
a2 = 0, 1

...
...

in−1 = 0, . . . ,
⌊
m−

Pn−2
j=1 2j−1ij

2n−2

⌋
an−1 = 0, 1

in = 0, . . . ,
⌊
m−

Pn−1
j=1 2j−1ij

2n−1

⌋
an = 0, 1

bn = 0, . . . ,
⌊
in−an

2

⌋
.

Finally we substitute x2
n = un + xn+1. Using the same argument as in the basic

step, we note that new monomials only appear for powers of xn+1.

B Relations among Exponent Polynomials

For the determinant computation we need to sum up the exponents of the oc-
curring monomials. Take for example u` with ` < n: using the description of the
set from Appendix A, we need to compute

m∑
i1=0

1∑
a1=0

bm−i1
2 c∑

i2=0

1∑
a2=0

. . .

$
m−

Pn−1
j=1 2j−1ij

2n−1

%
∑
in=0

1∑
an=0

b in−an
2 c∑

bn=0

(i` − a`) .

We will step by step simplify this expression using the fact that in the asymptotic
consideration only the highest power of the parameter m is important.

In the first step we notice that we may remove the −a` from the summation,
because a` does not depend on m, while i` does. Therefore, the a` just affects
lower order terms. With the same argument we can omit the an in the upper
bound of the sum over bn. Further, the floor function in the limit of the sums
does only affect lower order terms and therefore may be omitted. Next, we can
move all the sums of the ai to the front, since they are no longer referenced
anywhere, and replace each of these sums by a factor of 2, making altogether a
global factor of 2n.

For further simplification of the expression, we wish to eliminate the fractions
that appear in the bounds of the sums. To give an idea how to achieve this,
consider the expression

m∑
i1=0

m−i1
2∑

i2=0

i2.

Our intuition is to imagine an index i′2 of the second sum that performs steps
with a width of 2 and is upper bounded by m − i1. To keep it equivalent, we
have to compute the sum of over all integers of the form

⌊
i′2
2

⌋
. However, when

changing the index to i′2, the sum surely does not perform steps with width 2.
I.e. we count every value exactly twice. Thus, to obtain a correct reformulation,
we have to divide the result by 2. Note that asymptotically we may omit the
floor function and simply sum over i′2

2 .
In the same way we are able to reformulate all sums from i1 to in. For better

readability we replaced i′j with ij again.

2n · 1
2
· 1

4
· . . . · 1

2n−1

m∑
i1=0

m−i1∑
i2=0

. . .

m−
Pn−1

j=1 ij∑
in=0

in
2n∑
bn=0

1
2`−1

i`. (2)

It seems to be a complicated task to explicitly evaluate a sum of this form. There-
fore, we follow a different approach, namely we relate the sums over different i`
to each other. We start with the discussion of a slightly simpler observation:

Sums of the form
∑m
i1=0

∑m−i1
i2=0 . . .

∑m−
Pn−1

j=1 ij
in=0 i` are equal for all ` ≤ n.

An explanation can be given as follows. Imagine the geometric object that is
represented by taking the ij as coordinates in an n-dimensional space. This set
describes an n-dimensional simplex, e.g. a triangle for n = 2, a tetrahedron for
n = 3, etc. Considering its regular structure, i.e. the symmetry in the different
coordinates, it should be clear that the summation over each of the i` results in
the same value.

In the sum of Equation (2) there is an additional inner summation with index
bn and limit in/2n. For the indices ` < n this innermost sum is constant for all
values of ` and thus with the previous argumentation the whole sums are equal
for all ` < n. We only have to take care of the leading factors, i.e. the powers of
2 that came from replacing the summation variables.

This gives us already a large amount of the exponent polynomials in the
determinant expression. Namely, we are able to formulate the polynomials p`
(which is the sum over the i`) in terms of p1 for all ` < n. The difference is
exactly the factor 1

2`−1 that has been introduced when changing the index from
i` to i′`.

For the exponent polynomial of the variable un, however, we have to be
careful because we do not compute the summation of in − an, but of in/2n−1 −
2bn−an instead (in/2n−1 since we changed the summation index in). The value

−an can be omitted with the same argument as before. To derive a relation of
pn to p1, we start by evaluating the inner sums:

p1 : . . .
m−

Pn−1
j=1 ij∑

in=0

in
2n∑
bn=0

i1 = . . .

m−
Pn−1

j=1 ij∑
in=0

in
2n
i1

pn : . . .
m−

Pn−1
j=1 ij∑

in=0

in
2n∑
bn=0

(
in

2n−1
− 2bn

)
= . . .

m−
Pn−1

j=1 ij∑
in=0

(
i2n

22n−1
− 2

1
2
i2n
22n

)

= . . .

m−
Pn−1

j=1 ij∑
in=0

i2n
22n−1

.

Notice that once again, for the asymptotic analysis we have only considered the
highest powers.

Because of the previously mentioned symmetry between i1 and in, we finally
derive pn = 1

2n−1 p1. The same argument can be used to derive the bound on the
variable xn+1 for which we have to compute the sum

px : . . .
m−

Pn−1
j=1 ij∑

in=0

in
2n∑
bn=0

bn = . . .

m−
Pn−1

j=1 ij∑
in=0

i2n
22n

.

The multiplicative relation between p1 and px is therefore px = 1
2n p1.

Finally, to compute the exponent of N in the determinant, we have to sum
up all exponents that occur in the enumeration of the shift polynomials given in
Section 5.1. The simplifications are equivalent to the ones used before and we
obtain:

pN =
n∑
`=1

1
2
· 1

4
· . . . · 1

2n−1

m∑
i1=0

. . .

m−
Pn−1

j=0 ij∑
in=0

m−
Pn

j=0 ij∑
k=0

1
2`−1

i`

 .

We first note that for ` < n we may write

. . .
1

2`−1
i`

c∑
in=0

c−in∑
k=0

1 with c = m−
n−1∑
j=0

ij .

This is asymptotically equivalent to

. . .
1

2`−1
i`

c∑
in=0

in∑
k=0

1 = 2n · . . . 1
2`−1

i`

c∑
in=0

in
2n∑
k=0

1 =
1

2`−1
p1.

For ` = n we argue again that the summations for different i` behave the same

way. Thus it follows 1
2 ·

1
4 · . . . ·

1
2n−1

∑m
i1=0 . . .

∑m−
Pn−1

j=0 ij
in=0

∑m−
Pn

j=0 ij
k=0

in
2n−1 =

1
2n−1 p1. Summing up, we obtain

pN = (1 +
1
2

+
1
4

+ . . .+
1

2n−1
)p1 =

2n − 1
2n−1

p1.

