

Präsenzübungen zur Vorlesung Kryptanalyse SS 2014 Blatt 7 / 23 June 2014

Exercise 1:

Let N_1, \ldots, N_5 be pairwise prime RSA-modules and $m < N_i$ be a message. Provide an efficient algorithm to solve the following system:

 $c_1 = m^3 \mod N_1$ $c_2 = m^3 \mod N_2$ $c_3 = m^5 \mod N_3$ $c_4 = m^5 \mod N_4$ $c_5 = m^5 \mod N_5$

Can you solve it without the last equation?

Exercise 2:

Let M have an unknown divisor b and $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree n. Assume you have an access to an algorithm \mathcal{A} that on input M and f(x) outputs a root x_0 of $f(x) \mod b$ that is *not* a root of $f(x) \mod M$, that is,

$$f(x_0) = 0 \mod b$$
 and $f(x_0) \neq 0 \mod M$.

Show how to find a non-trivial factor of M in time polynomial in n and $\log M$.

Exercise 3:

This exercise deals with the problem of finding a solution for a bivariate system of equations. Consider RSA with related messages. Assume Eve has intercepted two RSA-ciphertexts encrypted with public exponent e = 3: $c_1 = m_1^3 \mod N$, $c_2 = m_2^3 \mod N$. To apply Coppersmith's attack, she considers the following system of equations with two unknowns x_1, x_2 that correspond to the solution (m_1, m_2) :

$$f_1(x_1) = x_1^3 - c_1 \mod N$$

$$f_2(x_2) = x_2^3 - c_2 \mod N$$

$$p(x_1, x_2) = 0 \mod N.$$

Case 1. Assume Eve has an explicit relation between m_1 and m_1 :

$$p(m_1, m_2): m_2 = a \cdot m_1 + b,$$

for some known a and b. Reduce the problem to a univariate system with two equations. Case 2. Now assume we the relation is given by

$$p(m_1, m_2) = m_2^2 + m_1 m_2 + 4 = 0 \mod N.$$

In order to help Eve to solve this system, proceed as follows:

- 1. Using the Sylvester matrix, compute the resultant $r(x_2)$ of $p(x_1, x_2)$ and $f_1(x_1)$ with regard to x_1 .
- 2. The obtained resultant has a common root with $f_2(x_2)$. Find $gcd(r(x_2), f_2(x_2)) \mod N$. What does it tell you about m_2 ?
- 3. Using the above, construct two polynomials in only one unknown. Can you now determine m_1 ?