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Abstract—Physical unclonable functions (PUFs) can be used
for a number of security applications, including secure on-chip
generation of secret keys. We introduce an embedded PUF concept
called sensitized path PUF (SP-PUF) that is based on extracting
entropy out of inherent timing variability of modules already
present in the circuit. The new PUF sensitizes paths of nearly
identical lengths and generates response bits by racing transitions
through different paths against each other. SP-PUF has lower
area overhead and higher speed than earlier embedded PUFs and
requires no helper data stored in non-volatile memory beyond
standard error-correction information for fuzzy extraction. Com-
pared with standalone PUFs, the new solution intrinsically and
inseparably intertwines PUF behavior with functional circuitry,
thus complicating invasive attacks or simplifying their detection.

We present a systematic design flow to turn an arbitrary
(sufficiently complex) circuit into an SP-PUF. The flow leverages
state-of-the-art sensitization algorithms, formal filtering based on
statistical analysis, and MaxSAT-based optimization of SP-PUF’s
area overhead. Experiments show that SP-PUF extracts 256-bit
keys with perfect reliability and nearly perfect uniqueness after
fuzzy extraction for the majority of standard benchmark circuits.

I. INTRODUCTION

Physical unclonable functions (PUFs) [1]-[3] are security
primitives that provide “digital fingerprints” of electrical cir-
cuits or other physical objects. Formally, a PUF P is described
by a function R = P(C, D), where D represents the internal
disorder of a specific object instance, C' is a challenge that is
applied to the object’s inputs, and R is the response produced by
the PUF P upon the application of C' [4]. PUFs have numerous
applications in secure key storage, key-exchange protocols,
digital rights management, or advanced cryptographic schemes
like oblivious transfer and bit commitment, making them a
broadly usable security tool [2], [3], [5], [6].

While several basic physical phenomena such as optics,
magnetic effects, or radio waves have been proposed for PUFs,
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Fig. 1: Example SP-PUF showing the application of challenge
C'5 from Table I. Paths G7-Gg-G1g and G1-G4-G5-Gg are
sensitized and forwarded to RRE; nominal delays are shown
on top of gates
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the PUFs with the currently largest potential for practical appli-
cations are based on the electrical properties of electronic circuit
elements, such as power-up states of SRAM cells [7], [8],
component delays [9] or analog voltage waveforms [10]. One
can broadly distinguish between weak PUFs, which support
only one or very few challenges and are useful for on-chip
secret-key generation, and strong PUFs, which can process a
very large number of challenge-response pairs (CRPs) and can
be employed in authentication protocols [5].

In this paper, we present a new PUF design called sensitized-
path PUF (SP-PUF). SP-PUF follows the embedded PUF
paradigm [11], [12]: it reuses the disorder already present in
timing variability of sufficiently complex circuit blocks, thus
inseparably intertwining PUF behavior with circuit function-
ality. Embedded PUFs have several advantages with respect
to conventional, standalone PUF modules. First, they can be
cost-efficient because they leverage disorder that is already
present in the system and do not have to generate entropy
themselves. Second, they are more difficult to attack using
invasive methods, as the PUF functionality is spread over
functional blocks. For instance, it is possible to read-out an
Arbiter PUF by photonic-emission analysis [13], but applying
the same preparation technique to a large circuit block will
likely make it dysfunctional and therefore the attempted attack
will be detected. Third, it was proposed to integrate fingerprints
of different components on a printed circuit board into a fusion
PUF [14], and SP-PUF is a natural candidate for complex
digital circuits in this scenario.

The principle of SP-PUF is illustrated in Fig. 1. A small
circuit is enhanced by two multiplexers MuxA and MuxB
and a race-resolution element RRE (similar to arbiters used
in Arbiter PUFs). Four circuit lines (its primary outputs) are
tapped and forwarded to the RRE through MuxA and MuxB.
A challenge C; of the SP-PUF consists of three parts: a fest
pair (v;,w;) that sensitizes (at least) two paths, and two control
signals sel? and sel? which select two taps from which the
transitions are forwarded to the RRE. To use the SP-PUF with
challenge Cj, sel;4 and selgEe are set, and v; followed by w; is
applied to the original circuit’s inputs. The test pair is generated
such as to simultaneously sensitize two paths p* and p? with
roughly identical lengths, i.e., nominal cumulative delays. In
a manufactured instance of the circuit, the cumulative delays
of both paths p* and p® will be determined by fabrication
variability. The 1-bit response R; to challenge C; is the value
produced by the RRE. It will be 1 if p” is slower than p® and
0 otherwise.

Table I shows four possible challenges for the SP-PUF of
Fig. 1. Applying C1,...,Cy to a specific circuit instance will
result in a four-bit response string R, ..., R4 which will differ



among different circuit instances. For practical application, a
larger number of response bits is desired (e.g., at least 128 bits
for key generation). Moreover, not all bits may have sufficient
quality; for example, C5 sensitizes path pairs with a rather
large nominal delay difference (12 vs. 16), and response bit
R, will have an undesired bias towards 0. Furthermore, delays
are affected by random environmental fluctuations which can
make the PUF response unstable. This problem also occurs for
other types of PUFs and is addressed by fuzzy extraction [15].

In this paper, we focus on the applicability of SP-PUF in
the key-generation context [16]. In this scenario, the number
of CRPs should be sufficient to obtain a useful number of key
bits (our experiments target 256 bits after fuzzy extraction).
These bits should have very low bias and very low correlation
among each other, because otherwise an attacker could predict
parts of the secret key. They should have perfect reliability
(i.e., key generation should be repeatable under environmental
fluctuations) and uniqueness (average Hamming distance be-
tween the response strings of different PUF instances) close to
0.5. The physical realization should withstand invasive attacks
(read-out). Note that the conventional usage of a PUF for
authentication [17] demands a very large (exponential) number
of CRPs and resistance against model-building attacks [4]; we
do not investigate these aspects of SP-PUF in this paper.

The specific contributions of this paper are as follows.

o We devise a sophisticated SAT-based method to identify
pairs of simultaneously sensitizable paths in a given circuit
that are suitable as sources of entropy.

o We introduce a formal mathematical analysis to filter path
pairs such as to achieve uniqueness and reliability targets.

« We develop a technique to automatically generate the
additional SP-PUF circuitry while minimizing its size.

o We demonstrate the versatility of SP-PUF by applying it
to a large number of standard benchmark circuits.

The remainder of the paper is organized as follows. In
the next section, we discuss relevant related approaches and
the benefits provided by SP-PUF. Section III provides infor-
mation on SP-PUF construction, that is, turning an arbitrary,
sufficiently complex circuit into an SP-PUF. It presents the
individual construction steps and describes their role within a
larger design flow. Experimental results are reported in Section
IV. Section V concludes the paper and provides an outlook.

II. RELATED WORK

There are two existing embedded PUFs based on circuit
timing: HELP (hardware-embedded delay PUF) [11] and Glitch
PUF [12]. HELP extracts entropy by measuring path delays
using an auxiliary on-chip test structure called REBEL and
discretized in quanta called PN (for example, O PN stands for
5 ns and 128 PN stands for 15 ns in [18]). Stable paths (paths
with no glitches and nearly identical length when measured
multiple times) are identified and this information is stored in
on-chip non-volatile memory (NVM) as public helper data.

HELP supports several modes (UMD, UNMD, DPNC) to
generate responses based on pairs of measured path delays [18],
[19]. In UMD, two thresholds with a pre-defined difference
(“UMD margin”) are used; path lengths above the upper (below

TABLE I: Four challenges for SP-PUF in Fig. 1

C; ‘ (vi, w;) ‘ sel;4 MuxA ‘ sel? MuxB

C1 [ (00TT10, OTTITIO)| O G1-G2-G3 I G1-G4-G5-Gg
Co | (001010, 011010)| 0 G1-Go-Gs 0 G7-Gg-Gog
Cs3| (001110, 011110)| 1 G7-Gs-Gio| 1 G1-G4-G5-Gg
C4 | (001010, 011010) 1 G7-Gg-Gio| 0 G7-Gg-Gg

the lower) threshold are defined as “strong 17 (“strong 0”). A
response bit is generated from two strong paths by XORing
their values. In UNMD, the difference of two path delays is
computed and compared with two thresholds called +Tr and
-Tr. In DPNC, path delays undergo a modulus operation before
use to make long and short paths comparable.

The key differences between HELP and SP-PUF are sum-
marized below.

o HELP responses are constructed from comparisons of suf-
ficiently long with sufficiently short paths. The minimum
difference between path delays is enforced in order to ob-
tain reproducible responses. In contrast, SP-PUF compares
delays of paths of similar, ideally identical lengths, and
reproducibility is achieved by fuzzy extraction.

o HELP uses a pseudorandom source (an LFSR) to launch
transitions. As a consequence, paths may not be robustly
sensitized and invalidations are possible; HELP must
identify unstable behavior (“jumps” and ‘“hazards”) and
suppress the affected paths. In contrast, SP-PUF employs
deterministic test pairs which simultaneously sensitize two
paths while avoiding hazards and other invalidations.

o HELP stores the information which paths are used for
response bit generation in an on-chip NVM during enroll-
ment. An attacker who has access to these helper data and
to the nominal gate delays can reproduce the generated key
by simulation. The authors of [18] report this vulnerability
for the UNMD version; they write that it does not exist
for DPNC, but no security analysis is provided. SP-PUF
extracts entropy from small variations of nearly equally
long paths which cannot be simulated even if the attacker
knows the nominal gate delays. It requires only standard
helper data for fuzzy extraction and uses them in the same
way as SRAM PUFs and other weak PUFs. If new helper
data attacks are discovered, all countermeasures will be
readily applicable to SP-PUF.

o« HELP requires extensive assist circuitry that occupies
more than 100% area of the underlying circuit, and it
produces 167 key bits per minute [18]. SP-PUF produces
one raw response bit per clock cycle (if scan chains are
used for challenge application, the number of required
cycles is the length of the longest chain).

A further timing-based and hardware-embedded solution is
the Glitch PUF [12], which uses the number of glitches in a
waveform as the entropy source. It is based on a completely
different principle than SP-PUF and is not directly comparable.

III. SP-PUF CONSTRUCTION

As had been indicated in Fig. 1, an existing circuit is turned
into an SP-PUF by adding a race-resolution element RRE and
two multiplexers MuxA and MuxB. A number of circuit lines
are tapped and connected to the multiplexers. In this paper,
we restrict tap points to circuit outputs, but in general it is
also possible to tap internal circuit lines. The number of tap
points connected to MuxA (MuxB) is denoted by n4 (np).
We aim at minimizing n4 and np because they determine the
size of multiplexers and their logarithm defines the number of
multiplexer select inputs sel? and sel®: for this reason, we
will prefer paths that terminate at a small subset of all circuit
outputs.

Fig. 2 shows a typical circuit design flow with SP-PUF-
related steps shown in gray. The ultimate target of SP-PUF
is to deliver secret key bits, and their number ny., is defined
on system (or register-transfer) level by the key size used by
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Fig. 2: Steps of SP-PUF construction in design flow

the employed cryptographic algorithm(s) and by the number
of different required keys (e.g., for different encryptions or for
re-keying). Recall that SP-PUF responses might be noisy and
therefore require fuzzy extraction and cryptographic hashing to
obtain satisfactory key bits. The parameters of the fuzzy extrac-
tor (FE) are set based on the extent of variability (quantified by
coefficients of variation cp and cg explained in Section III-B)
such as to ensure reliable error correction. We employ a Reed
Muller FE [20], but any other extractor could be used as well.
The FE together with the number of required key bits nyey
determines the required number of SP-PUF’s raw response bits
Ngarget, 1.€., the number of different path pairs that need to be
sensitized to obtain i, key bits after fuzzy extraction.

The actual SP-PUF construction is done in three steps that are
explained in more detail further below. First, a pool of candidate
paths is selected using certain criteria (Section III-A). Out of
this pool, pairs of paths (p“,p?) are selected such that (1)
p4 and p? are sensitizable by the same test pair and (2) they
can provide sufficient uniqueness and reliability. (Section III-B).
Finally, the number of required tap points (and therefore the
overhead of the scheme) is minimized by choosing path pairs
which terminate at a restricted set of circuit outputs (Section
11-C).

It is advisable to construct the SP-PUF before physical
design, since the required taps can then be considered during
routing. This means that only rough gate timing can be used
during construction and no effects of parasitic capacitances or
low-level optimizations such as gate upsizing are incorporated.
Therefore, it is necessary to run a refinement step after physical
design based on accurate extracted delays of all gates and
interconnects. The accurate cumulative delays of all paths in
pairs (pA,pB) must be calculated, and if they do not match
anymore, repair via post-layout engineering change orders
(slight speed-up or slow-down of problematic gates by, e.g., up-
or downsizing) can be attempted. If this fails, new test pairs
can be generated using accurate timing while not modifying
the tap points, since they have been routed already. Only if the
number of found test pairs is insufficient (less than 7arget ),
the complete construction flow has to be repeated and new taps
have to be routed.

In the following, we provide more details on the individual
steps of SP-PUF construction.

A. Path generation

Given a circuit, we aim at identification of path pairs
(p?,pP) that are suitable for SP-PUF operation. For this
purpose, we first select a pool P of longest paths through

the circuit that are sensitizable. A path from circuit input ¢
to circuit output o is sensitized by a test pair (v,w) if the
application of v followed by w launches a transition on input ¢
and propagates it through all gates on the path, such that it can
be observed on o. We use the SAT-based engine PHAETON
[21] to determine longest paths that are sensitizable according
to the strongest known condition, namely hazard-free robust
sensitization, to rule out the possibility of invalidations. For
this purpose, PHAETON searches for longest paths such that all
side-inputs of on-path gates can be simultaneously set to stable
non-controlling values, i.e., 0 for (N)OR and 1 for (N)AND
gates.

B. Path pair filtering

To use a pair of paths (p?, p?) in the SP-PUF context,
it is necessary to find (v,w) that sensitizes both paths, i.e.,
sets all side-inputs of gates from p“ and p” to stable non-
controlling values [22]. After the pool of paths P has been
constructed, we identify all pairs of paths (p*,p?) from P that
satisfy the following four conditions. First, p and p® must be
simultaneously sensitizable by the same test pair. Second, the
lengths of p“ and p® must be “roughly the same”, i.e., they are
allowed to differ by at most a user-defined amount Aj,. This
condition keeps undesired bias in check. Finally, the overlap
between p” and p” must be restricted; for this purpose, at least
Ag gates in p* must not be part of p?, and vice versa (Ag
is also user-defined). The rationale behind this condition is to
avoid pairs (p?,p?) which are affected by process variations
in largely the same way because they share almost all gates.

The three mentioned conditions have been expressed using
Boolean formulae and computed using PHAETON. The fourth
condition used for filtering focuses on the quality of a path
pair in terms of PUF-specific metrics unigueness (i.e. inter-chip
Hamming distance and bit-aliasing) and reliability (rel). We
compute, for each considered path pair, its bit-aliasing and its
reliability, calculate a weighted score Rel —|0.5— BA| based on
these estimates and retain only path pairs with score exceeding a
threshold (determined heuristically as the median score of 5,000
randomly chosen path pairs from P having similar lengths).

Note that a good bit-aliasing was shown to also imply a good
inter-chip Hamming distance [23] and hence we refrain from
employing an additional uniqueness filtering step.

The set of path pairs retained after filtering is called P Pgy.
In the remainder of this section, we discuss the underlying
delay model and outline the filtering procedures. We had to
omit formal derivation of Eqs. 5 and 6 due to lack of space.

We assume that each gate g in the circuit has a nominal delay
Onom (g). All our procedures support pin-to-pin delays and can
distinguish between rising and falling delays. In this way, it is
straightforward to incorporate interconnect delays including all
applicable parasitics into gate delays. We assume two variability
mechanisms: process variations, which modify gate delays in
each manufactured instance of a circuit due to, e.g., line-
edge roughness or dopant level fluctuations, and environmental
Sfluctuations (random noise) due to, e.g., unpredictable voltage
drops or local clock jitter, which affect the gate delays every
time the circuit is used. We model process variations and envi-
ronmental fluctuations by Gaussian distributions with standard
deviations op and og defined by coefficients of variation cp
and cg, respectively.

Let Z be the circuit model where each gate g has nominal
delay dnom(g) (actually, a set of rising and falling pin-to-
pin delays, which we omit for brevity). If m circuit in-
stances /1, ..., 2, are manufactured, each gate ¢ in instance



Z; assumes process-variation affected delay 0p(g), which
is drawn from the normal distribution A (6nom(g) 0%) with
op = ¢p - Onom(g). Suppose that circuit Z; is run ¢ times.
Random environmental fluctuation will slightly affect its gate
delays during each run. We model this by defining ¢ “virtual
circuit instances” Z; 1, . . ., Z; 4. The environmentally mﬂuenced
delay 6 of gate g in le is drawn from N'(dp(g),0%) with
0F = CE-0nom(g). Note that all considered distributions are un-
correlated because the effects of correlated path delay changes
(e.g., due to circuit-wide temperature increase or decrease) on
SP-PUF cancel each other out. In practice, variations may have
correlated and uncorrelated components, and the considered o p
and og capture the uncorrelated portion.

Recall that an SP-PUF’s challenges are n pairs of paths
(pt,pP ,(p?t,p2). For each of the m instances Z;, the
k-th SP PUF response bit R”J 1s 0 if the cumulative delay of
path p;) is lower than that of P (6p(py) <dp(pP)) in repeat
7, and 1 otherwise.

We evaluate the uniqueness of the SP-PUF with the inter-chip
Hamming distance metric [24] that is defined as the average
Hamming distance between responses of different instances Z;:

m-1 m HD(Rl 1 R] 1)
Uniq = —_— (D
(m 1 ZZ; ]Zz;rl

The best possible uniqueness is 0.5 which indicates a high
diversity of responses. Note that we are not using the inter-chip
Hamming distance metric in the process of path filtering but
report this metric in the analysis of our empirical simulations.

For path filtering, the highly correlated (cf. [23]) bit aliasing
metric is used. Bit aliasing BA(pk , D B of bit k is the propor-
tion of 1’s among all responses:

BA(p; pf) = (R} = )

The best value of BA(p;', pP) is 0.5; it means that the bit was
sampled as O just as often it was sampled as 1 and indicates
absence of any unwanted bias. The bias Bias (pk ,pB) of bit k
is defined as

Bla’s(pk 7pB) = |O‘5 - BA(pévaN

1|1<i<m}|/m

3

Biqs(pﬁ, py) captures the deviation of BA(pi, pP ).from its
optimal value. We are therefore targeting 0.0 for this metric
which indicates the absence of a bias towards 1 or 0.

' Tl}e reliability Rel(pf, pP) of bit k quantifies the average
likelihood over m instances Z; that the same response will be
generated when an instance is run multiple times under environ-
mental fluctuations. It is formalized as the average proportion
of consistent bits among “virtual instances” Z; 1,...,Z; 4

Rel(pi;,pi» Zi) = max{|{R;” =1]1<j<q}| [ q,

Ry =0]1<j<dq}l/q}

The best reliability value is 1.0; it describes the case when
no fluctuation-related response bit-flips occur. Note that intra-
chip HD is also used in the literature to quantify PUF stability
[18]; the best value of that metric would be 0.0.

To filter path pairs from PP, we calculate, for each
(pk ,pk) € PP, BA and Rel assuming the number m of
circuit instances and the number g of runs go to oo:

“

BA(pi,pi) = Pr(du(pi) > 52(pi)) )
Rl ) =5 [ 5@+ 5012 ©
Pr(0p(pi)>06(py) | 65 (pi)-0p(pr ) =t)| dt

where f denotes the density function of 0 (pi) -5 (pP) and

6_ = 5P 6n0m

C. Tap point optimization

If the number of path pairs in PP, exceeds the required
number 7ngarger 0f SP-PUF’s raw response bits, we apply fap
point optimization (TPO) to reduce the size of multlplexers
MuxA and MuxB and the number of bits in sel? and sel?
that are part of SP-PUF’s challenge. TPO selects path pairs
out of PPy, such that the numbers n4 and np of tap points
connected to MuxA and MuxB, respectively, are minimized.
Note that TPO can significantly reduce the number of usable
path pairs, and we are employing it in the key-generation
scenario because the overall number of extractable response
bits is fixed to Niarget-

TPO constructs the set P Prpo of selected path pairs and the
sets T4 and T of tap points for MuxA and MuxB. Let e(p)
denote the endpoint of path p. A valid tap point assignment of
size v is a combination of PPrpo, T4 and Ty which fulfills

the following conditions:
v(p?,pP) € PPrpo (e(p*) eTane(p®) e Tp) v

(e(pB) cEsne(pt)e EB)

|PPTPO| 2 Ntarget
A= |TA| < v
B=[Ts| < v

We map the conditions to MaxSAT formulae by constructing
a series of problem instances, starting with v = ngarge (for
which the problem is guaranteed to have a straightforward
solution). We solve them using software antom [25], gradually
decreasing v until the equations become unsatisfiable. The
last v for which the problem was solvable is the minimal
possible number of multiplexer inputs; smaller n 4 or np cannot
accommodate ngarget Suitable path pairs.

After the optimization, the multiplexers MuxA and MuxB
with n4 and np inputs, respectively, are added to circuit Z
and connected to the determined taps.

D. Security aspects

SP-PUF’s security is defined as the inability of an adver-
sarial attacker to reconstruct (read-out) the generated secret
key or replace it by a different key. Knowing the underlying
circuits’ structure, the tap positions, the nominal gate delays
and the challenges (test pairs) is not sufficient to recover
the key by simulation, because the compared paths are of
nearly identical lengths and the outcome is determined by
process variations. Similarly, breaking an Arbiter PUF requires
extracting variation-affected delays of its elements by invasive
techniques [13] or model building [4].

The security of SP-PUF would be compromised if the
attacker knew the variation-affected gate delays in a specific
circuit instance. Invasive attacks are much more difficult for
the large and complex circuitry used by SP-PUF as entropy
source compared to compact Arbiter PUF with regular structure.
However, the circuit should still implement state-of-the-art
defenses against invasive attacks (e.g., light sensors for tamper-
detection). Moreover, the adversary should not be able to reuse
infrastructure for manufacturing test to measure input-to-output
delays in the circuit, because otherwise gate-level characteriza-
tion [26] might reveal variation-affected gate delays. This is
best achieved by secure test-access solutions [27], [28]. Note
that we focus on the key-generation scenario where the SP-PUF



TABLE II: SP-PUF construction to obtain n¢arget = 4096 raw bits for cp = 20%, cg = 3%: # of path pairs after filtering
(|P Pg1t]), # of MuxA/MuxB inputs (|T]), # of path pairs after TPO (|PPrpo|), average Uniq, BA, Bias, Rel as well as the

run times

Circuit Gates Paths  |PPgy| | Tap point optim. Validation on random instances Run time [s]

|T| |PPrpo| | Avg. Unig Avg. BA  Avg. Bias Avg. Rel | Path gen.  Filtering Valid.
s05378 2156 3883 12288 24 4096 0.5000 0.5003 0.0251 1.0000 0.80 51.46 561.82
s09234 1696 2836 12288 10 4096 0.4991 0.4983 0.0243 1.0000 0.83 54.10 503.19
s13207 5344 2678 10123 | 130 4096 0.5000 0.5012 0.0247 1.0000 2.60 47.19 842.70
s15850 5614 7140 12288 84 4096 0.5000 0.4996 0.0252 1.0000 48.67 51.37 733.44
$35932 18058 8193 12288 | 152 4096 0.5000 0.4987 0.0244 1.0000 1.96 36.75 739.64
s38417 16065 12288 12288 25 4096 0.5000 0.5004 0.0260 1.0000 34.28 82.63  1007.22
$38584 16377 9328 12288 | 218 4096 0.5000 0.5006 0.0254 1.0000 4.55 98.73  1028.92
bl4 6895 858 3966 | 276 3966 0.4999 0.4998 0.0250 1.0000 13.86 78.58 517.53
bl5 10538 3679 11755 85 4096 0.5000 0.5001 0.0255 1.0000 1455.10 1104.31 526.91
bl7 34069 12288 12288 91 4096 0.5000 0.5004 0.0247 1.0000 3370.83 541.02 1341.46
bl8 95692 12288 12288 88 4096 0.5000 0.4995 0.0254 1.0000 8682.70 601.06  2481.92
b20 15607 2773 12288 | 118 4096 0.5000 0.4996 0.0239 1.0000 59.24 233.35 723.99
b21 15251 2665 12288 | 128 4096 0.5000 0.5008 0.0253 1.0000 55.84 209.83 908.12
b22 21728 3674 12288 | 198 4096 0.5001 0.5009 0.0256 1.0000 90.97 239.67 927.03
p35k_s 33273 12288 12288 32 4096 0.5000 0.4986 0.0250 1.0000 499452 26872.68  1937.68
p45k_s 37663 12288 12288 26 4096 0.4999 0.5013 0.0246 1.0000 2527.22 231.41  1326.25
p78k_s 86153 12288 12288 98 4096 0.5000 0.4980 0.0248 1.0000 454.38 223.87 6862.17
p8lk_s 99927 12288 12288 16 4096 0.4997 0.4979 0.0254 1.0000 1550.06 4792.17  1459.04
plOOk_s 82575 12288 12288 32 4096 0.5000 0.4996 0.0245 1.0000 4719.63 331.57 2046.16

output is not observable outside the circuit and cannot be used
for model building.

The challenges (test pairs) are identical for all circuits and
not considered “helper data”, i.e., circuit-specific bits generated
during enrollment. They can be stored (publicly) on-chip in a
ROM,; since the test pairs can include don’t cares, it is possible
to compress them using standard techniques [29]. Note that an
adversary who knows the challenges cannot reconstruct the key,
so neither the compressed data nor the decompression block
need obfuscation. However, the challenges must be protected
against being overwritten, because otherwise an adversary could
copy a single challenge ngarger times and replace the SP
response by an all-0 or all-1 string. It is possible to store
the challenges outside the circuit but only if their integrity
is guaranteed. This can be achieved by using secure access
mechanism for transmitting the challenges to the circuit, or
by authenticating the data either using a digital signature or a
cryptographic hash (the public key of the signer or the expected
hash value can be stored on-chip in a ROM).

Regardless whether the challenges are stored on-chip, de-
compressed or transmitted from outside, they are applied either
via the inputs of the basic circuit or via its internal scan
chains using launch-on-shift or launch-on-capture techniques.
If any circuitry for challenge application is connected with
infrastructure used for manufacturing test, its adversarial usage
must be ruled out by, e.g., requiring authentication [28].

IV. EXPERIMENTAL RESULTS

We applied SP-PUF construction and tap point optimization
to sufficiently large (at least 1,000 gates) ISCAS-89, ITC-99
and industrial circuits provided by NXP (the names of these
circuits start with “s”, “b” and “p”, respectively). All circuits
have been resynthesized using the 45nm Nangate OpenCell
library. We employed a Reed Muller fuzzy extractor (FE) [20]
with parameters R = 1 and M = 7. These settings deliver
reliable 256 key bits out of 4096 raw SP-PUF response bits.

Table II summarizes the results for coefficients of variation
cp = 20% and cg = 3%. Recall that cp defines the standard
deviation of the delay distribution due to manufacturing process
variability that provides SP-PUF’s entropy (0p = ¢p - dnom(g))
while cg is its counterpart for modeling environmental fluc-
tuations or random noise that limits SP-PUF’s reliability and
necessitates fuzzy extraction (cg = cg - 0p(g)).

The first three columns of Table II contain the circuit name,
the number of gates and the number of paths (longest paths
through each output in the circuit, excluding duplicates and
bounded by 3 - Marget) selected by the method from Section
III-A. The number of path pairs that remained after filtering
(Section III-B) with parameters Ay = 2.5% and Ag = 5 and
bounded by 3-ngarget is reported in column | P Pgje|. Column |T'|
shows the minimal number of taps required to retain ngarget =
4096 path pairs. It can be seen that procedure from Section
II-C is successful in bringing the number of required taps far
below Ntarget-

We validated the SP-PUF concept by Monte-Carlo simulation
on (1,000 - 250) circuit instances Z, ; that were randomly
created following the construction principle from Section III-B.
First, m = 1,000 process-variation affected instances Z;
were obtained from the considered circuit by drawing the
delay 6p(g) of every gate g from the normal distribution
N (0nom(g),0%). Then ¢ = 250 runs of circuit Z; affected
by environmental fluctuations were modeled by Z; 1, ..., Z; 250
with gate delays drawn from N (dp(g),0%).

For each of the (1,000 -250) circuits Z; ;, we obtained
raw SP-PUF bits, applied fuzzy extraction to these bits and
extracted the 256-bit key using the cryptographic hash function
SHA-3. We repeated generation of raw bits (using identical
sets of challenges) three times and applied majority voting
before FE, in order to counter rare cases when FE did not
fully eliminate bit flips due to environmental noise. In this way,
we consistently achieved perfect reliability on all considered
instances. We report average uniqueness (Eq. 1), bit-aliasing
(Eq. 2), bias (Eq. 3) and reliability (Eq. 4) of the generated
keys in columns “Avg. Uniq”, “Avg. BA”, “Avg. Bias” and
“Avg. Rel”, respectively. It can be seen that the uniqueness
and the bit-aliasing are both very close to their best possible
values of 0.5. The average bias is around 0.025 and hence
very low. Note that some small bias over the 1,000 validation
instances is statistically expected. The reliability is 1.0 for
each circuit indicating a perfect reliability after FE for each
validation instance and repeat.

The average of these values over all circuits in Table II before
FE is Rel = 0.9537, Uniq = 0.4949, BA = 0.4985 and Bias =
0.1365.

We validated the suitability of the generated keys for cryp-
tographic applications by applying statistical tests from the



suite dieharder, version 3.31.1. We had to concatenate keys
generated for 250,000 circuit instances Zj 1,. .., Z250000,1 Of
some reference circuits to obtain strings of 64,000,000 bits,
and all tests applicable to this number of bits were passed.

The final columns of Table II show run-times for path gen-
eration, filtering including TPO and validation on (1,000-250)
instances. The slowest path generation time of around 2 hours is
for the 100K gate circuit b18, which is remarkably fast given
the complexity to find and simultaneously sensitize pairs of
paths using hazard-free robust conditions. Filtering run-times
are determined by the numbers of available suitable path pairs
and the complexity to simultaneously sensitize two paths.

Table III shows the influence of different settings of process
variations cp and environmental fluctuations cg on the quality
of SP-PUFs based on the circuits used in the previous exper-
iment. The table displays the expected Bias and the expected
reliability before FE and key generation (as opposed to Table
1) for cp € {15%,20%,25%} and cp € {1%,3%,5%}.

It can be seen that the expected reliability ranges between
0.90 to 0.98 and is highly influenced by the “signal-to-noise”
ratio between cp and cg. The results suggest that the highest
expected noise cg should be assumed during SP-PUF construc-
tion because otherwise the reliability deteriorates substantially
(and must be addressed by a more powerful error-correction
scheme to achieve perfect reliability after key generation). In
contrast, the bias mainly depends on cp and decreases for
larger process variations. Note that after key generation the
bias is reduced due to the additional confusion introduced by
the cryptographic hash function. Hence, the considered process
variability levels introduce sufficient randomness for SP-PUF
construction.

V. CONCLUSIONS AND FUTURE WORK

We presented a new approach for constructing PUFs from
(almost) arbitrary, sufficiently complex digital circuits, which
is based on the inherent timing variability of simultaneously
sensitized paths. Our method closely intertwines PUFs and
circuits, allowing a new class of PUF designs. It offers security
benefits, can be integrated into a system-wide “fusion PUF” and
at the same time it is associated with limited area overhead
and provides high bit generation speed. We showed that SP-
PUF is suitable for reliable key generation when used in
combination with a state-of-the-art fuzzy extractor. Its helper
data are restricted to the standard information used for error
correction and constitute no known security threats.

We also introduced a design flow that incorporates advanced
multipath sensitization methods, statistical filtering techniques
and MaxSAT optimization. This flow can turn an arbitrary
circuit into an SP-PUF with a high degree of automation and
minimal interference with the regular circuit design process.
Using this flow, we demonstrated that a 256-bit key can be
reliably generated for a variety of circuits.

In the future, we plan to investigate the suitability of SP-PUF
for challenge-response authentication. For this purpose, a large
(exponential) number of challenge-response pairs is needed, but
a lower reliability is acceptable, which relaxes the requirements
on path sensitization. Moreover, the vulnerability of SP-PUF to
modeling attacks is of interest in this context.
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TABLE III: Influence of variability on the avg. Bias and Rel

‘ ce =1% cg =3% cg =5%

cp Bias Rel Bias Rel Bias Rel

cp =15% [ 0.1127 0.9800 0.1107 0.9406 0.1069 0.9029

cp =20% | 0.0853 0.9847 0.0845 0.9543 0.0827 0.9248

cp =25% | 0.0686 0.9876 0.0682 0.9630 0.0673  0.9389
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