

Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May Elena Kirshanova

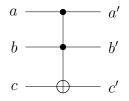
Hausübungen zur Vorlesung Quantenalgorithmen WS 2013/2014 Blatt 3 / 28 November, 2013. 2 p.m.

Exercise 1 (4 Punkte):

The Fredkin gate is a 3-qubit gate that implements a controlled SWAP: if the third qubit is 1, the first and the second bit are swapped; if the third qubit is 0, all three bits are unchanged. The truth table is:

INPUT			OUTPUT			
a	b	С	a'	b'	c'	
0	0	0	0	0	0	
0	0	1	0	0	1	
0	1	0	0	1	0	
0	1	1	1	0	1	
1	0	0	1	0	0	
1	0	1	0	1	1	
1	1	0	1	1	0	
1	1	1	1	1	1	

The quantum circuit is:


- 1. Find the matrix representation for the Fredkin gate;
- 2. Show that the Fredkin gate is self-inverse;
- 3. Show that the Fredkin gate is a universal set.

Exercise 2 (4 Punkte):

Another 3-bit gate is the Toffoli gate. It implements a controlled CNOT: the first two bits a, b are control bits, while c is the target bit. The truth table is:

INPUT			OUTPUT		
a	b	c	a'	<i>b</i> ′	c'
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	1
1	1	1	1	1	0

The quantum circuit is:

- 1. Find the matrix representation;
- 2. Show how to build the following gates from the Toffoli gate: CNOT, NAND, NOT, AND, OR.

Exercise 3 (5 Punkte):

- 1. Construct a binary half-adder using Toffoli gate. This adder accepts two bits a and b, outputs also two bits: a carry bit and $a + b \mod 2$.
- 2. Construct a full-adder which also accepts a carry bit c as the input. Such an adder output a + b + c and a new carry bit.

Exercise 4 (4 Punkte):

What is the smallest number of Fredkin gates needed to simulate a Toffoli gate? What is the samllest number of Toffoli gates needed to simulate a Fredkin gate?