Agarwal-Kayal-Saxena Primzahltest (2002)

Satz AKS-Primzahltest

Ein $n \in \mathbb{N}$, n keine Primzahlpotenz, ist prim gdw für alle $a \in \mathbb{Z}$ gilt

$$(X+a)^n \equiv X^n + a \bmod n \text{ im Polynomring } (\mathbb{Z}/n\mathbb{Z})[X].$$

Beweis:

- \Rightarrow Sei n prim. Mit der Binomischen Formel mod n (Folie 48) gilt $(X+a)^n \equiv X^n + a^n \equiv X^n + a \bmod n$.
- \Leftarrow Sei $n \notin \mathbb{P}$. Schreibe $n = p^{\ell}m$ für $p \in \mathbb{P}$, $\ell \ge 1$ und ggT(p, m) = 1.
- Wir zeigen $(X+1)^n \not\equiv X^n + 1 \mod n$. Der Koeffizient von X^p ist $\binom{n}{p} = \frac{n(n-1)...(n-p+1)}{p(p-1)...1} \in \mathbb{N}$.
- Im Zähler ist $n = p^{\ell} m$ durch p teilbar.
- Damit sind $n-1, n-2, \ldots, n-(p-1)$ nicht durch p teilbar.
- Im Nenner taucht ebenfalls ein p auf. Damit können wir schreiben $\binom{n}{p} = p^{\ell-1}m'$ mit ggT(p, m) = 1.
- Es folgt $\binom{n}{p} \not\equiv 0 \bmod p^{\ell}$ und mittels CRT auch $\binom{n}{p} \not\equiv 0 \bmod n$.
- D.h. der Koeffizient von X^p verschwindet in $(X + 1)^n$ nicht.

Agarwal-Kayal-Saxena Primzahltest

Anmerkung:

- Im AKS-Algorithmus (2002) wird $(X + a)^n \equiv X^n + a \mod n$ modulo Polynomen $X^r 1$ kleinen Grades $r = \mathcal{O}(\log^{\frac{15}{2}} n)$ getestet.
- Dies führt zu einem deterministischen Primzahltest ohne Fehler.
- Allerdings ist der AKS-Test deutlich langsamer als Miller-Rabin.

Faktorisierungsalgorithmen

Idee: Konstruiere $x, y \in \mathbb{Z}$ mit $x^2 \equiv y^2 \mod n$ und $x \not\equiv \pm y \mod n$. **Ziel:** Berechne nicht-trivialen Teiler von n, faktorisiere rekursiv.

Lemma Differenz von Quadraten

- Sei $n \notin \mathbb{P}$ ungerade. Dann existieren mit $x, y \in \mathbb{N}_0$ mit $n = x^2 y^2$ und $x \not\equiv \pm y \mod n$.
- Sei $x^2-y^2=cn$ mit $x,y,c\in\mathbb{Z}$ und $x\not\equiv\pm y$ mod n. Dann sind $a:=\operatorname{ggT}(x+y,n)$ und $b:=\operatorname{ggT}(x-y,n)$ nicht-triviale Teiler von n.

Beweis:

- (1) Sei n = ab mit $2 < b \le a \le n$. Setze $x = \frac{a+b}{2}, y = \frac{a-b}{2} \in \mathbb{N}_0$.
 - Dann gilt $x^2 y^2 = \frac{(a+b)^2 (a-b)^2}{4} = \frac{4ab}{4} = n$.
 - Wir zeigen $x \not\equiv y \bmod n$. Analog folgt $x \not\equiv -y \bmod n$.
- Aus der Annahme $x \equiv y \mod n$ folgt $\frac{a+b}{2} \equiv \frac{a-b}{2} \mod n \Leftrightarrow 2b \equiv 0 \mod 2n \Leftrightarrow b \equiv 0 \mod n$. (Widerspruch)

Differenz von Quadraten

- (2) Aus $x^2 y^2 = cn$ folgt $(x + y)(x y) \equiv n$, d.h. n|(x + y)(x y).
 - Wegen $x \pm y \not\equiv 0 \mod n$ sind beide Faktoren kein Vielfaches von n.
 - D.h für a = ggT(x + y, n) und b = ggT(x y, n) gilt a, b < n.
 - Annahme: a = ggT(x + y, n) = 1 (analog für b). Dann gilt n = ggT((x + y)(x y), n) = ggT(x y, n) = b (Widerspruch).
 - D.h. für beide Teiler a, b von n gilt 1 < a, b < n.

Fermat Faktorisierung

Algorithmus Fermat Faktorisierung

EINGABE: $n \in \mathbb{N}$ zusammengesetzt

- 2 REPEAT
 - **1** Setze x := x + 1 und $z := x^2 n$.
 - **2** Falls $z = y^2$ berechne y.
- **3** UNTIL $z = y^2$ für ein $y \in \mathbb{N}$ und $x \not\equiv \pm y \bmod n$.

AUSGABE: $ggT(x \pm y, n)$

Korrektheit: folgt aus vorigem Lemma.

Bsp. Fermat Faktorisierung

Bsp:

- Für n = 187 gilt $x = \lceil \sqrt{n} \rceil = 14$ und $x^2 n = 196 187 = 3^2$.
- Es gilt $14 \not\equiv \pm 3 \mod 187$.
- Wir erhalten $ggT(14 \pm 3, 187) = \{11, 17\}$ mit $11 \cdot 17 = 187$.
- Für n = 175 ist x = 14. Die erste Quadratzahl ist $(x+6)^2 n = 20^2 n = 400 175 = 225 = 15^2$.
- Es gilt $20 \not\equiv \pm 15 \mod 175$.
- Wir erhalten $ggT(20 \pm 15, 175) = \{5, 35\}$ mit $5 \cdot 35 = 175$.

Laufzeit Fermat Faktorisierung

Laufzeit:

- Sei n = ab ungerade mit $1 < b \le \sqrt{n} \le a < n$.
- Für $x = \frac{a+b}{2} \ge \sqrt{ab} = \sqrt{n}$ ist $x^2 n = y^2$ mit $y = \frac{a-b}{2}$.
- Es folgt $(x + \sqrt{n})(x \sqrt{n}) = y^2$.
- Die Iterationen in Schritt 2 sind damit beschränkt durch

$$X - \sqrt{n} = \frac{y^2}{x + \sqrt{n}} \le \frac{(\frac{a - b}{2})^2}{2\sqrt{n}} \le \frac{(a - b)^2}{8\sqrt{n}}.$$

- D.h. für n = ab mit Differenz $a b = \mathcal{O}(n^{\frac{1}{4}})$ ist dies konstant.
- Für n = ab mit a, b gleicher Bitgröße gilt $a b = \mathcal{O}(\sqrt{n})$ und damit $x \sqrt{n} = \mathcal{O}(\sqrt{n})$. Dies ist vergleichbar mit Probedivision.
- I. Allg. gilt $a b = \mathcal{O}(n)$ und wir erhalten $\mathcal{O}(n^{\frac{3}{2}})$ Iterationen.

Motivation Faktorbasis

Bsp: : Wir betrachten die Fermat Faktorisierung von $93 = 3 \cdot 31$.

• Es gilt $\lceil \sqrt{93} \rceil = 10$. Wir erhalten folgende Liste

- D.h. das erste Quadrat taucht bei 17 = $\frac{3+31}{2}$ auf.
- Aus den ersten beiden Einträgen folgt aber

$$10^2 \equiv 7 \bmod 93$$
 und $11^2 \equiv 28 = 2^2 \cdot 7 \bmod 93$.

Multiplikation beider Gleichungen liefert

$$(10 \cdot 11)^2 \equiv (17)^2 \equiv 2^2 \cdot 7^2 = (14)^2 \mod 93.$$

• Es gilt $17 \not\equiv \pm 14 \mod 93$ und $ggT(17 \pm 14, 93) = \{3, 31\}$.

Ziel: Kombiniere die Gleichungen, so dass ein Quadrat entsteht.

Faktorbasis

Definition Faktorbasis

Für ein $b \in \mathbb{N}$ definieren wir die Faktorbasis

$$B = \{-1\} \cup \{p \in \mathbb{P} \mid p \le b\}.$$

Ein $n \in \mathbb{Z}$ heißt *b-glatt*, falls $n = \prod_{p \in B} p^{e_p}$ mit $e_p \in \mathbb{N}_0$.

Bsp: -28 ist 7-glatt, aber nicht 5-glatt.

High-Level Faktorisierung mit Faktorbasen

Algorithmus FAKTORBASIS

EINGABE: $n \in \mathbb{N}$

- **1** Wähle $b \in \mathbb{N}$ geeignet. Sei $B = \{p_1, \dots, p_s\}$.
- Definiere leere Matrix E.
- § For i = 0...s
 - **1** Wähle x_i solange, bis $z_i \equiv x_i^2 \mod n$ *b*-glatt. Schreibe $z_i = \prod_{j=1}^s p_j^{e_{i,j}}$.
 - 2 Nimm $(e_{i,1} \mod 2, \dots, e_{i,s} \mod 2)$ als Zeile in E auf.
- **3** Berechne $f \in \mathbb{F}_2^{s+1} \setminus \{0\}^{s+1}$ mit $fE = \{0\}^s$ über \mathbb{F}_2 , d.h.

$$\sum_{i=1}^{s+1} f_i e_{i,j} \equiv 0 \mod 2$$
 für alle $j = 1, ..., s$.

- **5** Setze $x \equiv \prod_{i=1}^{s+1} x_i^{f_i} \mod n \text{ und } y \equiv \prod_{j=1}^{s} p_j^{\frac{\sum_{i=1}^{s+1} f_i e_{i,j}}{2}} \mod n.$
- Falls $x \equiv \pm y \mod n$, zurück zu Schritt 4 (oder zu Schritt 3).

AUSGABE: $ggT(x \pm y, n)$