

Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May Gottfried Herold

Hausübungen zur Vorlesung Zahlentheorie

SS 2013

Blatt 6 / 10. Mai 2013 / Abgabe bis spätestens 27. Mai 2013, 12:00 Uhr in dem Kasten auf NA 02 oder am Anfang der Vorlesung

Geben Sie bitte die Aufgaben zur Vereinfachung der Korrektur folgendermassen nach Aufgaben getrennt ab:

- Aufgaben 1,2 in Kasten A
- Aufgaben 3,4 in Kasten B
- Aufgaben 5,6 in Kasten C

Die Kästen auf NA 02 sind entsprechend beschriftet. Wenn Sie in der Vorlesung abgeben, machen sie einfach 3 getrennte Stapel. Schreiben Sie auf alle 3 Abgaben jeweils Ihre(n) Namen und/oder Matrikelnummer(n).

Bitte schreiben Sie auf Ihre Abgaben eine Sollrückgabestelle (Übungsgruppe, Zentralübung, persönlich in NA5/74).

Frohe Pfingsferien

AUFGABE 1 (3 Punkte):

- (a) Zeigen Sie, dass für p=2 die Aussagen $x\equiv 1 \mod p^r$ und $x^p\equiv 1 \mod p^{r+1}$ nicht äquivalent sind.
- (b) Zeigen Sie, dass für $x \in \mathbb{Z}$ mit $x \equiv 1 \mod 4$ und $r \geq 1$ gilt:

$$x \equiv 1 \mod 2^r \Leftrightarrow x^2 \equiv 1 \mod 2^{r+1}$$

AUFGABE 2 (2 Punkte):

Geben Sie einen Erzeuger von \mathbb{F}_{25}^* an, wobei $\mathbb{F}_{25} = \mathbb{F}_5[X]/(X^2-2)$.

Hinweis: $\overline{2X+1}$ ist z.B. eine gute Wahl.

AUFGABE 3 (4 Punkte):

Wir betrachten den Ring $R = \mathbb{Z}[\sqrt{3}]$ und das von $5 + 11\sqrt{3}$ und $8 - 3\sqrt{3}$ erzeugte *Ideal* $I = (5 + 11\sqrt{3}, 8 - 3\sqrt{3})$.

- (a) Geben Sie eine Präsentation (in Matrixform) der additiven Gruppe G = R/I an (die Multiplikation des Rings R/I interessiert nicht).
- (b) Bestimmen Sie die Elementarteiler-Normalform und die Primteiler-Normalform von G.

AUFGABE 4 (3 Punkte):

Wir betrachten die Abbildung $A: \mathbb{Z}^4 \to \mathbb{Z}^6$, gegeben durch die Matrix

$$A = \begin{pmatrix} 4 & 1 & 2 & -4 \\ 2 & -2 & -40 & -2 \\ 10 & 0 & 0 & -10 \\ -1 & 11 & 32 & 1 \\ -5 & -10 & -30 & 5 \\ 3 & 12 & 70 & 17 \end{pmatrix}$$

Bestimmen Sie die Elementarteiler-Normalform und die Primteilernormalform von $\mathbb{Z}^6/\mathrm{Im}(A)$

AUFGABE 5 (2 Punkte):

Bestimmen Sie alle endlichen Untergruppen der Gruppe (\mathbb{C}^* , ·).

AUFGABE 6 (6 Punkte):

In dieser Aufgabe wollen wir die Eindeutigkeit der Primteilernormalform zeigen.

Sei zunächst (G, +) eine beliebige abelsche Gruppe mit neutralem Element 0. Für $n \in \mathbb{N}$ bezeichnen wir

$$T_n(G) = \{ g \in G \mid n \cdot g = 0 \}$$

als n-Torsion von G sowie

$$T(G) = \{ g \in G \mid \exists n \in \mathbb{N} \ n \cdot g = 0 \} = \bigcup_{n} T_n(G)$$

als Torsion von G. Dabei ist wie üblich $n \cdot g = g + g + \dots + g$ (n mal), d.h. $T_n(G)$ enthält genau die Elemente von G, deren Ordnung n teilt. Zeigen Sie:

(a) $T_n(G)$ für $n \in \mathbb{N}$ und T(G) sind Untergruppen von G.

Sei nun speziell $H=\mathbb{Z}^r\times E,$ wobei E eine endliche abelsche Gruppe ist.

- (b) Zeigen Sie, dass $T(H) \cong E$ und $H/T(H) \cong \mathbb{Z}^r$ ist.
- (c) Zeigen Sie, dass $\mathbb{Z}^r \ncong \mathbb{Z}^{r'}$ für $r' \neq r$.

Sei nun $E = \prod \mathbb{Z}/(p_i^{e_i})$ Primteiler-Normalform von E. Dabei komme $\mathbb{Z}/(p^m)$ für jede Primzahlpotenz p^m genau $\kappa(p,m)$ -mal in dem Produkt vor.

- (d) Geben Sie eine Formel für die Anzahl der Elemente $|T_{p^m}(E)|$ an.
- (e) Drücken Sie die $\kappa(p,m)$ durch die $|T_{p^m}(E)|$ aus.

Hinweis: Nehmen Sie für (c) an, dass es einen Isomorphismus f gäbe und zeigen Sie, dass sich f auf $\mathbb{Q}^r \to \mathbb{Q}^{r'}$ fortsetzen lässt.