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Abstract Classical authentication and identification protocolscanamonly based
on the possession of a secret key. It is assumed that thisdey nbt fall in the

hands of an adversary. However, this assumption may betetléthe adversary
has physical access to the device that performs autheatickte may read out the
memory of the device, including all secret information. Eviededicated hardware
security measures are in use, they may be circumvented biatiped attacks such
as side-channel analysis or invasive methods. Alterrigtigeftware attacks such
as viruses can reveal key material. Physically Unclonablecions (PUFs) were
proposed to mitigate this risk. They avoid direct storageligftal binary keys in

hardware systems, providing inexpensive and lightweightigty solutions. In this
chapter, we investigate the powerful concept of a Strong RIdFe closely. We first
give an overview of Strong PUF implementations that can leel @s basic building
blocks in authentication and identification protocols. S&duently we turn to the
formal foundations of Strong PUFs. We analyze existing @edims, and introduce
new semi-formal and formal adversarial models. We thenoperfa security proof
for a Strong PUF-based identification scheme in one of ouratsod

1 Introduction

Electronic devices have pervaded our everyday life to aipusly unseen extent,
and will likely continue to do so in the future. But their ubity also makes them
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a potential target for adversaries, and brings about prigad information security
issues.

The tools that classical cryptography offers in order toftfitjese issues all rest
on the concept of a secret binary key. They assume that desérecontain a piece
of information that is, and remains, unknown to the adverdanfortunately, this
assumption can be difficult to uphold in practice: Physittlcks such as invasive,
semi-invasive, or side-channel attacks, as well as softatiacks like API-attacks
and viruses, can lead to key exposure. The fact that the gegbltevices should be
inexpensive, mobile and cross-linked aggravates the @nobl

The described situation was one of several motivationsitispired researchers
to develop the concept ofRhysical Unclonable FunctioPUF). A PUF is a phys-
ical systemS that can be challenged with so-called stimuli or challengesind
which reacts with corresponding responBes The responses shall depend on man-
ufacturing variations or structural disorder $that is beyond the control of the
original manufacturer, and which cannot be cloned or repeed exactly. The tu-
ples(Ci,Rc,) are often calle¢hallenge-response pai(€RPs) of the PUF.

Two important subtypes of PUFs are so-calttbng PUFsandKey Obfuscating
PUFs[20]; the latter have also been called Weak PUFs in [8] or Rhajly Obfus-
cated Keys (POKSs) in [6]. Strong PUFs must possess a very ramnber of possible
challenges. A complete determination/measurement ohallenge-response pairs
within a limited time frame (such as several days or even wjepiust be impos-
sible. Furthermore, it must be difficult for an adversary tonerically predict or
guess the respons$®: of a Strong PUF to a randomly selected challe@g& his
should hold even if many other challenge-response pairkraown to him. Thus, a
Strong PUF’s challenge-response behavior must be cormgutebdifficult to imitate
and “learn”. A well-known example of a Strong PUF is the OgtieUF of [15, 16],
which also historically is the first PUF that has been suggkst

Typical applications of Strong PUFs are key establishmedidentification pro-
tocols [16]. The latter usually work in the following mannér central authority
(CA) holds a secret list of many CRPs of a PER he PUF is assumed to be embed-
ded in a hardware system or contained on a security tokenrdir ¢o identify the
PUF, the CA sendsrandomly chosen challeng€s, . .. ,Cy from the CRP list. If the
hardware/token can return the correct, corresponding Rdpensesc, ,...,Rc,,
then the identification is successful. Note that such ancsgmbr avoids the storage
of secret binary keys in the PUF-embedding hardware. Italsals the use of stan-
dard symmetric or asymmetric cryptosystems, whose sgalejppends on a small
set of well-known, but unproven assumptions. It also olegdhe potentially costly
implementation of standard cryptosystems in mobile device

Key Obfuscating PUFs, on the other hand, have few challenrgethe extreme
case just one, fixed challenge. Their response(s) are usiedite a classical binary
secret key, which is subsequently processed by the emlgedgatem in a standard
fashion, i.e. as a secret input for classical cryptosystés makes Key Obfus-
cating PUFs similar to a non-volatile key storage. Theiraadage is that they may
be harder to read out invasively than common non-volatilenorg such as EEP-
ROM. Since they depend on inherent manufacturing variafitrey can individu-
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alize hardware without costly, dedicated individualiaatsteps in the production.
Typical examples of Key Obfuscating PUFs are the SRAM PUFB8}terfly PUF
[10] and Coating PUF [21].

Since Key Obfuscating PUFs are nothing else than a specral db secret key
storage, they can be used for essentially all cryptogragattiemes and applications.
Please note, however, that this also makes them suscefatibige channel attacks
like power consumption or emanation analysis, in just theesananner as clas-
sical schemes. Protocols based on Key Obfuscating PUF#yushaw the same
dependency on computational assumptions as standarescyygimes built on se-
cret binary keys. Furthermore, since zero errors in thevatoin of the secret key
from the PUF are tolerable, error correction plays a muchenadtical role for Key
Obfuscating PUFs.

In this paper, we focus on Strong PUFs, and investigate fbemal founda-
tions and their application for identification purposes. $i&t by an overview of
currently existing Strong PUF implementations in Sectiofit&n, we analyze cur-
rently existing definitions of (Strong) PUFs in Section 3j aevise new adversarial
models and definitions in Section 4. We introduce PUF-bademtification schemes
in Section 5. Subsequently, we perform a formal securityopfor identification
based on Strong PUFs in one of our models. We conclude the pafection 6.

2 Implementations of Strong Physical Unclonable Functions

We start by surveying the current candidates for Strong iealyginclonable Func-
tions. In 2001, Pappu [15] suggested an optical system asugta@ically first PUF.
It consists of a laser beam, which is directed at a transpaoattering token com-
prising of many randomly distributed scatterers. The léight is scattered multiple
times in the token, and interferes constructively and destrely with itself. This
leads to an interference pattern of bright and dark spots subaequently placed
CCD. This pattern sensitively depends on the location ofsttaterers in the to-
ken, but also on the angle and point of incidence of the laght (and on other
parameters of the set-up).

The angle and point of incidence of the laser beam are usteggrded as the
challenge of this PUF, while the interference pattern (ouitably chosen image
transformation of it) is interpreted as its response. Tipiscal Strong PUF offers
high internal complexity and security. On the downsideaitrot be integrated eas-
ily into an electronic microsystem, and requires an exiepracise read-out appa-
ratus.

Relatively soon afterwards, integrated, electrical cdatdis for Strong PUFs
have been suggested. One important example is the so-éalbiter PUF [5, 13],
which exploits the natural variations in the runtime delaf/stegrated circuits. The
Arbiter PUF consists of a sequenceko$tages (e.g. multiplexers), which are con-
ditioned by a corresponding sequencekaxternal bits(by, . ..,byx). An incoming
electrical signal is split into two signals, which race agieach other in parallel
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through the sequence of stages. Their exact paths are yheesbrmined by the
valuesh;. At the end of the structure, an “arbiter element” (consgstf a latch) de-
termines whether the top or bottom path arrived first, andespondingly outputs a
zero or a one. The Arbiter PUF thus mapk-kit input challengeC; = (by, ..., by)
to a 1-bit responsB,.

However, it has been noted early by its inventors that thet&rlPUF can be
attacked successfully by standard machine learning (Mlthous, such as Support
Vector Machines or Perceptrons [5,12]. An attacker callecnumber of CRPs
and uses them to train the ML algorithm. If trained succdbsfilne algorithm will
subsequently be able to predict the correct responses ¢o dtlallenges with high
probability.

In order to improve their resilience to ML attacks, sevei@iiants of the basic
Arbiter PUF have been proposed. Examples include XOR ArBitéFs [4], Feed-
Forward Arbiter PUFs [5, 11], and Lightweight Secure PUF4[AIll of them are
based on runtime delays, but employ the basic Arbiter PUF lagilding block
in more complex architectures. Nevertheless, it has beewrshecently that even
these improved variants can be attacked by more sophéstiddt techniques [19,
20], at least for instances of medium lengths. The criticastion in the long term
will be whether circuit implementations of Arbiter PUF veants can be made stable
in size regimes that are beyond the reach of improved ML tiegcias.

Another potential Strong PUF candidate that must be coreids the Power
Grid PUF of [9]. It exploits the resistance variations in gaver grid of integrated
circuits. A Power Grid PUF can in principle be used both as R&juscating PUF
and as Strong PUF. Due to its simple linear model, howeverPiwer Grid PUF
is presumably susceptible to ML attacks just like otherdmBUF structures. This
makes it more useful as Key Obfuscating PUF, as already riof&ql

Two approaches that follow new routes to machine learnirsjieat Strong
PUFs have been suggested just recently. In [2, 3], analogitsr in particular so-
called Cellular Nonlinear Networks (CNNSs), have been idtreed as Strong PUFs.
CNNs are two-dimensional, cellular, analog computingyaran which every cell
is coupled in an analog fashion to its direct neighbors. Cencially available, pro-
grammable CNNs contain millions of transistors, while @pieig in a stable fash-
ion. CNN-PUFs promise to allow stable PUFs with a very largember of interact-
ing components, whose output strongly depends on a verg larmber of random
components. Furthermore, their internal models are didyecomplex differential
equations, which complicates re-modeling and machinaiegmattacks.

A second recent approach to machine learning resistamiGROFs [17, 18] is
to employ as many densely packed, independent random s$silagrpossible, which
are read out individually and independently of each otheatat read-out rates. It
was shown in [17] that large, monolithic, memory-like cilomsstructures based on
random diodes can practically implement this approachy Teach optimal infor-
mation densities of up to 0 bits per cm, and can be designed such that the slow
read-out rate is not enforced by an artificially slow accesdute or the like, but by
the inductive and resistive capacitances of the structsedf [17]. Faster read-out
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leads to overloading and immediate destruction of the wjniandering the remain-
ing structure unusable.

The resulting Crossbar PUFs are provably immune againstimatearning and
any other computational attacks. Their security merelyedép on the access time of
the adversary, and on the ratio of the already read-out bitdve number of overall
bits stored in the structure. Modeling attacks subsequentdd-out are fruitless,
since all components are independent of each other. Whétadintited read-out
speed is a severe disadvantage depends on the intendechtippliof this Strong
PUF. [18] suggest the term SHIC PUFs (pronounc&higue PUFs”) for this new
category of Strong PUFs, where SHIC stands for Super Higriméition Content.

3 Physical Unclonable Functions: Towards a Formal Definitio

In the following we take a closer look at formal definitionsoposed for PUFs,
which is a necessary prerequisite to being able to formaHlgon about the security
of PUF-based protocols. Our discussion follows [20].

3.1 Physical One-Way Functions

We start our overview with the historically first definitiomhich is the definition of
Physical One-Way Functions [15]. The following Notatiorl &nd Definition 3.2
are taken directly from [15].

Notation 3.1 (Notation for Physical One-Way Functions)Let> be a physical sys-
tem in an unknown state X {0,1}'. X could also be some property of the physical
system. | is a polynomial function of some physical resosmch as volume, energy,
space, matter, et cetera.

Let zc {0,1} be a specific state of a physical probe P such that k is a polialom
function of some physical resource. Henceforth, a probed?dte z will be denoted
by B.

Let y= f(X,P;) € {0,1}" be the output of the interaction between systemron-
taining unknown state X and probe P

Definition 3.2 (Physical One-Way Functions) f : {0,1}' x {0,1}¥ — {0,1}"is a
PHYSICAL ONE-WAY FUNCTION if

e Jadeterministic physical interaction between P a@navhich outputs y in QL),
i.e. constant, time.

e Inverting f using either computational or physical meanguiees Q (exp(l))
queries to the systein.
This may be restated in the following way: The probabilitgttany probabilis-
tic polynomial time algorithm or physical proceduré @cting on y= f(X,R),
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where ye {0,1}" is drawn from a uniform distribution, is able to output X qr P
is negligible. Mathematically,

Pr[A'(f(X,P)) outputs X or F| < p(ll)
where ff ) is any positive polynomial. The probability is taken overesal real-
izations of r.

We also stipulate that for any physical one-way function f

e Simulatingy, given X and P, requires eitheffly(l)) or O(exgl)) in time/space
resources depending on whether f iwaAK or STRONGphysical one-way func-
tion.

e Materially constructing a distinct physical systethsuch that its unknown state
X" = X'is hard.

Definition 3.2 is reminiscent of the well-known definitionsmathematical one-
way functions. It transfers the concepts known from thahdseich as polynomial
time and negligible probability) to the physical, finite ¢ext of PUFs. We would
like to stress that the definition certainly owns the greatitmad being the first
formalization attempt in the field. It is associated with kighly respected, seminal
work of [15] that established the whole field. But nevertis|ét touches upon a few
noteworthy issues.

Firstly, let us address some formal aspects. Definition i2leys the concept of
polynomial resources and of negligible probability. Hoee\these concepts cannot
directly be applied to finite function$ : {0,1}' — {0,1}*. In particular, no such
function can meet the “hard to invert’-condition of Definiti 3.2, since there is
always an algorithm that contairfishard-coded as a lookup-table in its code. Since
| andk are constant, this table has constant size; browsing the fiabinverting f
thus requires constant time as well.

These formal problems could be resolved by a suitable astiogteatment.
Such a treatment might work along similar lines as colleiof one-way functions
[7], and could consider infinite familig; )ic; of Physical One-Way Functions. Per-
haps such a treatment was already attempted in NotationvBdn it is stated that
| andk are a polynomial function of some physical resource. HowawmeDefini-
tion 3.2,1 andk are treated as constants, and also the other relevant gararé
Definition 3.2, such as the polynomial runtimeAdf are not functions of an external
parameter.

Still, even if we assume that Definition 3.2 was meant to bengtgtic in some
physical resource, and ifandk were intended to be functions of this resource,
another interesting issue arises. The parametavhich describes the length of
f(X,R), is a constant both in Definition 3.2 and Notation 3.1. At thene time,
the runtime ofA is required to be polynomial iff (X, )| = n= const This is not
meaningful, sinced’ should be given longer computation time for a growing size
of the considered PUF-instances. If Definition 3.2 was ideghasymptotically, it
might be better to formulate the non-invertability conalitin the following manner:
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Pr[A (f(X,R),1¢") outputsX or B] < p(ll) (1)

There are some interesting conceptual aspects of Defir8tas well. For exam-
ple, it can be observed that Definition 3.2 excludes funetigith small ranges, e.g.
ones with a binary output0, 1}. Such functions are not hard-to-invert in the sense
of Definition 3.2. The reason is that for each of the two pdesdutput values,
somepre-image can always be found efficiently—simply by testiegesal ran-
domly chosen challenges for their response until there ia&m Most electrical
candidates for PUFs (e.g. variations of the Arbiter PUF erRimg Oscillator PUF)
have only a single bit or a fixed number of bits as output. Theyhence excluded
by Definition 3.2. Note that it cannot be regarded as a flaw diridmn 3.2 that

it excludes electrical PUFs, as they were only introduceerdhe definition was
written. Nevertheless, our observation points at two fggt3he concept of Physi-
cal One-Way Functions cannot serve as a comprehensive Efilittidn today. (ii)
The non-invertibility condition of Definition 3.2 might ndite the essential feature
that makes PUF applications work. To our knowledge, the GtF application
where the non-invertability of plays a role is the bit commitment protocol that
was described in [15].

3.2 Physical Unclonable Functions

Another characterization of PUFs was given in [8]. It is nadrked as a formal
definition in the original text of [8], whence we term it a daption here. It distin-
guishes between Strong PUFs and Weak PUFs, and is as follows.

Description 3.3 (Physical Unclonable Functions)Physical Unclonable Functions
consist of inherently unclonable physical systems. Thegrihtheir unclonability
from the fact that they consist of many random componentsatiegpresent in the
manufacturing process and can not be controlled. When aufitisris applied to the
system, it reacts with a response. Such a pair of a stimuluedCaaresponse R is
called a challenge-response pair (CRP). In particular, alPld considered as a
function that maps challenges to responses.

The following assumptions are made on the PUF:

1. Itis assumed that a responsg(i® a challenge ¢} gives only a negligible amount
of information on another responsg Ro a different challenge  with i # .

2. Without having the corresponding PUF at hand, it is imjilmiesto come up with
the responseRorresponding to a challengg &xcept with negligible probabil-
ity.

3. Finally, itis assumed that PUFs are tamper evident. Tiniglies that when an at-
tacker tries to investigate the PUF to obtain detailed imf@tion of its structure,
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the PUF is destroyed. In other words, the PUF’s challengespanse behavior
is changed substantially.

We distinguish between two different situations. First,assume that there is a
large number of challenge response pai3,R),i = 1,...,N, available for the
PUF; i.e. a strong PUF has so many CRPs such that an attackdpaed during

a limited amount of time) based on exhaustively measuriagRPs only has a
negligible probability of success and, in particulayN ~ 2~ for large k~ 100

We refer to this case aStrong PUFs If the number of different CRPs N is rather
small, we refer to it as &/eak PUF. Due to noise, PUFs are observed over a noisy
measurement channel i.e. when a PUF is challenged withr€sponse Rwhich is

a noisy version of Rs obtained.

Description 3.3 stipulates that Strong PUFs shall have aorential numbeN
of CRPs, with ¥N ~ 2K for somek with k ~ 100. In addition, item 1 of Descrip-
tion 3.3 demands that all CRPs of the PUF shall only reveabéigible amount of
information about each other. It is not fully clear how andlenwhich conditions
these two requirements can be met simultaneously. For draitip argued in detalil
in [20] that the information content of any physical systerbounded polynomially
in its size. If this is true, then the two above requirementgually exclude each
other. Again, this definition excludes PUFs whose outpusists only of a single
bit (such as the aforementioned Arbiter PUF and the Ringll@smi PUF), as the
probability to guess the PUF output correctly is at leg&. This is better than neg-
ligible. Therefore, all these PUFs are excluded as Strongsfy Description 3.3.

The concept of Weak PUFs in the sense of Description 3.3 isdthg consistent.
But it is a relatively restrictive notion. From all currepitnown PUFs, only coating
PUFs and SRAM-based PUFs are Weak PUFs. The reason is tthey(ipnly have
very few possible challenges; and (ii) their responses fierdnt challenges are
fully independent of each other, since they read out singla;interacting subunits
of the PUF (isolated SRAM-cells in the case of SRAM PUFs aratialfty isolated
sensor arrays in the case of coating PUFs). Therefore theamnimformation that
different responses give about each other is essentialty Eer all other known
PUFs (in particular the Arbiter PUF including all of its vanits, Ring Oscillator
PUFs, and Pappu’s Optical PUFs), most responses to diffehatienges contain
a non-negligible mutual amount of information about eadientThis contradicts
item 1 of Definition 3.3.

3.3 Physical Random Functions

Another PUF-definition, taken from [5], is as follows.

Definition 3.4 (Physical Random Functions)A PHYSICAL RANDOM FUNCTION
(PUF)is a function that maps challenges to responses, that is diatddy a phys-
ical device, and that verifies the following properties:
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1. Easyto evaluate: The physical device is easily capaldgeaiiiating the function
in a short amount of time.

2. Hard to predict: From a polynomial number of plausible pioal measurements
(in particular, determination of chosen challenge-resperpairs), an attacker
who no longer has the device, and who can only use a polynamialunt of
resources (time, matter, etc.) can only extract a neglggdrhount of information
about the response to a randomly chosen challenge.

The terms short and polynomial are relative to the size otithéce?!

Definition 3.4 is very compact and intuitively appealingal$o stipulates some
sort of asymptotic treatment, with the parameter beingitteeaf the system. A few
interesting conceptual aspects can be observed. The yimdeslecurity model al-
lows an adversary to measure polynomially many challeegpanse pairs (CRPs).
This has the consequence that several PUFs cannot meeffithidale since they
only possess polynomially many challenges at all. An adwgrsan create a full
look-up table without breaking the polynomial CRP bound] aan use this table
to imitate/predict the PUF. This applies, for example, te Bing Oscillator PUF
[4], which has only a quadratic number of challenges. It aislls for the Optical
PUF of [15, 16]: Its number of CRPs is directly proportionalthe dimensions of
the scattering token, multiplied by the number of distirctdr angles realizable by
the measurement set-up. This means that this Optical PUFhas polynomially
many challenges. Similar considerations also apply to ttesgbar PUF [17, 18],
which only has quadratically many challenges, too. All h&JFs are excluded
by Definition 3.4, but especially the Optical PUF and the Gbas PUF seem fully
secure in practice.

4 Alternative Attack Models

Our discussion in the last section showed that the famil@ion of polynomial
resources and the usual asymptotic treatment of matheahatiptography cannot
be transferred to PUFs easily. We therefore work out anrtme treatment in this
paper, which is based on concrete time bounds. We start witfi-ormal models
in this section, and provide a more formal version later.

4.1 Semi-Formal Models for Strong PUFs

We start by some fundamentals and some notation for PUFs.

Specification 4.1 SEMI-FORMAL SPECIFICATION OFPUFs) A PUF is a physi-
cal system S that maps stimuli or challenggs&responses & The set of all

L In the original text this sentence is placed after the dediniti
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possible challenges of S is denotedGys and the set of all possible responses as
Rs. Without loss of generalit{ss andRs are assumed to be finite subset§@f1}*.
By its challenge-response behavior, S implements a funEfavith

Fs: Cs—Rs, C—Rc.

We further assume that in each PUF, the responses are natghlgnced by fabri-
cation variations beyond the control of the manufacturefget that distinguishes
PUFs from purely digital systems based on secret binary)keys

We suggest that apart from these basic requirements, rieefusecurity features
should be required from a (plain) PUF. In our opinion, suctlit@hal security fea-
tures should strictly be associated with special subnstitarived from PUFs, such
as Strong PUFs, Key Obfuscating PUFs or Physically Obfesiddeys, etc.

We will now present a first, semi-formal security model forddy PUFs:

Specification 4.2 GEMI-FORMAL SPECIFICATION OFSTRONG PUFS) LetShbea
PUF according to Specification 4.1. S is calle®arRONG (1t ,ta,tp, g, €)-PUFif no
cryptographic adversary Eve limited by the current stateechnology will succeed
in the following experiment with a probability of at least

SecExp(Sty,ta,tp,q):

PHASE 1: LEARNING. Eve is given a time period tfor learning the PUF S.
Within that period, she is given physical access to S at adalgtchosen points
in time, and for time periods of adaptive length. The sum Idirak periods for
which she had access to S must not excédrtirther, Eve can adaptively query
an oracle O for the function k at most g times. After the end of the learning
phase, Eve cannot access S, any more.

PHASE 2: PREDICTION. A challenge @ is chosen uniformly at random from the
setCg, and is given to Eve. Within timg,tshe must produce an outputy

Thereby the experiment is called successfutitV= Rc,. The probabilitye is taken
over the uniformly random choice of the challengg &nd the random choices or
procedures that Eve might employ during Phase 1 and 2.

The specification models real application scenarios keligticlosely. Typically,
Eve will have a relatively long “learning period;’ in practice. During this phase,
she may gather information about the PUF in several waySh@ can obtain stan-
dard CRPs, for example through protocol eavesdroppingjivéat physical access
to the PUF, or remotely (e.g. by a virus in the embedding syst&hese possibil-
ities are comprehensively included via the adaptive oractess and the physical
access perioth, that we grant Eve. (ii) Eve may attempt arbitrary measurdsen
(beyond mere CRP determination) on the PUF, including nreasent of internal
system parameters and invasive probing. This possibdiipéluded in our model
through the physical access tiripe Note that Eve will often not be able to execute
her physical access at adaptively chosen points in timegropdriods of adaptive
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time length. But specifying our model in this way includesrstecase scenarios,
and puts us on the safe side.

In practice t, is typically relatively long, and is only limited by the lifiene of
the device embedding the PUF and/or the relevance of thetliatavas encrypted
with a key derived from the PUF. Contrary to that, the phyisicaess timéa is
usually short and costly. This motivates a distinction lestavthese two parameters
in our model.

The further distinction betwedn andtp, on the other hand, is not relevant for all
applications of Strong PUFs, but plays a role in many of tHerarder to obtain def-
initions with maximal generality, we opted to include it inranodel. To illustrate
this point, let us consider two typical applications of &gdPUFs, namely key es-
tablishment and identification. In key establishment, tleémnsecurity requirement
is that Eve will not be able to predict the responRgsthat were used to derive a key
between the cryptographic players. Usually no distinctietweert, andtp is nec-
essary here—we are only interested in the sumtp of the two values, and hope
for the sake of security that +tp is impractically large. In PUF-based identifica-
tion, however, an adversarial attack strategy that leaderplong prediction times
tp is worthless. It can be countered in practice through méagtine response time
of the identifying party. In other words, Eve’s attacks onAPhhsed identification
protocols are only successful if they deliver fRg fast.

Spec. 4.2 provides a workable model for Strong PUFs. Theitefiris non-
asymptotic, whence it allows statements about concrete iR&t&nces. For exam-
ple, as Machine Learning results show [19, 20], we can mag&ddHhowing state-
ments?

e A 64-bit Arbiter PUF is no (06 sec., 0 sec.,.001 sec., 18050,.99)-Strong PUF.
e A 64-bit Arbiter PUF that produces CRPs at a 1 MHz frequenayoig0.6 sec.,
0.01805 sec., @01 sec., 0, @9)-Strong PUF.

The formalism can also be used to make positive statemasttenfy negations:

e Assuming that its read-out speed cannot be acceletae@rossbar PUF of size
10° x 10° and read-out speed of 100 bits/sec. i§ a10’ sec.p, 0, 0.6)-Strong
PUF for arbitrary values df andtp.

e Assuming that its read-out speed cannot be acceleratedysslézr PUF of size
10° x 10° and read-out speed of 100 bits/sec. i§ ad, tp, 10°, 0.6)-Strong PUF
for arbitrary values of. andtp.

Specification 4.2 also has its limitations. Most importgnHiow do we model
Eve? Since we allow Eve arbitrary physical actions, a stahdaring machine is
insufficient. This lack of a formal model leads to two proberfirstly, in a strict

2 The statements follow from machine learning experiments basedatiotudata, which were

reported in Table 1 of [19]. They show that a 64-bit Arbiter Pt#n be broken (in simulations)
with the respective parameters in terms of learning times, adoess, fprediction times, CRPs and
prediction rates.

3 Itis argued in [17] in all detail that such an acceleratiomideied practically impossible if the
crossbar’s design is chosen appropriately.
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sense, we do not know over which set we quantify when we si&8pécification 4.2
that“. .. no cryptographic adversary Eve limited by the curretdts of technology
will succeed in the following experiment . . .This logical problem is awkward. But
it could perhaps be acceptable under the following prowisidi) Specification 4.2
is not understood as a formal definition, but as a semi-fogpatification. (ii) The
main purpose of Spec. 4.2 is to put down a precise, but notyoteshnical descrip-
tion of the essence of Strong PUFs, which can be used as a cotasis by all
communities involved in PUF research. The second problemnrésults from the
lacking model for Eve is perhaps more severe, at least fardgtieians. Without a
formal model for Eve, we cannot perform reductionist segypioofs.

In order to resolve this dilemma, we could either introducesa computational
model, which captures arbitrary physical actions (somé &bt Physical Turing
Machine”). But this seems very intricate. Alternatively, we may riestthe attack
model; this route is taken in the rest of the paper.

4.2 The Digital Attack Model

In thedigital attack modelwe follow the basic adversarial model that was put down
in Specification 4.2, with one exception: We do not grant Bveatl physical access
to the PUFS, and do not allow arbitrary physical measurementsSolmstead, we
restrict her to the measurement of CRPs of the PUF. Thidetetris not as unre-
alistic as it may seem: The natural tamper sensitivity of yfabFs enforces this
setting by itself. If a PUF is embedded in a device, sepagatifrom the device to
make arbitrary measurements will often be impossible.

The advantage of the digital model is that Eve can be forrdllzy a standard
probabilistic Turing machine with an oracle that provides Wwith CRPs of the PUF
S or, more precisely, with an oracle for the functieg This will allow us to carry
over reductionist techniques from the security proofs offreanatical cryptography
to PUFs.

Let us now define what it means to break the security proesfia Strong PUF
in the digital model.

Definition 4.3 (BREAKING STRONG PUFS IN THE DIGITAL ATTACK MODEL) Let
S be a PUF. Let an adversary be given by a tuplé.¥,.#), where.# is a prob-
abilistic oracle Turing machine, ang# is a probabilistic Turing machine. We say
that o7 (t_, tp, 0, £)-BREAKS S AS A STRONG PUF IN THE DIGITAL ATTACK
MODEL if <7 succeeds in the following security experiment with a prabglof at
leaste:

SecExp(St.,tp,q):

PHASE 1: LEARNING. .7 is provided with an oracl&r for the function k, and
is started with an empty input. It may make at most q adaptiserigs toOr,.
After at mostt Turing steps, it outputs a string z and halts.
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PHASE 2: PREDICTION. A challenge @ is chosen uniformly at random from the
setCs, and . is started with input(z,Cp). Within t Turing steps,# must
outputs a string YWpyv and halts.

Thereby the experiment is called successfulahV= Rc,. The probabilitye is
taken over the uniformly random choice of the challengea@d the random coins
that.Z and.# might employ during Phase 1 and 2.

5 Identification Schemes Based on Strong PUFs

We will now work towards a security proof of PUF-based idicdition schemes in
the digital model. We start by defining the concept of a PUgeladentification
scheme.

5.1 PUF-based Identification Schemes

Roughly speaking, a PUF-based identification scheme istaqgobwhere one party
&, known as prover, tries to convince another paftyknown as verifier, of its
identity. The prover possesses a PUF that he can query aflivél protocol should
both assert the identity of the prover and the physical akdity of the PUF. More
precisely, a PUF-based identification scheme is definedwdea(t?’, 22, ¥):

Definition 5.1 (PUF-BASED IDENTIFICATION SCHEME) Let S be a PUF. An iden-
tification scheme based on S is a tuple’, &7,7), where %" is a probabilistic
oracle Turing machineZ” is a probabilistic interactive oracle Turing machine and
¥ is a probabilistic interactive Turing machine, which tolget fulfill the following
properties:

INITIALIZATION . On input1, and provided with an oracl@ for the function
Fs, the instantiation algorithny#” returns a string .

INTERACTIVE IDENTIFICATION. In the identification processy and ¥ execute
a joint interactive computation, whefé is their joint input, & is provided with
an oracle/, and 7 gets a private input x. At the end of the computati®n,
outputs a bit de {0, 1}.

COMPLETENESSCONDITION.  We require that if in the identification proces®,
is run with oracledrg, and ¥ is run with x, as private input, the output of at
the end of the interactive computation is “1” with probalylil.

Let us consider the following “canonical” PUF-based idficdition scheme, il-
lustrated in Figure 1. In a setup phase, the verifiechooses a set df random
challenges (wherk denotes a security paramet€y) . . .,Cx and measures the PUF
response for each challenggé.stores the set of all chosen challenge-response pairs
as private data. Subsequently, the device is given to theepre#. The interactive
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identification protocol starts whet? presents its device to a reader: the verifier
sends the challeng€x, ... . ,C to the prover, who answers with respon¥gs. ., Vi
which are derived from PUF measurements with challe@ges.,Cyx. 7 accepts if
all responses match the pre-recorded respoRsgs. ., Re, during initialization.

VERIFIER(¥) PROVER (£?)
Private input: Oracle: 0k
(G,Rg),i=1,....k

Ca,...,Ck

Set YV 0x(C)
Vi, Vi

Acceptif Re, =V, for all i
Rejectotherwise.

Fig. 1 Canonical identification scheme based on a BUF

More formally, we define the canonical identification schemased on a PUF
Sas the tuplg.7, 22, ¥'), where the algorithm&.2", &2, %") implement the above
protocol. In particular:

e % takes as input4and as oracl@r,. It chooseLy, . ..,Cy uniformly at random
from the seCs, and produces as outpxih = (Cy,Re,,...,Cc, Re,)-

e 7 gets the public input®and the private inpukin = (C1,Rg,,---,Ck, Rg,)- It
send<Cy,...,C to &. Subsequently, it receives valués . ..,V from &, and
outputs “1” if and only if

Vi=R; foralli=1,... k

e Z gets as public input“and as oracl@r,. Upon receiving value€y, ..., Cy,
it queriesdr for the values/; = Fs(Cy), ..., Vik = Fs(Ck), and sends the oracle
responses to’.

5.2 Security of PUF-based Identification in the Digital Attack
Model

We now state what it means to break a PUF-based identificetioeme in the digital
attack model. We closely follow the IMP-CA security notiohtkaditional identifi-
cation schemes [1]. Thereby, the adversary’s goal is to isgmate the prover, that
is to make the verifier accept, despite he has no access tdJiheMore precisely,
the definition consists of two phasedearningand anmpersonatiorphase. In the
learning phase, the adversary has access to an ofagli order to collect PUF
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measurements up to a certain maximum number. Furthernteredversary is al-
lowed to play a cheating verifier which can interact with améwt prover for an
arbitrary number of independent protocol runs. In the impeation phase, the ad-
versary tries to impersonate the prover such that the vesifieepts the false proof.

Definition 5.2 Let S be a PUF, and let ID= (¢, <,7') be an identification
scheme based on S. Let an adversafye a tuple(¥™*, &7*), where¥™* is a prob-
abilistic oracle Turing machine, ang?* is a probabilistic Turing machine. We say
thate/ (i, tp, g, I, €)-BREAKS IDg FOR THE SECURITY PARAMETERK if 7 suc-
ceeds in the following security experiment with a prob&pidf at leaste:

SecExp(St;,tp,q,r,k):

PHASE 1: INITIALIZATION . .# is run on inputl® and produces an outputx

PHASE 2: LEARNING. 7" is provided with an oracl&r for the function k, and
is started with inputl¥. It may make at most g adaptive queriegig. Further-
more, it may interact at most r times with the honest pra¥&rinstantiated with
a fresh random tape, wherelsy’ getsdrg as oracle andl¥ as input at each of
these interactions. After at mogtTuring stepsy™* must output a string z.

PHASE 3: IMPERSONATION  &7* is provided with the private input 2/ is pro-
vided with the private inputijx Both get as joint inpulX, and execute a joint
computation. Withing Turing stepsy” outputs a bit de {0,1}.

We say that the experiment was successfél dutputs “1” at the end of Phase 3.
The probabilitye is taken over the random coins that", v, 22, v* £2* employ
during Phases 1 to 3.

We will now perform a reductionist security proof for the caical PUF-based
identification scheme. The following statement informaifys that ifSis a Strong
PUF, then the canonical identification scheme baseflisrsecure.

Theorem 1.Let S be a PUF. Then there is a generic black-box reductiohdba-
structs from any adversary = (¥*, 22*), which (i, tp, q, 1, £)-breaks the canoni-
cal identification scheme based on S for the security pamnketnother adversary
o' = (&L, M), which ({ +c-[k/e], [k/€] (tp+c-k), g+ kr+ [k/€], 0.6\€/k)
breaks S as a Strong PUF. Thereby c is a small constant indigpeof k.

Proof. In the following, we show how to build an adversa®y’ = (.#,.#) that
predicts the response to a given challenge by running Hiaslsimulations oks =
(v*,7%).

More precisely.Z runs a black-box simulation of*. Whenever?™* makes a
query to O, £ simulates this query by using his orade,. £ keeps track of
all oracle queries and their responses in adigtto avoid duplicate oracle queries.
Whenevery™* engages in a protocol run with the prove#, simulates this inter-
action as follows: upon receipt of a list &fchallengegC;,...,Cy), .Z creates a
corresponding list of PUF respons@ ,...,Rc,), either by looking up the result
in crp or queryingde. Once? ™ stops with output, . proceeds to draW= [k/¢]
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further (previously unused) challenges randomly from #teo$ challenges and ob-
tains their answers by querying; all challenges and responses collected in this
last step are collected in a lieR= (Cl,Rl, C[,R[) Subsequently? halts and
outputs(z,CR).

On receiving a challeng@;, .# performs the following operations:

1. . selects uniformly at random a positidg with 1 < kg < k and_constructs
a list of k challenges(Cl, Ck) as follows: he seté:ko C andCI G for
1<i<kgp—1; furthermore he sets ai]l with kg+ 1 <i <kto random challenges
from Cs. B

2. ./ runsZ* on (Cl, ,Ck) and inputzto obtaln(RL -+ R).

3. IfR =R for 1 <i <ky—1, algorithm.# outputsRy, and stops. OtherwiseZ
deletes the first (used) — 1 entries of the lis€CRand re-starts the operation at
step 1. Afterm = [Kk/¢e] unsuccessful runs# stops and fails.

We denote byA; the probability that?* (when run in the game of Defini-
tion 5.2) outputs the correct response for tktl challenge it is given. We thus
have Prob7* succeeds= Prolj(i_; _Ai] > €. We can write Prol§);_;

ProAq] ProA; | A1) ProdAs |Ao N A ... ProbAc | Ac_1N...NAy].

Since Proffi_; . «A] > €, we know that one of the factors in the above product
must be Iarger thar{tf Thus, there exists a posmon<Lk < k in which 22* suc-
ceeds with a higher probability, under the condition thatdlgorithm has predicted
all prior challenges correctly. The reduction attemptsxpl@it this fact. It guesses
this positionk. Then, it outputs the response &f* for the k-th challenge, but only
in caseZ”* has predicted all previous challenges correctly. Otheryiigs (sub-)run
of ./ fails, and a new run is started, uprio= [k/¢] overall iterations.

The probability that# succeeds to guess this positiom one iteration is 1Kk;
the probability that# outputs a correct guess in this round is RAgHA_;N...N
A1] > ¥, since the reduction is constructed in a way that it outpufsess only if
&7* predicts all challengeSy, ..., Ci correctly. Due to the independence of succes-
sive runs of2?*, we can estimate the overall success probabilityofis

Prob.# succeeds> 1/k(1— (1—¢)¥/¢)¥e
> 1/k(1—(1/8))Ve
> 0.6v//k.

The bounds on the run times #f* and &#7* can easily be obtained by observing that
the simulation requires an overhead that scales lineatlyarsecurity parametér

The precise scaling constamnis dependent on the machine model, and is indepen-
dent ofk. Furthermore?”* makes at mosi+ kr+ [k/€] oracle queries. This proves
the theorem.
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6 Conclusions

We investigated the formal foundations and applicatiorStadng Physical Unclon-
able Functions. The problem of defining PUFs and Strong Pi/&$armally sound
way turns out to be complicated. One reason for the occuatistpcles is that PUFs
are a hybrid between physics and computer science. Someioptioperties, such
as their unclonability or the dependence of their outputmcontrollable manufac-
turing variations, can hardly be expressed in a formaliseetian standard Turing
machines. On the other hand, some other central featuresafgSPUFs—such as
their unpredictability, even if many CRPs are known—arealpselated to compu-
tational complexity. Expressing them formally requiremgcsort of computational
model. Finally, a purely information-theoretic approactPlUF-security is not go-
ing to work for all Strong PUFs: Several electrical StrongHPtandidates contain
only a relatively small amount of relevant structural imf@tion.

We made the following contributions. We started by analgzisting defini-
tions of Physical One-Way Functions, Physical Random Fonstand Physical
Unclonable Functions, and noted some interesting aspetiese definitions. We
subsequently proposed new semi-formal specificationstfon§ PUFs. They have
some limitations from a strictly formal point of view, and dot enable reductionist
proofs. But they are intuitive and not overly technical, atgb specify an adversar-
ial model and its security relevant parameters relativebcty. The specifications
also have the asset of being non-asymptotic, meaning tegtdéin be applied di-
rectly to concrete PUF-instances.

Next, we introduced a restricted adversarial model dilgéal attack modeland
gave a security definition for breaking Strong PUFs, whichngéwally enabled re-
ductionist proofs. In principle, it is based on the adveaedacenario of the above
informal specifications. But it restricts the adversary&sasurements on the PUF to
mere CRP determination. This constraint allowed to modekitiversary by oracle
Turing machines, and made classical reductionist teclesigpplicable. Finally, we
showed that the security of the “canonical” PUF identifisatscheme can be prov-
ably based on the security of the underlying Strong PUF witlamy complexity
theoretic assumptions.
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