
PUF Interfaces and their Security

Marten van Dijk
University of Connecticut
vandijk@engr.uconn.edu

Ulrich Rührmair
Technische Universität Berlin

ruehrmair@ilo.de

Abstract—In practice, any integrated physical unclonable
function (PUF) must be accessed through a logical interface.
The interface may add additional functionalities such as access
control, implement a (measurement) noise reduction layer, etc.
In many PUF applications, the interface in fact hides the PUF
itself: users only interact with the PUF’s interface, and cannot
“see” or verify what is behind the interface. This immediately
gives rise to a security problem: how does the user know he is
interacting with a properly behaving interface wrapped around
a proper PUF? This question is not merely theoretical, but
has strong relevance for PUF application security: It has been
shown recently that a badly behaving interface could, e.g., log a
history of PUF queries which an adversary can read out using
some trapdoor, or may output “false” PUF responses that the
adversary can predict or influence [20]. This allows attacks on a
considerable number of PUF protocols [20]. Since we currently
do not know how to authenticate proper interface behavior
in practice, the security of many PUF applications implicitly
rests on the mere assumption that an adversary cannot modify
or enhance a PUF interface in a “bad” way. This is quite a
strong hypothesis, which should be stated more explicitly in
the literature.

In this paper, we explicitly address this point, following and
partly expanding earlier works [20]. We add to the picture
the need for rigorous security which is characterized by some
security parameter λ (an adversary has ”negl(λ) probability
to successfully software clone/model a PUF”). First, this means
that we need so-called Strong PUFs with a larger than poly(λ)
input/challenge space. In order to have scalable PUF designs
(which do not blow up in chip surface or volume for increasing
λ), we need PUF designs which constitute of a ”algebraic”
composition of smaller basic building blocks/devices. In such
compositions the security relies on a less well-established
computational hardness assumption which states that machine
learning and other modeling methods with poly(λ) runtime
cannot reliably produce a software clone of the PUF. To provide
rigorous security we argue that the PUF interface needs a one-
way postprocessing of PUF responses such that the security
can be reduced to the infeasibility of breaking the one-way
property of the postprocessing. This leads to a set of interesting
problems: how do we add noise reduction into this picture
and how do we minimize or eliminate side channel leakage of
computed intermediate values in the post processing?

I. INTRODUCTION

A PUF is a randomly structured and unclonable physical
system P that can be excited with external stimuli or so-
called challenges c. It reacts with corresponding responses
r, which depend on the challenge and the unique random
structure of the PUF. PUF P implements a statistical process

that maps challenges c to responses r ← P (c) (P (c) defines
a statistical distribution from which r is drawn). Tuples (c, r)
are called the challenge-response pairs (CRPs) of P .

Due to their complex internal structure, PUFs can avoid
some of the shortcomings of digital keys stored in non-
volatile memory (NVM): It is usually harder to read out,
predict, or derive PUF-responses than to obtain digital keys
from NVM. The PUF-responses are only generated when
needed, which means that the keys are not permanently
present in an easily accessible digital form. Furthermore,
certain PUFs are naturally tamper sensitive, as their exact
behavior depends on minuscule manufacturing irregularities
in different layers of the IC. Removing or penetrating these
layers will automatically change the PUF’s read-out values.
These facts have been exploited in the past for different
PUF-based security protocols: identification [16], [6], key
exchange [16], and various forms of (tamper sensitive) key
storage and applications thereof, such as intellectual property
protection or read-proof memory [8], [10], [24].

In order to avoid an attack in which a software
clone/model is produced by querying a PUF for all possible
challenges, we need PUFs with a very large challenge set.
This type of PUF sometimes has been referred to as Physical
Random Function [6] or Strong PUF [8], [22], [21], [17] in
the literature. 1 Its input-output behavior is assumed to be
so complex that its response to a randomly chosen challenge
cannot be predicted numerically and without direct physical
measurement, not even by a person who had physical access
to the Strong PUF at earlier points in time (here we do not
mean physical access to the internals of the PUF, but access
to the PUF in being able to query CRPs). Exactly this as-
sumption of having a complex input-output behavior which
is hard to machine learn or model is not well-established:
Rather than relying on this assumption, we propose to rely
on the PUF interface itself to postprocess responses by using
a one-way function such that the security directly reduces to
the hardness of breaking the one-way function. This reduces
the PUF’s role to that of an unclonable physical key storage
(which was its original motivation).

1A Strong PUF is used similar to a physical random oracle, which can
be passed on between parties in more advanced protocols (e.g. oblivious
transfer, bit committment, key agreement etc.) and which can be read-out
exactly by the very party who currently holds physical possession of it.



A PUF is always accessed through its logical interface.
Unfortunately, in practice we cannot guarantee that the PUF
interface is ”good” in that the PUF+interface hardware has
been faithfully generated and never been manipulated. A
more realistic model is the ”bad PUF model” [20], [14]
which allows adversaries to manipulate the PUF interface:
These manipulated ”bad” PUFs look like a normal PUF from
the outside, having a standard CRP-interface etc., but have
extra properties that allow cheating. Even though the bad
PUF model is more realistic in the worst-case scenario, for
most applications we need to assume good PUFs (since
we do not know how to deal with bad PUFs) for most
PUF interactions (and discount worst-case scenarios in the
applications’ business models).

In what follows we focuss on PUF interfaces: We first
explain how they are used for providing extra functionality
within the good PUF model. Next we discuss how an extra
interface layer (a one-way postprocessing) can provide rig-
orous security guarantees and we discuss the corresponding
security assumption.

II. LOGICAL INTERFACES

In practice a PUF is wrapped inside an interface which
enables extra functionality, in particular:

1) By using measurement-noise reduction techniques
such as fuzzy extraction, privacy amplification, or
error correction in the form of erasure decoding using
”helper information” or majority voting, the PUF
becomes (with high probability) a function (rather than
a statistical process that samples a distribution).

2) By using pre-processing a challenge seed can be
expanded into a sequence of challenges that are each
individually evaluated by the PUF to provide a se-
quence of response bits. In order to maximize the
entropy in the sequence of response bits, the pre-
processing generates a sequence of challenges such
that each two challenges within the sequence have a
large ”distance” between one another.

3) Generally, pre- and post-processing allows more com-
plex access control mechanisms (by binding chal-
lenges and responses to user/program supplied infor-
mation). E.g., as in controlled PUFs, or its general-
ization which allows proofs-of-execution. One could
also construct Logically Erasable PUFs by letting the
control logic maintain some record of the previously
applied challenges and of the erased challenges (e.g.,
in the form of an authenticated hash tree). 2

The PUF interface as described above does not extend
the Trusted Computing Base (TCB) of the PUF itself in that
an adversary is allowed to see the internal values computed

2Also Logically Reconfigurable PUFs (LR-PUFs) as introduced by
Katzenbeisser et al. [9] can be an option in this context. They allow the
manufacturer of the PUF to collect a CRP-list that remains valid even after
many reconfiguration operations.

within the interface: the security does not depend on whether
these values get known by the adversary or not. The PUF
interface as described above only extends the TCB in that
the PUF can only be accessed through this interface.3 In
other words we need to assume an adversary who is not
able to circumvent the interface in order to access the
PUF. This means that the PUF with interface is assumed
to behave in a ”proper” way and that ”bad” behavior is
excluded. As has been shown in recent research [20], [14]
this security assumption may not hold: PUF interfaces may
very well be modified/enhanced with bad behavior such as
(1) circumpassing PUF behavior and use a predictable (to the
adversary) algorithm instead or (2) logging past measured
challenge response pairs (which can be retrieved by an
adversary). Since we do not know how to authenticate proper
interface behavior, we simply need to assume an adversary
who cannot modify or enhance a PUF interface in a ”bad”
way. This is a strong security assumption needed for most
applications which should be explicitly stated.

III. THE NEED FOR POST-PROCESSING

In what follows we argue that in order to be scalable
to smaller dimensions, we need PUFs which rely on the
assumption that no machine learning (or other) method can
be used to construct a software clone of the PUF. This
assumption is not well-established in the machine learning
community and for this reason we propose an extra interface
layer to provide rigorous security:

We realize that PUFs are composed of smaller basic
devices (building blocks). The (software) unclonability of
the PUF depends on the complexity of this composition since
each device individually can easily be modelled based on a
small number of its input output pairs. E.g., a PUF may
be a parallel composition of n devices with an interface
which (based on a challenge) reads the outputs of λ out of
the n devices, where λ represents the security parameter.
Since each challenge response pair teaches a non-negligible
amount of information about λ devices, O(n/λ) challenge
response pairs is sufficient to construct a reliable software
clone of the PUF. Since λ is the security parameter, n
must be sub-exponential in λ. As an example, SRAM PUFs
use a parallel composition with a sub-exponential number
of SRAM cells placed in a cross-bar memory layout. We
conclude that a strong PUF based on parallel composition
needs a sub-exponential number of devices leading to a large
surface.

To be scalable to smaller dimensions, we need PUFs that
use devices in different compositions. For example, devices
are laid out in a sequential way where the outputs of one

3The original TCB assumes that the PUF can only be accessed as a
black box which can be querried by an adversary without the adversary
allowing access to internal values computed within the PUF. The extended
TCB limits access through the PUF interface, but allows the adversary to
learn iternally computed values within the interface.



device constitute the inputs of the next device as in Arbiter-
based PUFs. This leads to a smaller number of devices per
PUF (hence, a small surface per PUF). The security now
relies on the difficulty of using machine learning methods
to create a software clone. It has been shown that at least ≈ 8
Arbiter PUFs need to be XORed in order for this assumption
to hold for currently know machine learning methods [21].
We must find the right balance in our composition: complex
enough to allow for a hardness assumption and simple
enough not to amplify noise generated by the individual
devices in the composition.

Rather than finding a composition of devices that leads
to a secure, reliable and scalable PUF, another solution
is to build a logical interface layer that post-processes
the composition’s output using a one-way function such
that the irreversibility of the one-way function itself is the
computational hardness assumption that prohibits an attacker
from learning any of the actual input-output behavior of the
devices within the composition. Since a one-way function
is input sensitive, the logical interface must first apply
noise reduction techniques before evaluating the one-way
function. We must add noise reduction in such a way that
corresponding helper information (e.g. in the form of parity
symbols) cannot be used to break the one-way function.

The proposed interface layer provides rigorous security
if we assume an extended TCB where adversaries cannot
obtain information about the internally computed values
within the interface layer. In particular, this requires an
implementation which avoids side channel leakage.

We notice that the proposed logical interface post-
processes responses using a non-keyed one-way function
f : Given a challenge c, the interface outputs f(P (c)) (we
neglect error reduction for simplicity). Its behavior is the
same as a keyed one-way function fK(c) where key K
is replaced by PUF P . This means that into some extend
our approach reduces PUFs to unclonable physical keys and
nothing more.

IV. CONCLUSION

We conclude that PUFs, especially so-called Strong and
Controlled PUFs [18], [20], should ideally be considered in
combination with their logical interfaces. In order to achieve
practical security, additional assumption about this interface
have to made. This gives rise to a considerable research
potential in this direction. One prime example are methods
for the verification of the interface, and the underlying
PUF behind the interface, in Strong PUF architectures [20].
Another example is the development of internal interfaces
for Controlled PUFs that are side channel resilient (compare
[1]).

REFERENCES

[1] Georg T. Becker, Raghavan Kumar: Active and Passive Side-
Channel Attacks on Delay Based PUF Designs. IACR Cryp-
tology ePrint Archive 2014: 287 (2014)

[2] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, U. Rührmair:
The Bistable Ring PUF: A new architecture for strong Phys-
ical Unclonable Functions. HOST 2011: 134-141

[3] M. van Dijk: System and method of reliable forward secret
key sharing with physical random functions. US Patent No.
7,653,197, October 2004.

[4] B. Gassend, Physical Random Functions. MSc Thesis, MIT,
2003.

[5] B. Gassend, M. van Dijk, D.E. Clarke, E. Torlak, S. Devadas,
and P. Tuyls: Controlled physical random functions and
applications. ACM TISSEC 10(4), 2008.

[6] B. Gassend, D. E. Clarke, M. van Dijk, and S. Devadas:
Silicon physical random functions. ACM CCS 2002.

[7] B. Gassend, D. Lim, D. Clarke, M. van Dijk, S. Devadas:
Identification and authentication of integrated circuits. Con-
currency and Computation: Practice & Experience, 2004.

[8] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls: FPGA
Intrinsic PUFs and Their Use for IP Protection. CHES 2007.

[9] S. Katzenbeisser, C. Koabas, V. van der Leest, A.-R. Sadeghi,
G. J. Schrijen, and C. Wachsmann: Recyclable PUFs: Log-
ically Reconfigurable PUFs. Journal of Cryptographic Engi-
neering 1(3): 177-186 (2011).

[10] S. S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen, and P.
Tuyls: The Butterfly PUF: Protecting IP on every FPGA.
HOST 2008.

[11] K. Kursawe, A. R. Sadeghi, D. Schellekens, P. Tuyls, and B.
Skoric: Reconfigurable physical unclonable functions – En-
abling technology for tamper-resistant storage. HOST 2009.

[12] J.-W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and
S. Devadas. A technique to build a secret key in integrated
circuits with identification and authentication applications. In
Proceedings of the IEEE VLSI Circuits Symposium, 2004.

[13] R. Maes, I. Verbauwhede: Physically Unclonable Functions:
a Study on the State of the Art and Future Research Direc-
tions. Section 1 in D. Naccache and A.-R. Sadeghi (Ed.),
Towards Hardware-Intrinsic Security, Springer, 2010.

[14] R. Ostrovsky, A. Scafuro, I. Visconti, and A. Wadia: Uni-
versally Composable Secure Computation with (Malicious)
Physically Uncloneable Functions. Eurocrypt 2013.

[15] R. Pappu: Physical One-Way Functions. PhD Thesis, Mas-
sachusetts Institute of Technology, 2001.

[16] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld: Physical
One-Way Functions, Science, vol. 297, 2002.

[17] U. Rührmair, H. Busch, and S. Katzenbeisser: Strong PUFs:
Models, Constructions and Security Proofs. In A.-R. Sadeghi,
P. Tuyls (Editors): Towards Hardware Intrinsic Security:
Foundation and Practice. Springer, 2010.

[18] U. Rührmair, S. Devadas, F. Koushanfar: Security based on
Physical Unclonability and Disorder. In: M. Tehranipoor and
C. Wang (Editors): Introduction to Hardware Security and
Trust. Springer, 2011



[19] U. Rührmair and M. van Dijk: Practical Security Analysis of
PUF-based Two-Player Protocols. CHES 2012.

[20] U. Rührmair and M. van Dijk: PUFs in Security Protocols:
Attack Models and Security Evaluations. IEEE S&P 2013.

[21] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber: Modeling Attacks on Physical Unclonable
Functions. ACM CCS, 2010.

[22] U. Rührmair, J. Sölter, and F. Sehnke: On the Foundations of
Physical Unclonable Functions. Cryptology ePrint Archive,
Report 2009/277, 2009.

[23] G. E. Suh and S. Devadas: Physical Unclonable Functions
for Device Authentication and Secret Key Generation. DAC
2007.

[24] P. Tuyls, G. J. Schrijen, B. Skoric, J. van Geloven, N. Ver-
haegh, and R. Wolters Read-Proof Hardware from Protective
Coatings. CHES 2006.

[25] P. Tuyls and B. Skoric: Strong Authentication with Physical
Unclonable Functions. In: Security, Privacy and Trust in
Modern Data Management, 2007.


