Bsp. Quadratisches Sieb

Bsp: Wir faktorisieren die Zahl $91 = 7 \cdot 13$.

- Als Glattheitsschranke wählen wir b = 5.
- Wir faktorisieren nur positive Zahlen $z_i := x_i^2 n = (10 + i)^2 n$.
- Daher wählen wir $B = \{2, 3, 5\}$. Es gilt $(\frac{n}{p}) = 1$ für alle $p \in B$.
- Wir wollen die Zahlen z_i im Intervall $0 \le i \le 9$ sieben.
- Damit gilt $z_i \le z_9 = 19^2 n = 270$.
- Wir berechnen alle Lösungen von $x^2 \equiv 91 \mod p^r$ mit $p^r \le 270$.

$p \backslash r$	1	2	3	4	5
2	1	_	_	_	_
	(11)				
3	±1	± 1	± 19	± 46	± 127
	(10, 11)	(10, 17)	(19, 35)	(46, 35)	(127, 35)
5	±1	± 4	± 29		
	(11, 14)	(29, 21)	(29, 96)		- ±127 (127, 35)

Bsp. Quadratisches Sieb

- Für eine Lösung $\pm x_{p^r}$ steht in der Klammer das kleinste $x_i \ge 10$ mit $x_i \equiv x_{p^r} \mod p^r$ bzw. $x_i \equiv -x_{p^r} \mod p^r$.
- Bsp: z_{10} ist durch 3^2 teilbar und damit auch alle $z_{10+3^2\mathbb{Z}}$.
- Wir erhalten die folgenden partiellen Faktorisierungen.

Xi	$z_i = x_i^2 - n$	teilbar durch	Cofaktor
10	9	3 ²	1
11	30	2 · 3 · 5	1
12	53	_	53
13	78	2 · 3	13
14	105	3 · 5	7
15	134	2	67
16	165	3 · 5	11
17	198	$2 \cdot 3^2$	11
18	233	_	233
19	270	$2 \cdot 3^3 \cdot 5$	1

Bsp. Quadratisches Sieb

- Die Zeilen 11 und 19 liefern die Kongruenz $(11 \cdot 19)^2 \equiv 27^2 \equiv (2 \cdot 3^2 \cdot 5)^2 = 90^2 \equiv (-1)^2 \bmod 91.$
- Es gilt $27 \not\equiv \pm 1 \mod 91$ und $ggT(27 \pm 1, 91) = \{7, 13\}$.

Anmerkungen:

- In der "Large Prime"-Variante des Siebs werden Zeilen mit demselben Co-Faktor verwendet.
- Bsp.: Für $x_i = 16$ und 17 erhalten wir die zusätzliche Relation $(16\cdot 17\cdot 11^{-1})^2 \equiv 2\cdot 3^3\cdot 5 \bmod 91.$
- Laufzeit: Das Quadratischen Sieb benötigt Zeit e^{√ln n ln ln n}
 (unter geeigneten Glattheitsannahmen)
- Dies ist superpolynomiell aber supexponentiell in ln n.

Pollards p-1 Methode

Idee:

- Sei n = pr mit 1 , <math>p prim, $p \nmid r$. D.h. $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/r\mathbb{Z}$.
- Sei p-1 b-glatt, d.h. $p-1=\prod_{p\in B}p^{e_B}$.
- Sei k ein Vielfaches von $\prod_{p \in B} p^{e_B}$. Dann gilt
 - $a^k \equiv 1 \mod p$ für alle $a \in U_n$.
- Falls zusätzlich $a^k \not\equiv 1 \mod r$ folgt $p \leq ggT(a^k 1, n) < n$.

Algorithmus Pollards p-1-Methode

EINGABE: n = pr zusammengesetzt, p prim, Schranke C mit $p \le C$.

- Wähle *b* geeignet, so dass p-1 *b*-glatt ist. Sei $B = \{p_1, \dots, p_s\}$.
- **②** Wähle $a ∈_R \{2, ..., n-1\}$. Falls ggT(a, n) > 1, Ausgabe des ggTs.
- Für *i* = 1...s
 - **1** Wähle e_i maximal mit $p_i^{e_i} < C$. Berechne $a := a^{p_i^{e_i}} \mod N$.
- Falls $ggT(a-1, N) \notin \{1, N\}$, Ausgabe des ggTs.

Analyse von Pollards p-1-Methode

Korrektheit:

- In Schritt 3.1 wird $a^k \mod N$ berechnet mit $k = \prod_{i=1}^s p_i^{e_i}$.
- Falls p-1 *b*-glatt ist, gilt p-1|k.
- Damit ist $ggT(a^k 1, n) \ge p$.
- D.h. wir finden einen nicht-trivialen Teiler, falls $ggT(a^k 1, n) < n$.
- Sei q ein Primteiler von r, so dass q-1 nicht b-glatt ist.
- Damit existiert ein q'|q-1, $q' \in \mathbb{P}$ mit q' > b.
- Ferner gelte $q'|\operatorname{ord}(a)$ in U_q . Dann gilt $a^k \not\equiv 1 \bmod q$ und damit $\operatorname{ggT}(a^k-1,n) < n$.
- Wir berechnen die Ws, dass $q'|\operatorname{ord}(a)$ in U_q .
- Sei U_q zyklisch mit Generator g. Wir schreiben $a \equiv g^i \mod q$.
- Es folgt ord(a) = $\frac{q-1}{\operatorname{ggT}(i,q-1)}$ in U_q . Falls $q' \nmid i$, gilt $q' | \operatorname{ord}(a)$.
- Da a zufällig gewählt ist, geschieht dies mit Ws 1 $-\frac{1}{q'}$.

Analyse von Pollards p-1-Methode

Laufzeit:

• Schritt 3 benötigt Zeit $\mathcal{O}(s \log C \log N^2) = \mathcal{O}(s \log^3 N)$.

Problem der p-1-Methode:

- Die Laufzeit ist abhängig von der Ordnung von U_{ρ} .
- Sei $\frac{p-1}{2} \in \mathbb{P}$ mit $\frac{p-1}{2} \approx \sqrt{n}$.
- Dann benötigen wir $p_s \approx \sqrt{n}$ und damit

$$s = |\{x \in \mathbb{P} \mid x \leq p_s\}| \approx \frac{\sqrt{n}}{\log n}.$$

In diesem Fall ist die Laufzeit nicht besser als bei Probedivision.