
On the Selective Opening Security
of Public-Key Encryption

Dissertation Thesis

Felix Heuer





On the Selective Opening Security
of Public-Key Encryption

Dissertation Thesis

Felix Heuer

Reviewer: Prof. Dr. Kiltz
Prof. Dr. Jager

Date of oral examination: 13.06.2017

3





5





Acknowledgments

There are many people I am deeply grateful to and who I’d like to thank for supporting
me in lots of different ways throughout the last three years.

First and foremost I would like to thank my advisor Eike Kiltz. He offered plenty
of time for many meetings and never grew tired of explaining things (over and over
again). I appreciate his honest and helpful feedback as well as giving me confidence
in the quality of my talks. I’m thankful that Selective Opening emerged as a topic I
gladly worked on for the last years. Beyond, Eike let me attend numerous workshops
and conferences, allowing me to get to know many folks from our community and have
worthwhile discussions. I particularly enjoyed CRYPTO‘15 and TCC’16 in Tel Aviv
where I fell in love with hummus.

Also thanks to Tibor who instantly agreed to review my dissertation and be part of
the committee.

Further, I’d like to thank my coauthors Eike Kiltz, Tibor Jager, Sven Schäge,
Krzysztof Pietrzak and Bertram Poettering for collaborating.

While I’m certain that every crypto group out there claims to be the most terrific,
there is no conceivable way it’s not you. It is astonishing how well our groups get
along and the work environment with all of you is second to none. Please keep being
magnificent.

The above holds especially for Eike’s group, in particular for the seniorish or former
members Saqib, Bertram, Federico, Manuel and Benedikt with whom I shared much of
my time here. You. are. awesome!

Particular thanks go to Marion and Anja, the good souls of our groups. They do
not only help us deal with administrative barriers but are the very foundation for our
good work environment.

Special thanks got to Elena Kirshanova with whom I had the pleasure of sharing an
office for three great years. I enjoyed all our discussions, mocking (Panda is still around,
protesting silently) and fun as well as mental and dietary support whenever there was
a submission deadline or notification coming up. Also, thanks for proofreading every



single submission of mine and staring me to death on essentially any occasion.

Thanks to Saqib for lots of help and ‘guadiance’ in my early days as well as still
ongoing discussions about everything including cryptography, news, TV series and the
English language. (No, I won’t stop calling it an ‘n-tipede’, cow 6= cowl, and I still
don’t understand how your definition of ‘my people’ changes.)

Thanks to Bertram for his patience, endless scientific discussions and making me
spot every spacing issue in a text, ‘thanks’. I enjoyed debating hilarious and—let’s say—
provocative concepts (Safari!) and am confident that, eventually, one of your business
ideas will make it.

Thanks to my new fantastic roommates Tinka and Ralph for providing chamomile
tea when needed. I’m looking forward to our time in the office and more discussions
about crypto and grooming.

Thanks to Lisa for wondering how I do during the more stressful period of writing
my thesis. I guess back then it didn’t seem like it but I really appreciated it.

Thanks to Federico for sending me the latest Rick and Morty - Season 3 trailer
whose appearance went unnoticed by me.

Thanks to Saqib, Benenickt, Federico, Ralph, Bertram, Giorgia and Virginie for
proofreading my dissertation on such short notice. Special thanks to Elena and Manuel
(he ended up reading in the Bahnhofsmission Frankfurt (Main (station))) for checking
my whole thesis in no time.

It means a great deal to me that some of my mates spared no effort to join for my
defense: Thanks to Elena, Saqib and Ilya. Also, thanks to Sebastian for attending...

While getting along well at work shouldn’t be taken for granted, I was even more
fortunate to have splendid holidays in the course of the last years.

Thanks to Ilya, Robert and Jiaxin for our great trip along the East Coast and
learning that preparing pancakes in a microwave is possible (yet not advisable).

Thanks to Federico and Manuel for our amazing West Coast trip (it doesn’t help
getting rid of prejudices if you witness a theft right after arriving in Tenderloin. “Huh,
this is actually salt. Federico, can I borrow your hat?”. “Where’s Federico?!”), as well
as our incredible trip through Canada, the USA and National Parks (Maple syrup
cookies! “Why would you go to Melvindale?” isn’t really assuring if it comes from a
Border Patrol Agent. “Where’s Federico?!”. Waiting for the Grand Geyser to erupt is a
pain (“surely just another 20 minutes...”), creepy music at night on a deserted road in
Yellowstone is fun and Navajo time zones are as confusing as it is to stumble across an
old car wreck in a canyon. Anyway, all I hear is la la...).

Thanks to Federico, Manuel and Benedikt for the trip to Cardiff (and London) (Now
I’d actually like to visit the Doctor Who Experience. ‘Thanks’, Manuel.)



Further thanks to Manuel and the other giraffe for our trip through UK. Our shoes
shall remember the patches of slightly moist moss until their last day!

Also thanks to Bertram for having a stunning time in Angkor and Vi.nh Ha. Long
and bravely enduring my shoppingmania spending six-digit figures on the last day.

All of these trips created memories for a lifetime and I hope you enjoyed them as
much as I did. I look forward to new holidays with you.

I’d like to thank all my friends from Wetter for many fun evenings and celebrations
throughout all these years since leaving high school. Specific thanks to Patrick who is a
guarantee of great fun and a marvelous friend to have.

Finally but most importantly I’d like to thank my family and in particular my
parents for their relentless support extending way beyond the last couple of years of
studies but especially throughout my grumpy days of stressful thesis-writing.

Bochum, June 2017





Contents

Introduction 13

I Results in the Standard Model 25

1 Standard Security implies Selective Opening Security (sometimes) 27
1.1 Notational Conventions and Experiments . . . . . . . . . . . . . . . . . 28
1.2 Public-Key Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2.1 Standard Security Notions under Passive Attacks . . . . . . . . . 30
1.2.2 Selective Opening Security under Passive Attacks . . . . . . . . . 31
1.2.3 A Failing Reduction and First Insights . . . . . . . . . . . . . . . 32

1.3 Results for Graph-Induced Distributions . . . . . . . . . . . . . . . . . . 33
1.3.1 Graphs and Distributions . . . . . . . . . . . . . . . . . . . . . . 33
1.3.2 Relating the Maximum Border and Number of Connected Subgraphs 36
1.3.3 Main Result for Graph-Induced Distributions . . . . . . . . . . . 39
1.3.4 A Tighter Reduction for Directed Graphs . . . . . . . . . . . . . 44
1.3.5 The Structure of Graphs with Low Connectivity Properties . . . 52

1.4 Results for Decomposing Distributions . . . . . . . . . . . . . . . . . . . 56
1.5 Extending all Results to Active Attacks . . . . . . . . . . . . . . . . . . 61

1.5.1 Security Notions under Active Attacks . . . . . . . . . . . . . . . 61
1.5.2 Results for Active Attacks . . . . . . . . . . . . . . . . . . . . . . 62

II Results in Idealized Models of Computation 65

2 Selective Opening Security via Generic Transformations 67
2.1 Selective Opening Security under Active Attacks . . . . . . . . . . . . . 67
2.2 Transformation from any OW-PCA secure KEM . . . . . . . . . . . . . 70

2.2.1 Key Encapsulation Mechanisms and Message Authentication Codes 70
2.2.2 A Transformation from any OW-PCA KEM . . . . . . . . . . . . 72

11



2.2.3 Selective Opening Security of the Transformation . . . . . . . . . 74
2.2.4 Implications for Practical Encryption Schemes . . . . . . . . . . 82
2.2.5 Selective Opening Security of Hybrid PKE and KEMs . . . . . . 83

2.3 The OAEP Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.3.1 Trapdoor Permutations and Partial-Domain One-wayness . . . . 85
2.3.2 The Optimal Asymmetric Encryption Padding (OAEP) . . . . . 86
2.3.3 Selective Opening Security of OAEP . . . . . . . . . . . . . . . . 87

2.4 The Fujisaki-Okamoto Transformation . . . . . . . . . . . . . . . . . . . 94
2.4.1 One-wayness and Ciphertext Distribution . . . . . . . . . . . . . 95
2.4.2 The Fujisaki-Okamoto Transformation . . . . . . . . . . . . . . . 96
2.4.3 Selective Opening Security of the Fujisaki-Okamoto Transformation 97

3 Selective Opening Security of Hybrid Encryption 103
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.1.1 Symmetric Primitives . . . . . . . . . . . . . . . . . . . . . . . . 104
3.1.2 Hybrid Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.2 Simulatable DEMs and our Main Result . . . . . . . . . . . . . . . . . . 106
3.2.1 Simulatable DEMs . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.2.2 Selective Opening Security from Simulatable DEMs . . . . . . . 109

3.3 Simulatability of practical DEMs . . . . . . . . . . . . . . . . . . . . . . 113
3.3.1 CTR-then-MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.3.2 CBC-then-MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.3.3 CCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.3.4 GCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.4 Selective Opening Secure Hybrid Encryption . . . . . . . . . . . . . . . 123

Bibliography 133

12



Introduction

Public-Key Cryptography Through the Ages Since its discovery a mere 40
years ago public-key cryptography has come a long way from existing as a proof of
concept to highly efficient constructions resisting strong attacks.

The origin of public-key cryptography can be traced back to the seminal works of
Merkle [Mer78] as well as Diffie and Hellman [DH76] at the end of the 1970s. Merkle
proposed a first protocol for two parties to exchange a key. Thereby the time of an
attacker to obtain the key would rise quadratic in the time of the two parties. Diffie
and Hellman introduced the first key exchange protocol later proven secure under a
computational complexity assumption. The first public-key scheme was published in
1977 by Rivest, Shamir and Adleman [RSA78]. While all protocols mentioned so far are
not considered secure given today’s understanding, they served as a proof of feasibility
for public-key encryption.

During the next decade attention was shifted towards achieving security against
passive adversaries. Initially, it was captured by the notion of semantic security,
demanding that an attacker shall not be able to derive any ‘meaningful’ information
given a ciphertext. Semantic security turned out to be equivalent to the easier to handle
notion of indistinguishability under chosen-plaintext attacks (IND-CPA) [GM84]. In a
nutshell, a public-key scheme is IND-CPA secure if no attacker, given the public key,
can tell apart encryptions of plaintexts of their choosing. Clearly, IND-CPA security
has to be a minimal confidentiality requirement for public-key encryption (PKE) as
the public key is openly available. Goldwasser and Micali gave the first IND-CPA
secure public-key scheme [GM82]. Though, their scheme is of little use in practice as
merely encrypts individual bits. The first practical scheme was proposed two years
later by Elgamal [Gam84] whose scheme is closely related to the Diffie-Hellman key
exchange. Later, Goldreich and Levin showed that IND-CPA public-key encryption can
be constructed from any trapdoor one-way permutation [GL89].

Only in the 1990s schemes secure under chosen-ciphertext attacks (IND-CCA) were
devised. The notion of IND-CCA security is a natural extension of IND-CPA security
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where an attacker may request decryptions of ciphertexts of their choice1 when asked
to tell apart encryptions of plaintexts under their control [RS92]. As a first step, Naor
and Yung [NY90] constructed public-key encryption secure against so-called lunch
time attacks (IND-CCA1). Building on this work Dolev, Dwork and Naor presented
the first—yet impractical—scheme secure under adaptive chosen-ciphertext attacks
(IND-CCA2) [DDN91]. Towards the end of the 1990s Cramer and Shoup presented an
improved IND-CCA secure version of the Elgamal encryption scheme [CS98] that was
later generalized and captured in the concept of Hash Proof Systems [CS02]. IND-CCA
security quickly became—and still is—the de facto confidentiality notion for encryption.

A key example for the practical relevance of IND-CCA secure PKE was given by
Bleichenbacher [Ble98]. He performed an attack on RSA as standardized in PKCS#1
v1.5 (RFC 2313) exploiting that when submitting a ciphertext to a server for decryption
one would learn whether the decryption of a ciphertext results in a plaintext with
syntactically correct padding or not. Fortunately, research on IND-CCA secure public-
key encryption was initiated early enough such that a replacement was already at hand.
RSA-OAEP, having an infamous history of (in)security (see Section 2.3) on its own,
took over and was standardized in PKCS#1 v2.0 (RFC 2437).

Many efficient PKE schemes employed in practice have security proofs in the random
oracle model (ROM) where we assume hash functions to behave like a truly random
function. Formally introduced by Bellare and Rogaway [BR93], the idea of ‘random
looking functions’ was already present in the work of Fiat and Shamir [FS87]. As a
truly random hash function does not have a compact description, the hash function
is provided as a oracle implemented by the environment. The power of the random
oracle methodology in proofs stems from its oracle nature: a) The environment can
observe any query made to the random oracle (in particular by an attacker) and b)
the environment can program values into the random oracle (as long as their correctly
distributed). Clearly, random oracles cannot exist in practice and conclusions drawn
from proofs in the random oracle model were questioned due to [CGH98]. They gave
contrived schemes that are provably secure in the ROM but become insecure if the
random oracle is instantiated with any concrete hash function. Fortunately, this
behavior has not been observed in practice. Today, proofs in the random oracle model
are still indispensable as they strengthen the belief that a cryptographic construction
is sound. Prime examples for IND-CCA secure schemes with security proofs in the
ROM are the Optimal Asymmetric Encryption Padding (OAEP) [BR95, Sho02, KP09],
Diffie-Hellman Integrated Encryption Scheme (DHIES) [BR97, ABR01, SBZ02] or the
Fujisaki-Okamoto transform [FO99], e.g., instantiated with Elgamal encryption [ElG84].

1up to technical restrictions
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Another idealized model of computation is known as ideal cipher model dating back
to the early works of Shannon [Sha49]. Here we assume that a blockcipher, i.e., a family
of keyed permutations, behaves ideally in the sense that for each key the permutation
is truly random. Uninstantiability results reminiscent to those obtained in the random
oracle model exist for the ideal cipher model, too [Bla06]. In fact, the random oracle
and ideal cipher model are equivalent [CPS08, DKT16, DS16].

The Need for Stronger Security Models In 1996 Kocher introduced a new class
of practical attacks nowadays referred to as side-channel attacks [Koc96a]. These attacks
exploit weaknesses in the implementation of cryptography functionality rather than
the (abstract) cryptographic algorithms itself. Security under such attacks had never
been thoroughly analyzed as they are taking place beyond the standard attacker model.
In principle, a side-channel attack can be conducted from many different angles. For
instance: time [Koc96b], power consumption [KJJ99] or acoustic noise [GST14]. While
an attacker remains passive in aforementioned attacks, an intervening adversary may
find even more ways to extract information. For instance, cold boot attacks [HSH+08]
exploiting data remanence or fault injection as introduced by Boneh et al. in the
‘Bellcore-Attacks’ [BDL97].

The community was aware of the potential threat posed by side-channel attacks
since the early works on public-key encryption. While practical countermeasures, like
blinding were devised early [Koc96a], theoretical models of computation that leaks
information and provable security against side-channel attacks picked up pace only in
the last decade [NS09].

While there is some progress in eliminating some side-channels (e.g. threshold
implementations [GP99] as an instance of masking [NRR06]) practitioners are in a dire
situation as they can only react, once a side-channel condition has been discovered
[MPL+11].

We conclude that there are attacks that lie outside of our standard attacker model
and we ought to strengthen our notions of security.

Selective Opening Attacks

Public-Key Encryption in Practice Let us consider how public-key encryption is
used in practice and what kind of attacks might exist. Clearly, we have to consider more
than two parties sending and receiving encrypted plaintexts potentially depending upon
each other, for instance as they send emails, use messengers or connect to servers. As
for the adversary’s capabilities we have to assume that they have means to compromise
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the integrity of users’ machines, possibly due to malware or even hardware installed on
users’ systems. For instance, as we came to learn in 2013, the NSA regularly intercepted
deliveries of computer hardware in order to install malicious soft- and hardware (for
instance, see the NSA ANT catalog [Sta13]). Less invasively, an attacker might as
well simulate users participating in large protocols or come in form of colluding users
deliberately sharing their secrets to gain additional information. A similar scenario
naturally arises in multi-party computation where we assume secure channels between
parties. Since a party might become corrupted, we would need the encryption on the
channels to have stronger security guarantees than implied by standard security notions.

Independently of how such an attack is launched, a corruption would potentially
leak all the information a user possesses, in particular, its secret key or sent plaintexts
as well as the random coins that were used when encrypting the plaintexts.

Let us discuss why it is reasonable to assume that random coins of a user might
leak. Why would they store their random coins after encryption in the first place? The
immediate answer is that we aim at being as conservative as possible: Securely erasing
data is expensive and thus, the random coins might exist even after being ‘deleted’
on the user’s machine. Beyond that, keeping the random coins might serve a desired
functionality. Encryptions under a public-key scheme may be seen as a commitment to
a plaintext, while the random coins serve as opening information.2

Even more justification can be found in practice where the randomness might
be deleted after use but may be easily recoverable for an attacker. As generating
‘true’ randomness is expensive one might rely on pseudorandom generators to derive
randomness for encryption. Alternatively, one might use a pseudorandom function
evaluated on a plaintext to obtain random coins. Now, if the employed random
number generator is weak, or worse: backdoored [BLN16], or the adversary holds the
pseudorandom functions’s key we have to assume that the randomness of users leaks.

We end up with the setting of selective opening attacks (under sender corruption)
that can be modeled as follows (see Figure 1): One user, the receiver, generates a
key pair and many users encrypt plaintexts using the receiver’s public key (of course
using fresh and independent random coins). Again the adversary controls the plaintext
distribution—and may have arbitrary ciphertexts decrypted in the case of a SO-CCA
attack. On top of that the adversary is allowed to corrupt users thereby revealing the
plaintexts they encrypted and the random coins they used. Again, the adversary’s goal
is to derive new information about the plaintexts.

Clearly, we cannot expect any confidentiality for plaintexts sent by a corrupted user
but what about the confidentiality of plaintexts sent by users that remain uncorrupted?

2E.g., any correct, IND-CPA secure public-key encryption scheme is a computationally hiding,
perfectly binding commitment scheme.
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c2 = Encpk(m2; r2)

cn = Encpk(mn; rn)
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Figure 1: Depiction [Mun] of a selective opening attack with sender corruption. Senders 1, . . . n
sitting on the right. They encrypt possibly related plaintexts (e.g., m2 shall depend on m1).
Ciphertexts are sent to the receiver (on the left). The adversary (black hat) knows pk, observes
ciphertexts c1, . . . , cn and corrupts users 1 and n thereby learning (m1, r1), (mn, rn). The
adversary seeks to obtain non-trivial (i.e., not given by knowledge of m1 and mn) information
on plaintexts encrypted by uncorrupted users, e.g., m2.

Can we have any security guarantees for plaintexts sent by them? Selective opening
(SO) security is provided if in this situation the confidentiality of plaintexts in ‘unopened’
ciphertexts is still ensured. Intuitively, as all the encryptions occur independently of
each other, standard indistinguishability (i.e., IND-CPA or IND-CCA) notions should
imply their SO counterpart. Unfortunately, formal analysis reveals that this is not the
case.

Hardness of Proving Selective Opening Security The hardness of establishing
results on selective opening security is well-studied and does not stem from the multi-
user setting. Here a standard hybrid argument ensures that standard IND-{CPA,CCA}
security implies IND-{CPA, CCA} security. Generally, the reduction loses the number of
encryptions per user and the number of users as a factor in tightness [BBM00]. However,
for certain PKE schemes based on assumptions allowing for challenge rerandomization,
the reduction can be tightened [BBM00].

In contrast, the infeasibility of proving IND-CPA secure PKE schemes selective
opening secure can be traced back to two peculiarities of selective opening attacks: the
occurrence of related plaintexts and revealing the randomness of corrupted senders.
In the SO setting every sender uses fresh randomness (in particular) independently
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of other users. Hence, one might be surprised that a hybrid argument to obtain SO
security from IND-CPA security seems impossible to push through. As we will sketch
in Section 1.2.3 the dependency of plaintexts seemingly only allows for reductions with
an exponential loss. As for the disclosure of random coins it has been observed that
standard security entails some notion of ‘SO’ security if only the plaintexts leak under
corruption [Yil10].

Nevertheless, the central theme of this thesis is to establish results

On the Selective Opening Security of Public-Key Encryption Schemes.

Main Research Areas in Selective Opening Security

We proceed by discussing the major research topics in selective opening security before
covering our contributions.

Notions of Selective Opening Security The study of selective opening attacks
dates back to the work of Dwork et al. [DNRS99] introducing the “selective decommit-
ment problem”. Dwork et al. investigated the selective opening security of commitments
schemes: Given commitments and allowing an attacker to open some of the commitments,
what security guarantees can we expect the unopened commitments to have?

Formalizing suitable notions of SO security has proven to be highly non-trivial.
Since the occurring plaintexts may depend on each other, opening ciphertexts usually
leaks information on plaintexts still encrypted in (unopened) ciphertexts. Thus, it is
not obvious how to capture that plaintexts in unopened ciphertexts shall remain as
confidential as possible.

Two flavors of SO security have been introduced and studied in prior work: notions
based on indistinguishability (IND-SO) and notions based on simulatability (SIM-SO).

For IND based notions [BHY09] an adversary may open arbitrary ciphertexts and is
challenged to tell apart the originally encrypted plaintexts from fresh plaintexts that are
as likely to occur as the original plaintexts. As computing these fresh plaintexts involves
resampling from a distribution conditioned on the plaintexts revealed to an attacker, one
usually restricts the distribution to be efficiently conditionally resampleable to ensure an
efficient security experiment. Nevertheless, Böhl et al. [BHK12] adopted a notion from
the commitment scheme setting [BHY09] where the resampleability restriction on the
distribution is dropped. [BHK12] renamed IND-SO to weak IND-SO and introduced a
strictly stronger notion, called full IND-SO, where an attacker may choose an arbitrary
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distribution.3 On the one hand full IND-SO might be motivated from the application
of encryption in practice where arbitrary distributions may arise, on the other hand full
IND-SO security did neither lead to any meaningful results in understanding selective
opening attacks nor is there any instantiation of a fully IND-SO-CPA secure PKE.

In contrast, SIM based notions (capturing semantic security in the SO setting) do not
suffer from a restriction on the distribution. Boiled down, a scheme is SIM-SO secure
if for every SO adversary there exists a simulator that can compute the same output
without seeing any ciphertexts. Importantly, such simulators may corrupt senders to
learn the plaintexts they (virtually) encrypted.

Both flavors, IND-SO and SIM-SO, may be considered under CPA and CCA attacks.
We consider the naming ‘weak IND-SO’ unfortunate and simply refer to the security
notion as IND-SO security while mostly glossing over the existence of full IND-SO
notions.

While almost all results consider SO security under sender corruption, similar notions
modeling selective opening security under receiver corruption are defined in [BDWY11].

In this work we will mainly focus on two notions of selective opening security,
indistinguishability-based selective opening security under chosen-plaintext attacks
(IND-SO-CPA) in Part I and simulation-based selective opening security under chosen-
ciphertext attacks (SIM-SO-CCA) in Part II.

As just discussed there is a whole zoo of security notions under selective opening
attacks: (For the matter of this section) weak and full IND-SO, as well as SIM-SO,
under CPA and CCA attacks. Many results cover the relations amongst notions of SO
security as well as between standard and SO security.

Relations Amongst Notions of SO Security The notions of SIM-SO-CPA and
full IND-SO-CPA security are incomparable (i.e., none implies the other) and constitute
the strongest notions of security [BHK12, BDWY12, HR14], as both imply weak IND-
SO-CPA (Figure 2). Any notion of SO-CPA security implies IND-CPA [BHK12]. The
notion weak IND-SO-CPA is strictly weaker than full IND-SO-CPA ([BHK12]).

SIM-SO and full IND-SO seemingly differ in terms of achievability. There exist
constructions of (even) SIM-SO-CCA secure public-key encryption schemes [FHKW10,
Hof12], while until now there is not even a full IND-SO-CPA secure PKE.

Independently, notions for non-malleability under selective opening attacks were
introduced and studied in [HLMC15].

3Assuming the existence of one-way functions one can easily construct distributions that do not
support efficient conditional resampling.
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weak IND-SO-CPA full IND-SO-CPA

IND-CPA SIM-SO-CPA

Figure 2: Relations amongst notions of IND-CPA and SO-CPA security [BHK12, HPW15].
Arrows show black-box implications. For striked arrows there exists a PKE scheme separating
the notions.

Relations Amongst Standard and SO Security We summarize positive and
negative results relating the notions of standard and selective opening security.

Separations A negative result was given by Bellare et al. [BDWY11]. They showed
that IND-CPA security does not imply SIM-SO-CPA security, independently of the
underlying distribution. They exploited that no ‘committing’ PKE scheme can be
SIM-SO-CPA secure. Shortly afterwards, [BHK12] proved that IND-CPA is strictly
weaker than full IND-SO-CPA. Hofheinz et al. separated IND-CCA and weak IND-SO-
CCA [HR14] by constructing a PKE scheme that is IND-CCA secure but vulnerable
under weak IND-SO-CCA attacks. Later, Hofheinz et al. could adopt the result to
passive attacks [HRW16] as they gave a scheme that is (even) IND-CCA secure but
breaks under weak IND-SO-CPA attacks. Their scheme relies on the existence of public-
coin differing-inputs obfuscation and correlation-intractable hash functions that are
“plausible” [HRW16] to exist. As to the state of existence of (at least) indistinguishability
obfuscation, there have been as least as many attacks (most recently the widely applicable
‘annihilation attacks’ [MSZ16]) as proposed candidates. Currently, it is unclear whether
the separation scheme of [HRW16] can be instantiated.

Implications The first positive result relating IND-CPA and IND-SO-CPA was
given by [BY09] who transferred a result for commitment schemes [DNRS99] to the
PKE setting: IND-CPA implies weak IND-SO-CPA when plaintexts come from a
product distribution. Another result was contributed by [HR14]: IND-CPA implies
weak IND-SO-CPA security in the generic group model [Sho97], at least for a certain
class of PKE schemes including Elgamal and Cramer-Shoup.

Constructing Selective Opening Secure Public-Key Encryption The problem
of constructing selective opening secure public-key encryption in the standard model
has been solved by Bellare, Hofheinz, and Yilek [BHY09]. The authors show that
lossy encryption [PW08] implies IND-SO-CPA security, while lossy encryption with
efficient opening allows for SIM-SO-CPA security. Interestingly, it turns out that even
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the Golwasser-Micali scheme [GM82], the first ‘provably secure’ public-key encryption
scheme, constitutes a lossy public-key scheme with efficient opening. This line of research
is continued in [HLOV11] by Hemenway et al., who show that re-randomizable encryption
and statistically hiding two-round oblivious transfer imply lossy encryption. From a
cryptographic point of view the above works solve the problem of finding SO-CPA secure
encryption schemes, as there are several constructions of efficient lossy or re-randomizable
encryption schemes, e.g., [PW08, BHY09, HLOV11]. Further deniable encryption
[CDNO97] and techniques from non-committing encryption [CFGN96, HOR15] already
allow for constructing SO secure PKE [Dac14].

SIM-SO secure constructions in the standard model usually suffer in efficiency from
bit-wise encryption to ensure efficient openability or employing expensive building blocks
[LP15, HJR16]. Recently, somewhat more efficient standard model SIM-SO-CPA secure
PKE schemes have been proposed [HJR16].4 An identity-based encryption scheme with
selective-opening security under passive attacks was proposed by [BWY11].

As for security under active attacks, Hemenway et al. [HLOV11], Fehr et al.
[FHKW10], Hofheinz [Hof12] describe SO-CCA secure encryption schemes. Whereas
[HLOV11] can only handle adversaries that specify the set of users to be corrupted in
one shot, [FHKW10, Hof12] also applies to adversaries with fully adaptive corruption
capabilities. The work of [LP15] identifies special properties of a KEM, allowing to
construct SIM-SO-CCA secure PKE.

Little attention has been payed to SO-CCA security under receiver corruption.
[HPW15] shows how to obtain it from non-committing encryption for receiver.

Lately, SIM-SO-CCA security for identity-based encryption has been achieved in
[LDL+14].

Main Results of This Thesis

We proceed by summarizing the main results presented in this work.

Part I - Results in the Standard Model

Since notions of selective opening security were introduced [DNRS99] it was an open
question whether they constitute a strictly stronger notion than standard security
notions in either, the CPA or CCA setting. Only recently both questions were settled
as Hofheinz et al. [HR14, HRW16] constructed contrived schemes that are IND-CCA
secure but break under an IND-SO-CCA and even an IND-SO-CPA selective opening

4Encryption still processes the plaintext bit-wise though.
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?
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Figure 3: Overview on results addressing ‘IND-CPA ⇒ IND-SO-CPA’ depending on the
underlying plaintext distribution. A positive result for product distributions was know prior to
our work [DNRS99, BY09]. We contribute positive results for Markov and certain graph-induced
distributions. The impossibility result of [HR14] applies to certain ‘secret-sharing distributions’
leaving a gray area where we do not know whether IND-CPA implies IND-SO-CPA security.

attack (Figure 3). Thus, a general implication of IND-SO-CPA from IND-CPA security
is impossible.

On the other hand, the only positive result holds when the plaintexts are independent
of each other, i.e., stem from a product distribution [DNRS99, BY09], see Figure 3.
For arbitrary distributions the only known reduction from IND-SO-CPA to IND-CPA
security loses an exponential factor, thus, leaving the following question unanswered:

Does standard security imply selective opening security
for any non-trivial distribution?

We answer the question in the positive by giving a new black-box reduction whose
loss depends on the dependency-structure of the plaintext distribution. In particular,
for some concrete distributions our reduction is polynomial and constitutes the first
positive results in almost 20 years:

• IND-CPA security implies IND-SO-CPA security for any public-key scheme if
the plaintexts come from certain memoryless distributions including Markov
distributions (Section 1.3).

• We give a hybrid argument when the plaintexts come from a distributions that
can be decomposed into multiple independent distributions. Our result entails the
positive result of [DNRS99, BY09] (Section 1.4).

• All results in the CPA setting can be lifted to the relation between IND-CCA and
IND-SO-CCA security (Section 1.5).
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The results presented in Chapter 1 are based on joint work with Eike Kiltz, Krzysztof
Pietrzak and Georg Fuchsbauer published in [FHKP16].

Part II - Results in Idealized Models of Computation

For our first contribution in this part we move the focus from results applying to all
public-key schemes to concrete schemes. More precisely, we study three well-known
generic transformations that turn relatively weak primitives with security in the sense
of one-wayness to IND-CCA secure public-key encryption schemes in the random oracle
model. We show that all three transformations actually give rise to SIM-SO-CCA
secure schemes under exactly the same assumptions employed to obtain IND-CCA
security. More precisely, for the following transformations selective opening security
comes ‘for free’ in the random oracle model:

• A transformation from any one-way PCA key encapsulation mechanism.
(Section 2.2)

• The OAEP padding followed by a trapdoor permutation.
(Section 2.3)

• The Fujisaki-Okamoto transformation for any one-way secure public-key scheme.
(Section 2.4)

Most notably, the first transformation covers an instantiation of the well-known DHIES
(Hashed Elgamal) scheme [BR97], while the second covers the already mentioned RSA-
OAEP scheme [BR95]. Both DHIES and RSA-OAEP are important building blocks in
several standards for public-key encryption and key exchange protocols. We also show a
similar result for the well-known Fujisaki-Okamoto transformation that can generically
turn a one-way secure public-key encryption system into a IND-CCA secure public-key
encryption system.

Further, all cryptographic primitives beyond the one-way primitives by any of
the three transformations exist information-theoretically. Hence, only assuming the
existence of any of the cryptographic primitives listed above implies the existence of
SIM-SO-CCA secure PKE in the random oracle model.

These results presented in Chapter 2 are joint work with Tibor Jager, Eike Kiltz
and Sven Schäge and are published in [HJKS15, HJSK16].

For the last contribution we investigate the selective opening security of highly
efficient public-key hybrid encryptions schemes as employed in practice. Considering

23



that users in practice are exposed to the threats modeled in selective opening attacks,
and given that the classical confidentiality notions are formally weaker than notions of
SO security, the following question is immediate:

Are users ‘safe’ if they trust in a public-key scheme
designed towards the goal of ‘only’ standard confidentiality?

The question calls for a thorough SO analysis of all encryption schemes covered
by international standards. The facts that all PKE schemes that so far were formally
confirmed to be SO secure require heavy building blocks and that practitioners system-
atically avoid these for reasons of efficiency suggest that likely most practical schemes
would not withstand SO attacks. Fortunately, as we can show, virtually all practical
PKE constructions provably do meet security under selective opening attacks.

Our approach is complementary to that of prior works [FHKW10, LP15]. Instead
of analyzing the asymmetric building blocks of constructions, we observe that selective
opening security is tightly linked to the security of the symmetric building blocks.
We introduce a specific property called simulatability for blockcipher-based data en-
capsulation mechanisms (DEMs) that is met by virtually all DEMs used in practice.
Simulatability guarantees that if a corresponding DEM is combined with any IND-CCA
secure key encapsulation mechanism (KEM), then the overall hybrid PKE scheme
achieves SIM-SO-CCA security in the ideal cipher model.

Our results are:

• The IND-CCA security of hybrid encryption employing any IND-CCA secure
KEM can be lifted to SIM-SO-CCA security if the DEM is simulatable.
(Sections 3.2 and 3.4)

• The popular modes of operation CTR, CBC, CCM, and GCM are simulatable.
(Section 3.3)

The results of Chapter 3 are joined work with Bertram Poettering and published in
[HP16].

24



Part I

Results in the
Standard Model





Chapter 1

Standard Security implies
Selective Opening Security1

In this chapter we present the first non-trivial positive results on selective opening
security in the standard model. We show that IND-CPA security implies IND-SO-CPA
security for a class of ‘relatively memoryless’ distributions. We consider graph-induced
distributions where dependencies among plaintexts correspond to edges in a graph and
show that IND-CPA implies IND-SO-CPA security for all graph-induced distributions
that satisfy a certain low connectivity property.

In particular, our result holds for the class of Markov distributions, i.e., distributions
on vectors (m1, . . . ,mn) where all information relevant for the distribution of mi is
present in mi−1. For instance, our results cover distributions where plaintext mi

contains all previous plaintexts m1, . . . ,mi−1 (e.g. email conversations) or distributions
where plaintexts are increasing integers, i.e., m1 ≤ m2 ≤ . . . ≤ mn.

Note that a positive result on IND-SO-CPA (rather than SIM-SO-CPA) security for
all IND-CPA secure public-key encryption schemes for certain distributions is the best
we can hope for: The negative result by Bellare et al. [BDWY12] rules out any such
implication for SIM-SO-CPA security.

Further, recall the separation result ‘IND-CPA ; IND-SO-CPA’ by Hofheinz et al.
[HRW16] which exploits distributions that arise from secret sharing. We note that
there are still uncharted grounds in terms of distributions between our positive and the
negative result by [HRW16] where it is unknown whether standard security implies SO
security (see Figure 3).

1sometimes
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1.1 Notational Conventions and Experiments

Notation We distinguish the following operators for assigning values to variables: We
use symbol ‘←’ when the assigned value results from a constant expression (including
the output of a deterministic algorithm) and we write ‘←$’ when the value is sampled
uniformly at random from a finite set, is the output of a randomized algorithm, or is
sampled according to some distribution.

If f is a function or a deterministic algorithm that maps elements from a set A to
a set B we use the notation f : A→ B. If f is a randomized algorithm from A to B
we correspondingly write f : A →$ B; in case the algorithm takes no input we write
f : →$ B. If R denotes the randomness space of an algorithm f : A →$ B, we may
write f : A×R→ B for its deterministic version. If f : A×B → C is a function then
for any a ∈ A we write fa(·) for the partially applied function fa : B → C, b 7→ f(a, b).
If f : A→ B is a function or a deterministic algorithm we let [f ] := f(A) ⊆ B denote
the image of A under f ; if f : A→$ B has randomness space R, we correspondingly let
[f ] := f(A×R) ⊆ B denote the set of all its possible outputs. We denote the disjoint
union of two sets A,B with A ∪· B.

For a, b ∈ N, a ≤ b, let [a, b] := {a, a + 1, . . . , b} and [a] := [1, a]. For n ∈ N and
I ⊆ [n] let I := [n] \ I. For two bitstrings x, y we denote the concatenation of x and y
by x‖y.

We use boldface letters to denote vectors which are of dimension n ∈ N if not
specified otherwise. We let |v| denote the number of entries in v. For i ∈ [n] let
vi denote the ith entry of v. We write ‘v ∈ v’ if there exists an i such that v = vi.
For a set I = {i1, . . . , i|I|} ⊆ [n], i1 < . . . < i|I| let vI := (vi1 , . . . , vi|I|) ∈ S|I|. For
v = ((v1,1, . . . , v1,j), . . . , (vn,1, . . . , vn,j)) ∈ (Sj)n let vI,k := (vi1,k, . . . , vi|I|,k) ∈ S|I|.

We employ the Big O notation O/ Ω/ Θ for asymptotic behavior denoting upper/
lower/ upper and lower asymptotic bounds. We write f(n) = poly(n) for f(n) = O(nc)
for constant c and f(n) = const for f(n) = O(1).

Experiments Our security definitions are given in terms of experiments written in
pseudocode. We write ‘L← ∅’ to initiate L as empty, independently of L’s data type.

Within an experiment a (possibly) stateful adversary is explicitly invoked. An
experiment may contain oracle procedures. We write AO, to indicate that algorithm A
has oracle access to O. An oracle ends with a ‘Return X’, returning X to the algorithm
that called the oracle. We syntactically distinguish between an oracle Func granting
access to a functionality and the implementation of the functionality func itself.

If an algorithm A halts without any output we write () ←$ A. An experiment
terminates when a ‘Stop with X’ command is executed; X then serves as the output
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of the experiment. We write ‘Abort’ as an abbreviation for ‘Stop with 0’. For a
boolean expression B we may write ‘Return B’ and ‘Stop with B’. Then expression B
is evaluated and its truth value (encoded as a bit) is returned (resp. stopped with). We
write (a =? b) for the boolean variable that is true iff a = b. For an event E let E denote
the complementary event. For a boolean expression X let ¬X denote its negation.

We write Pr[Exp⇒ 1] for the probability of the event that experiment Exp terminates
by running into a ‘Stop with 1’ instruction. An adversary wins an experiment if it stops
with 1.

Our proofs in Part II employ sequences of experiments (see [BR06, Sho04b]). For
better comparability we usually depict multiple experiments in the same figure. Thereby,
certain instructions may only be executed in some experiments. A line ending with a
comment of the form ‘//Expi – Expj ’ (resp. ‘//Expi’) is only executed when an experiment
in Expi – Expj (resp. Expi) is run. For an instruction within an oracle O, we write ‘//Ai’
to indicate that the respective line is only executed when O was queried by Ai.

1.2 Public-Key Encryption

In this section we recall the syntax of public-key encryption as well as the confidentiality
of IND-CPA security and extend them to a setting where multiple plaintexts shall
be protected simultaneously. We continue by defining confidentiality under selective
opening attacks. To conclude, we sketch a naïve reduction with exponential loss from
IND-SP-CPA to IND-CPA security that will allow for some early insights as to what
restrictions have to be imposed to ensure an at most polynomial loss.

Definition 1.2.1 (public-key encryption scheme). A public-key encryption (PKE)
scheme for a plaintext space M consists of a public-key space PK, a secret-key
space SK, a ciphertext space C, and a triple of efficient algorithms denoted with
PKE = (PKE.Gen,PKE.Enc,PKE.Dec) of the form

PKE.Gen : →$ PK×SK PKE.Enc : PK×M→$ C PKE.Dec : SK×C →M∪· {⊥} ,

where symbol ‘⊥’ may be used to indicate errors. We assume that for all
(pk, sk) ∈ [PKE.Gen], pk contains sk. The finite randomness space of PKE.Enc is
typically denoted with R. Correctness requires that for all (pk, sk) ∈ [PKE.Gen] and
m ∈M, if c ∈ [PKE.Encpk(m)] then PKE.Decsk(c) = m. For fixed sk we say a ciphertext
c is valid if PKE.Decsk(c) 6= ⊥.

In the following, PKE will always denote a public-key encryption scheme for plaintext
spaceM if not otherwise indicated.
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We extend the application of encryption to vectors of plaintexts. For pk ∈ PK,
n ∈ N, m ∈Mn and r ∈ Rn let c = PKE.Encpk(m; r) where

PKE.Encpk(m; r) := (PKE.Encpk(m1; r1), . . . ,PKE.Encpk(mn; rn)) .

1.2.1 Standard Security Notions under Passive Attacks

Definition 1.2.2 (IND-CPA/mult-IND-CPA secure PKE). Let ε : N→ R≥0. We say
that PKE is (τ, ε)-mult-IND-CPA secure if for all τ -time adversaries A = (A1,A2) that
interact in the mult-IND-CPAb experiments as given in Figure 1.1 and for all nm-cpa ∈ N
we have∣∣∣Pr[mult-IND-CPAA0 (nm-cpa)⇒ 1]− Pr[mult-IND-CPAA1 (nm-cpa)⇒ 1]

∣∣∣ ≤ ε(nm-cpa) .

Exp mult-IND-CPAAb (nm-cpa)
01 (pk, sk)←$ PKE.Gen
02 (m0,m1, st)←$ A1(pk, nm-cpa)
03 c←$ PKE.Encpk(mb)
04 b′ ←$ A2(st, c)
05 Return b′

Figure 1.1: The mult-IND-CPAb experiments as used in Definition 1.2.2. We require A1 to
output m0, m1 such that |m0| = |m1| = nm-cpa.

For nm-cpa := 1 and ε := ε(1), PKE is (τ, ε)-IND-CPA secure if for all τ -time
adversaries that interact in the mult-IND-CPA experiment from Figure 1.1 we have∣∣∣Pr

[
mult-IND-CPAA0 (1)⇒ 1

]
− Pr

[
mult-IND-CPAA1 (1)⇒ 1

]∣∣∣ ≤ ε .
In informal discussions we say that a scheme is IND-CPA (resp. mult-IND-CPA)

secure if for all efficient adversaries and (for all n ∈ N, respectively) ε is small. We
recap a folklore result showing that IND-CPA security entails mult-IND-CPA security.

Lemma 1.2.3 Let PKE be (τcpa, εcpa)-IND-CPA secure. Then PKE is (τm-cpa, εm-cpa)-
mult-IND-CPA secure where

τm-cpa ≈ τcpa εm-cpa(n) ≤ nm-cpa · εcpa .

The proof readily follows from a hybrid argument. We refer the reader to [KL07].
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Next, we define selective opening security under passive attacks.

1.2.2 Selective Opening Security under Passive Attacks

Definition 1.2.4 (efficiently resampleable distribution). For n ∈ N, let 2[n] denote
the power set of {1, . . . , n} andM be a set. Let {Dn}n∈N be a sequence of distributions
such that for all n ∈ N, Dn is an efficiently sampleable distribution overMn. We say
{Dn}n∈N is efficiently resampleable if for all n ∈ N there exists an efficient resampling
algorithm ResampDn

: Mn × 2[n] →$ Mn, such that for all m ←$ D and I ∈ 2[n],
m′ ←$ ResampDn

(m, I), m′ is Dn-distributed conditioned on mI = m′I .

A class D of sequences of distributions is efficiently resampleable if every sequence
in D is efficiently resampleable.

For the remainder of this work {Dn}n∈N denotes a sequence of efficiently resampleable
distributions such that for all n ∈ N, Dn is a distribution over Mn if not indicated
otherwise. As n ∈ N uniquely specifies a distribution from {Dn}n∈N we may write D

whenever n is fixed. Further, we assume that an efficiently resampleable distribution
implicitly comes with an efficient resampling algorithm.

Definition 1.2.5 (IND-SO-CPA secure PKE). Let D be a subset of the class of
sequences of efficiently resampleable distributions. For a function ε : N→ R≥0 we say
that PKE is (τ, ε)-IND-SO-CPA secure with respect to D if for all τ -time adversaries
A = (A1,A2,A3) that interact in the IND-SO-CPAb experiments as given in Figure 1.2
and all n ∈ N we have∣∣∣Pr

[
IND-SO-CPAA0 (n)⇒ 1

]
− Pr

[
IND-SO-CPAA1 (n)⇒ 1

]∣∣∣ ≤ ε(n) .

If D is the class of all sequences of efficiently resampleable distributions, we say that
PKE is (τ, ε)-IND-SO-CPA secure. In informal statements we say that a PKE scheme
is IND-SO-CPA secure, if for all efficient adversaries and all n ∈ N, ε is small.

Definition 1.2.5 is in the spirit of [BHY09] but we allow for adaptive corruptions and
let the adversary choose the distribution, as was done by Böhl et al. [BHK12]. “In fact,
otherwise it is not even clear that the resulting definition implies IND-CPA security.”
[BHK12]
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Exp IND-SO-CPAAb (n)
01 I ← ∅
02 (pk, sk)←$ PKE.Gen
03 (D, st)←$ A1(pk, n)
04 m0 ←$ D
05 r←$ Rn
06 c← PKE.Encpk(m0; r)
07 st′ ←$ AOpen

2 (st, c)
08 m1 ←$ ResampD(m0, I)
09 b′ ←$ A3(st′,mb)
10 Stop with b′

Oracle Open(i)
11 I ← I ∪ {i}
12 Return (m0

i , ri)

Figure 1.2: Security experiments IND-SO-CPAb used in Definition 1.2.5. We require A1 to
output D such that D ∈ D and D is a distribution over Mn. A2 may query Open(i) for
i ∈ [n].

1.2.3 A Failing Reduction and First Insights

At first sight one might claim that a straight-forward reduction shows that mult-
IND-CPA security (and thus IND-CPA security (see Lemma 1.2.3)) already implies
IND-SO-CPA security since every party samples fresh randomness independently. Let
us try to devise a reduction that constructs a mult-IND-CPA attacker Am-cpa from an
IND-SO-CPA attacker Aso.

Attacker Am-cpa will relay pk to Aso. Then Aso outputs (in particular) a distribution
D and expects ciphertexts c. Recall that Am-cpa sends two plaintext vectors m0 and
m1 to its experiment in order to receive an encryption of either m0 or m1 as challenge.
To use Aso to its advantage, Am-cpa shall embed its own challenge in c.

To simulate the IND-SO-CPA experiment for Aso correctly, one of the vectors, say,
m0 shall consist of plaintexts sampled from D, while the other one, m1, shall consist
of resampled plaintexts, sampled after Aso made its opening queries. However, Aso
will only issue opening queries after receiving c, while Am-cpa —generally2— requires
knowledge of all opening queries in order to resample m1 correctly and hence, obtain c.

As the distribution of any plaintext in m1 may depend on all other plaintexts, the
reduction would have to guess all opening queries going to be made by Aso. Now I might
be any subset of {1, . . . , n}, for instance of size n/2 in the worst case. Hence Am-cpa’s
winning probability would be exponentially smaller than Aso’s, thus not leading to any
meaningful security implications.

2This is the very reason why a standard hybrid argument does work for independent plaintexts:
The resampling becomes sampling and Am-cpa does not have to guess opening queries.
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The main observation leading to our positive result is as follows: For certain classes
of distributions it suffices for Am-cpa to locally guess the position of only a few opening
queries in order to resample (parts of) m1 correctly. Clearly, guessing the positions of
fewer opening queries has a significantly higher probability than guessing the position
of all opening queries. Eventually, we employ a hybrid argument and will repeatedly
make use of local guessing.

1.3 Results for Graph-Induced Distributions

We continue by fixing the notation for graphs and graph-induced distributions.

1.3.1 Graphs and Distributions

Graphs A directed graph G consists of a set of vertices V identified with [n] for
n > 0 and a set of edges E ⊆ V 2 \ {(v, v) : v ∈ V }, i.e., we do not allow for loops or
multiple edges between two vertices. G is undirected if (v2, v1) ∈ E for each (v1, v2) ∈ E.
{(v1, v2), (v2, v1)} ⊆ E is called undirected edge between v1 and v2. For V ′ ⊆ V let
GV ′ := (V ′, E′) denote the induced subgraph of G where E′ := E ∩ V ′2. For G = (V,E)
we obtain its undirected version, G↔ = (V,E↔) where E↔ ⊇ E is obtained by adding
the minimum number of edges to E so that the graph becomes undirected. For V ′ ⊆ V
let N(V ′) := {v ∈ V \ V ′ : ∃v′ ∈ V ′ s.t. (v, v′) ∈ E↔} denote the (open) neighborhood
of V ′ in G. For a vertex v, we denote by P(v) = {j : (j, v) ∈ E} the set of its parents.

A path from v1 to v` in G is a list of at least two vertices (v1, . . . , v`) where vi ∈ V
for i ∈ [`] and (vi, vi+1) ∈ E for all i ∈ [` − 1]. The length of a path (v1, . . . , v`) is
`− 1. For two distinct vertices u, v the distance d(u, v) between u and v is given by the
length of a shortest path between u und v. If there is a path from u to v then u is a
predecessor of v. Let pred(v) denote the set of all predecessors of v. A cycle is a path
where v` = v1. G is acyclic if it contains no cycle.

A subset V ′ ⊆ V is connected in G if for every pair of distinct vertices (v1, v2) ∈ V ′

there exists a path from v1 to v2 in G↔. If V ′ is connected we call it connected subgraph.
G is connected if V is connected in G. Graph G is disconnected if G is not connected.
We assume G to be connected if not stated otherwise. A (set-)maximal connected set
of vertices of G is called connected component.

In the following {Gn}n∈N will denote a sequence of directed, acyclic graphs such
that for all n ∈ N, Gn is a graph on n vertices if not indicated otherwise.
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Notational convention For the sake of notational brevity, we use the same notation
for both the ith plaintext of an n-plaintext vector and vertex i in a graph on n vertices.

We now define Markov distributions, which are distributions on vectors of random
variables reflecting processes. That is to say variables with higher indices depend on
preceding variables. A distribution is Markov if it is memoryless in the sense that all
relevant information for the distribution of mi is already present in mi−1, although the
latter itself may depend on its predecessor.

Definition 1.3.1 For n ∈ N let M = (M1, . . . ,Mn) denote a vector of M-valued
random variables. We say {Dn}n∈N is Markov if the following holds for all n ∈ N and
all m ∈Mn:

Pr
M←D

[
Mj = mj

∣∣∣∣∣
j−1∧
i=1

Mi = mi

]
= Pr

M←D

[
Mi = mi

∣∣∣∣∣Mi−1 = mi−1

]
.

We note that Markov distributions can be seen as ‘induced’ by a chain graph
M1 → M2 → . . . → Mn, where for all j ∈ [n] the distributions of any Mj given its
predecessors, or solely Mj−1, respectively, are identical.

We will now generalize this to arbitrary graphs and still require (a generalization
of) ‘memorylessness’. We say that a graph G induces a distribution D if whenever the
distribution ofMj depends onMi, then there is a path from i to j in G↔. As for Markov
distributions, we require that the information about the distribution of a plaintext is
present in its parents; in particular, for all j ∈ [n] and M = (M1, . . . ,Mn) ← D the
distribution of Mj shall only depend on its parents in G, i.e., the set P(j), rather than
all its predecessors pred(j).

Definition 1.3.2 (graph-induced distribution). We say that {Dn}n∈N is {Gn}n∈N-
induced if the following holds for all n ∈ N:

• For all i, j ∈ [n], i 6= j: If for Dn the distribution of Mj depends on Mi then there
is a path from i to j in G↔n .

• For all j ∈ [n] and all m ∈Mn we have

Pr
M←D

[
Mj = mj

∣∣∣∣∣ ∧
i∈pred(j)

Mi = mi

]
= Pr

M←D

[
Mj = mj

∣∣∣∣∣ ∧
i∈P(j)

Mi = mi

]
.

We assume that for any n ∈ N one can efficiently reconstruct a graph Gn with the
above properties given Dn.
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Figure 1.3: Example graph. Vertices are given by • and ◦. Set I shall contain all vertices
marked with •. Connected components Ci, are enclosed in dashed lines.

As with a family of distributions, we say that D is G-induced whenever n is already
fixed.

Although our proof ideas can be applied to disconnected graphs directly, Sections
1.3.3 – 1.3.4 consider connected graphs for simplicity. A hybrid argument over the
connected components of a graph as given in Section 1.4 extends all our results to
disconnected graphs.

Our Approach in Terms of Graphs As a warm-up we sketch our novel approach
in terms of graphs. For fixed n let G be a graph inducing a distribution overMn. Fix
any subset I ⊆ [n] of opening queries made by some adversary.

The main observation is that removing I and all incident edges, G decomposes
into connected components C1, . . . , Cn′ . These can be resampled independently as to
resample from the distribution on Ck it suffices to know the neighborhood of Ck and D.
See Figure 1.3 for a toy example.

To argue that there is no efficient adversary Aso that distinguishes sampled and
resampled plaintexts in the selective opening experiment, we proceed in a sequence of
hybrid experiments. We start in an experiment where after receiving encryptions of
sampled plaintexts and replies to opening queries, Aso obtains sampled plaintexts. In
the kth hybrid step we use mult-IND-CPA security to replace sampled plaintexts on a
connected component Ck with resampled plaintexts without Aso noticing. To this end,
the reduction from the indistinguishability of two consecutive hybrids to mult-IND-CPA
has to identify, i.e. guess, Ck to embed its own challenge before Aso makes any opening
query.

Note that there are multiple approaches if one wishes to specify a connected com-
ponent Ck of GI in G. For instance, 1) clearly, Ck can be represented by the vertices
contained in it. 2) Secondly, one may try to identify Ck by its neighborhood in G. For
instance, if G is a chain graph and for any I ⊆ [n] it suffices to give two vertices to
characterize a connected component Ck of GI , for instance the neighborhood N(Ck)
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of Ck. Thus, in each hybrid step, a reduction would merely lose a factor of O(n2) to
(implicitly) guess Ck.

More generally, we are interested in all graph structures that allow a reduction
to identify some Ck with an at most polynomial (in n) loss in each hybrid step. We
provide definitions to formally capture the two approaches sketched above.

Definition 1.3.3 (maximum border). Let G = (V,E) be a graph. We define the
maximum border of G as the maximal size of the neighborhood of any connected
subgraph, taken over all connected subsets of V .

B(G) := max
V ′⊆V

{|N(V ′)| : GV ′ is connected} .

For example, if G is an n-path for n ≥ 3 then B(G) = 2. For the complete graph or
star graph on n vertices we have B(G) = n− 1. Clearly, B(G) < n for any graph.

Definition 1.3.4 (number of connected subgraphs). Let G = (V,E). We define the
number of connected subgraphs of G:

S(G) := |{V ′ ⊆ V : GV ′ connected}| .

For example, a chain graph on n vertices has 1
2 · n · (n+ 1) connected subsets of its

vertices while for the complete graph Cn on n vertices we have S(Cn) = 2n − 1.

Both approaches, graph sequences {Gn}n∈N where S(G) = poly(n) or where
B(G) = const, seem promising. However, a connected component might not be
uniquely specified by its neighborhood. For instance, consider a graph on n vertices,
consisting of a chordless circle of n vertices. Clearly, its maximum border is of size 2.
Removing any two non-adjacent vertices, the graph decomposes into two connected
components, whereby both of them had the same neighborhood. Hence, if a reduction
aims at identifying a connected component Ck in GI it might have to guess the ‘correct’
subgraph, too.

1.3.2 Relating the Maximum Border and Number of Connected Subgraphs

We continue with the following theorem bounding the number of connected subgraphs
in terms of the maximum border of a graph.
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Theorem 1.3.5 Let G be a connected graph. Then the following bound on S(G) holds:

S(G) ≤ 2
(B(G)− 1)! · n

B(G) for all 0 < B(G) ≤ n− 2
3 .

In particular for a sequence of graphs {Gn}n∈N, for all n ∈ N, B(Gn) = const implies
S(Gn) = poly(n).

Before proving the theorem, we give an easy lemma: If two connected subsets of the
vertices of G share the same neighborhood and are distinct, they have to be disjoint.
We will apply Lemma 1.3.6 in the proof of Theorem 1.3.5 to obtain an upper bound on
the number of connected subsets in a graph that share the same neighborhood.

Lemma 1.3.6 Let G = (V,E) and V1, V2 ⊆ V , such that V1 6= V2 each of them
connected in G, such that N(V1) = N(V2). Then V1 ∩ V2 = ∅.

Proof of Lemma 1.3.6. Assume V1 ∩ V2 6= ∅. As V1 6= V2 we have V1 \ V2 6= ∅ without
loss of generality. Because V1 is connected, there exist vertices v∩ ∈ V1 ∩ V2 and
v1 ∈ V1 \ V2 such that (v1, v∩) ∈ E↔. Since v1 /∈ V2, v∩ ∈ V2 and (v1, v∩) ∈ E↔, we
see that v1 ∈ N(V2). As N(V2) = N(V1) it follows that v1 ∈ N(V1); a contradiction
since v1 ∈ V1.

Proof of Theorem 1.3.5. Let B := B(G). We have

S(G) = |{V ′ ⊆ V : GV ′ connected}|

=
B∑
i=0
|{V ′ ⊆ V : GV ′ connected ∧ |N(V ′)| = i}| .

For i = 0 we count the connected components of G. Since G is connected it follows

S(G) = 1 +
B∑
i=1

∣∣{V ′ ⊆ V : GV ′ connected ∧ |N(V ′)| = i
}∣∣

= 1 +
B∑
i=1

∑
Vi⊆V
|Vi|=i

∣∣{V ′ ⊆ V : GV ′ connected ∧N(V ′) = Vi
}∣∣ .

Let Vi ⊆ V be non-empty and {V ′1 , . . . , V ′k} := {V ′ ⊆ V : GV ′ connected∧N(V ′) = Vi}
for appropriate k. By applying Lemma 1.3.6 to V ′1 , . . . , V ′k, we see that those sets V ′j are
pairwise disjoint. Fix any vertex vi ∈ Vi. Since N(V ′j ) = Vi for j ∈ [k] and all V ′j are
pairwise disjoint, there exists at least one vertex v′j in each V ′j such that (v′j , vi) ∈ E
for all j ∈ [k]. Thus, N(vi) ≥ k, i.e. B ≥ k. Hence, for given B and we obtain an upper
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bound for the number of possible sets V ′ for each fixed Vi. It follows

S(G) ≤ 1 +
B∑
i=1

∑
Vi⊆V
|Vi|=i

B = 1 +B ·
B∑
i=1

(
n

i

)
≤ B ·

B∑
i=0

(
n

i

)
. (1.1)

To bound the sum in (1.1) we use the geometric series and upper-bound the quotient of
two consecutive binomial coefficients by 1

2 :(
n
i

)(
n
i+1
) = i+ 1

n− i
≤ 1

2 ⇔ i ≤ n− 2
3 .

Hence

B ·
B∑
i=0

(
n

i

)
≤ B ·

B∑
i=0

1
2i

(
n

B

)
≤ B ·

(
n

B

)
·
∞∑
i=0

1
2i ≤ 2 ·B · n

B

B! = 2
(B − 1)! · n

B

for B(G) ≤ n−2
3 , which concludes the proof.

The Quality of the Bound from Theorem 1.3.5 Even though some of the
approximations in the proof of Theorem 1.3.5 appear rather rough, there are graph
sequences where the established bound is asymptotically tight. To this end, let {Gn}n∈N
be the sequence of chain graphs. We have S(Gn) = n · (n+ 1)/2 while we recall that
B(Gn) = 2 for all n and obtain an upper bound of the form S(Gn) ≤ 2 · n2 via
Theorem 1.3.5.

Further, the bound of Theorem 1.3.5 only holds for n ≥ 3B(G) + 2. However, as we
establish results for sequences of graphs {Gn}n∈N where the maximum border B(Gn) is
constant for all n, there are only finitely many elements in the sequence where the bound
does not apply. If need be, one can easily obtain a bound similarly to Theorem 1.3.5
that is weaker by a factor of roughly B(G) but holds for all B(G) < n. To this end,
one bounds the sum of binomial coefficients in (1.1) in terms of the incomplete upper
gamma function Γ to obtain

B∑
i=1

(
n

i

)
≤

B∑
i=1

ni

i! = en · Γ(B + 1, n)
B! − 1 .

Using a nice bound [NP00] on Γ we obtain a bound for B(G) < n.
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1.3.3 Main Result for Graph-Induced Distributions

We state our main results relating IND-CPA and IND-SO-CPA security for certain
distributions.

Theorem 1.3.7 Let D be the class of efficiently resampleable sequences of distributions
induced by sequences of connected graphs {Gn}n∈N.

If PKE is (τcpa, εcpa)-IND-CPA secure, then PKE is (τso, εso)-IND-SO-CPA secure
where

τso ≤ τcpa − 2 · τresamp εso(n) ≤ n · (n− 1) · S(Gn) · εcpa

where τresamp is the time of one execution of the resampling algorithm.

Note that, in particular, we have an (at most) polynomial loss in n if for all n ∈ N
we have S(Gn) = poly(n).

Proof Sketch Recall the IND-SO-CPAb experiment given in Figure 1.2. As a
challenge the experiment sends mb, where m0

I consists of plaintexts sampled at the
beginning, while m1

I is resampled (conditioned on m1
I = m0

I). We define hybrid
experiments H0,H1, . . . ,Hn. For this, let S ⊆ 2V denote the set of all connected subsets
of vertices of G. We have |S| = S(G).

Note that the vertices in GI consist of connected vertex sets C1, . . . , Cn′ ⊆ S for
some n′ ≤ n− 1. (This upper bound is attained by the star graph when I consists of
the internal vertex.) We assume those components to be ordered, e.g., by the smallest
vertex contained in each.

Thus, if b = 1 the IND-SO-CPA experiment can resample m1
I in n′ batches

m1
C1
, . . . ,m1

Cn′
(as I =

⋃n′
i=1 Ci). Moreover, each batch m1

Ci
can be resampled inde-

pendently, i.e., as a function of m0
I and D, but not m1

Cj
, j 6= i.

Proof of Theorem 1.3.7. Let Aso = (Aso,1,Aso,2,Aso,3) be an adversary that breaks the
(τso, εso)-IND-SO-CPA security of PKE for some n ∈ N. We define hybrid experiments
Hk as a modification of the IND-SO-CPAb experiment, in which the plaintexts of the
first k batches C1, . . . , Ck are resampled while the remaining batches stay sampled
(Figure 1.4).

To this end line 09 is added and Aso,3 is invoked on a partially sampled, partially
resampled hybrid vector in line 10. Besides, the experiment remains as in Definition 1.2.5.

Clearly, H0 is the (real) IND-SO-CPA0 experiment and Hn′ for some n′ ≤ n− 1 is
the (random) experiment IND-SO-CPA1. Note that for j, k ∈ [n′, n] hybrids Hj and Hk
are identical. We have
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Exp HAsok (n)
01 I ← ∅
02 (pk, sk)←$ PKE.Gen
03 (D, st1)←$ Aso,1(pk, n)
04 m0 ←$ D
05 r←$ Rn
06 c← PKE.Encpk(m0; r)
07 st2 ←$ AOpen

so,2 (st1, c)
08 m1 ←$ ResampD(m0, I)

09 mi ←

{
m1
i for i ∈

⋃k
j=1 Cj

m0
i else

10 b′ ←$ Aso,3(st2,m)
11 Stop with b′

Oracle Open(i)
12 I ← I ∪ {i}
13 Return (m0

i , ri)

Figure 1.4: Hybrid experiments Hk(n) used in the proof of Theorem 1.3.7. Line 09 was added
to assemble the hybrid challenge vector given to A3 in line 10. Ci denotes the ith component
in GI .

∣∣∣Pr
[
IND-SO-CPAAso0 (n)⇒ 1

]
− Pr

[
IND-SO-CPAAso1 (n)⇒ 1

]∣∣∣
=
∣∣∣Pr
[
HAso0 (n)⇒ 1

]
− Pr

[
HAson′ (n)⇒ 1

]∣∣∣
≤
n′−1∑
k=0

∣∣∣Pr
[
HAsok (n)⇒ 1

]
− Pr

[
HAsok+1(n)⇒ 1

]∣∣∣ .
We now upper-bound the distance between two consecutive hybrids with the following

lemma.

Lemma 1.3.8 There exists Am-cpa = (Am-cpa,1,Am-cpa,2) and nm-cpa ∈ N such that
Am-cpa breaks the (τm-cpa, εm-cpa)-mult-IND-CPA security for nm-cpa of PKE where

τm-cpa ≈ τso+2·τresamp , εm-cpa ≥
1

S(Gn) ·
∣∣∣Pr
[
HAsok (n)⇒ 1

]
− Pr

[
HAsok+1(n)⇒ 1

]∣∣∣ ,
and τresamp is the time of one execution of the resampling algorithm.

Proof of Lemma 1.3.8. We construct adversary Am-cpa as follows (see Figure 1.5). The
value of nm-cpa ∈ N follows from the proof.
Am-cpa,1 sends (pk, n) to Aso and picks C∗k+1 ←$ S uniformly at random (trying

to guess Ck+1) after receiving (D,ResampD) (lines 01, 02). Am-cpa,1 samples m0 ← D

and resamples m1 conditioned on the neighborhood of C∗k+1 (lines 03, 04). It submits
(m0

C∗
k+1

,m1
C∗
k+1

) to its mult-IND-CPA challenger and terminates in line 05. Then
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Adversary Am-cpa,1(pk, nm-cpa)
01 (D)←$ Aso,1(pk, n)
02 C∗k+1 ←$ S
03 m0 ←$ D
04 m1 ← ResampD(m0, N(C∗k+1))
05 Output (m0

C∗
k+1

,m1
C∗
k+1

)

Adversary Am-cpa,2(cC∗
k+1

)
06 r←$ Rn
07 For i← 1 to n:

08 ci ←

{
ci for i ∈ C∗k+1
PKE.Encpk(m0

i ; ri) else
09 c← (c1, . . . , cn)
10 I ← ∅
11 ()←$ AOpen

so,2 (c)
12 If C∗k+1 6= Ck+1: Abort
13 m̃1 ←$ ResampD(m0, I)

14 mi ←

{
m̃1
i for i ∈

⋃k
j=1 Cj

m0
i else

15 m← (m1, . . . ,mn)
16 b′ ←$ Aso,3(m)
17 Output b′

Oracle Open(i)
18 If i ∈ C∗k+1: Abort
19 I ← I ∪ {i}
20 Return (m0

i , ri)

Figure 1.5: Pseudocode of adversary Am-cpa = (Am-cpa,1,Am-cpa,2). Am-cpa interpolates
between hybrids Hk, Hk+1 for Aso. For clarity we abstain from making the states output by
and returned to Aso and Am-cpa explicit.

Am-cpa,2 is started on ciphertexts for positions in C∗k+1, picks fresh randomness and
encrypts each plaintext in C∗k+1 (lines 06 – 08). Then it starts Aso,2 on (c1, . . . , cn),
embedding its challenge at positions C∗k+1 (see line 08 again) and answers opening
queries honestly if they do not occur on C∗k+1. If Aso,2 issues such a query, Am-cpa,2

cannot answer and aborts (line 18). Once Aso,2 terminates, Am-cpa,2 verifies that it
guessed Ck+1 correctly and aborts if it failed to do so (line 12).
Am-cpa,2 resamples plaintexts m̃1 conditioned on all plaintexts from opened cipher-

texts (see line 13). These are then sent in the first k batches while plaintexts from m0

are sent in every other position (see lines 14, 15). Am-cpa,2 relays Aso,3’s output to its
mult-IND-CPA challenger (line 16).

As Am-cpa submits vectors of length |C∗k+1| to its mult-IND-CPA experiment, we
choose nm-cpa := |C∗k+1|.

41



Analysis In the following we write m ≡ m′ if m and m′, interpreted as random
variables, are identically distributed where the probability is taken over all choices in
the computation of m and m′.

Assume, Am-cpa guessed correctly, i.e. C∗k+1 = Ck+1, then Am-cpa perfectly simulates
hybrids Hk and Hk+1 for plaintexts and ciphertexts at positions in Ck+1. Further, run
in mult-IND-CPA0, Am-cpa obtains PKE.Encpk(m0

Ck+1
). Hence, Aso receives encryptions

of sampled plaintexts. As for Aso’s challenge, the (k + 1)th batch contains sampled
plaintexts m0

Ck+1
, thus Bmult perfectly simulates hybrid Hk.

When Am-cpa is run in the mult-IND-CPA1 experiment, Aso obtains encryptions of
resampled plaintexts PKE.Encpk(m1

Ck+1
) while it expects encrypted sampled plaintexts:

PKE.Encpk(m0
Ck+1

). As a challenge Aso expects resampled plaintexts m̃1
Ck+1

but obtains
sampled m0

Ck+1
. Thus, the sampled and resampled plaintexts change roles on positions

Ck+1. However, they are equally distributed, i.e., m0
Ck+1

≡m1
Ck+1

since N(Ck+1) was
fixed when resampling m1 and the distribution of Ck+1 depends on D and plaintexts in
positions N(Ck+1) only. Likewise, m1

Ck+1
≡ m̃1

Ck+1
for m1 ← ResampD(m0, N(Ck+1))

and m̃1 ← ResampD(m0, I) since the distribution of plaintexts in Ck+1 solely depends
on D and plaintexts in N(Ck+1) ⊆ I.3 Thus, Aso’s view is identical to its view in
hybrid Hk+1. Let Abort denote the event that Am-cpa aborts during its execution. We
have

Pr
[
mult-IND-CPAAm-cpa

0 ⇒ 1
]

= Pr
[
HAsok ⇒ 1 ∧Abort

]
and Pr

[
mult-IND-CPAAm-cpa

1 ⇒ 1
]

= Pr
[
HAsok+1 ⇒ 1 ∧Abort

]
.

Observe that Abort does not happen iff Am-cpa guessed Ck+1 correctly. Since Abort

is independent of Aso’s output in a hybrid and |S| = S(G), we have

εm-cpa ≥
1

S(Gn) ·
∣∣∣Pr
[
HAsok (n)⇒ 1

]
− Pr

[
HAsok+1(n)⇒ 1

]∣∣∣ .
One easily verifies that Am-cpa’s running time is essentially the running time of Aso
except for two invocations of Resamp performed by Am-cpa.

We proceed with the proof of Theorem 1.3.7. Using Lemma 1.3.8 we have

3Note that further Ck+1 ∩ I = ∅ as we assumed that Am-cpa guessed Ck+1 correctly.
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εso(n) =
∣∣∣Pr
[
HAso0 (n)⇒ 1

]
− Pr

[
HAson′ (n)⇒ 1

]∣∣∣
≤
n′−1∑
k=0

∣∣∣Pr
[
HAsok (n)⇒ 1

]
− Pr

[
HAsok+1(n)⇒ 1

]∣∣∣
≤
n′−1∑
k=0

S(Gn) · εm-cpa .

Now observe that Am-cpa sends vectors of length |C∗k+1| = nm-cpa to its mult-IND-
CPA challenger. Eventually, we reduce the mult-IND-CPA security of PKE to its
IND-CPA security (see Lemma 1.2.3).

n′−1∑
k=0

S(Gn) · εm-cpa
(L. 1.2.3)
≤

n′−1∑
k=0

S(Gn) · nm-cpa · εcpa
nm-cpa≤n
≤ n · (n− 1) · S(Gn) · εcpa

for an (τcpa, εcpa)-IND-CPA attacker which completes the proof of Theorem 1.3.7.

Markov Distributions. Markov distributions (Definition 1.3.1) are induced by the
chain graph (V = [n], E = {(i, i+ 1) : i ∈ [n− 1]}), for which S(G) = 1

2 · n · (n+ 1).

Corollary 1.3.9 If PKE is (τcpa, εcpa)-IND-CPA secure, then PKE is (τso, εso)-IND-
SO-CPA secure w.r.t efficiently resampleable Markov distributions where

τso ≤ τcpa − 2 · τresamp , εso(n) ≤ 1
2 · n

2 · (n− 1)2 · εcpa

and τresamp is the time of one execution of the resampling algorithm.

The proof follows from Theorem 1.3.7.

Theorems 1.3.7 and 1.3.5 together now yield the following corollary.

Corollary 1.3.10 Let D be the class of efficiently resampleable sequences of distribu-
tions induced by sequences of connected graphs {Gn}n∈N.

If PKE is (τcpa, εcpa)-IND-CPA secure, then PKE is (τso, εso)-IND-SO-CPA secure
where

τso ≤ τcpa − 2 · τresamp , εso(n) ≤ 2 · (n− 1)
(B(Gn)− 1)! · n

B(Gn)+1 · εcpa

where τresamp is the time of one execution of the resampling algorithm.
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In particular, we obtain obtain an (at most) polynomial loss in n if {Gn}n∈N is such
that B(Gn) = const for all n ∈ N.

To sum up, we showed that IND-CPA security implies IND-SO-CPA security for
efficiently resampleable and {Gn}n∈N-induced distributions where B(Gn) = const or
S(Gn) = poly(n). However, Corollary 1.3.10 cannot cover a larger class of graphs
than Theorem 1.3.7, as B(Gn) = const implies S(Gn) = poly(n) (see Theorem 1.3.5).
Actually, it is easy to see that Theorem 1.3.7 ensures a polynomial (in n) reduction for a
strictly larger class of graph-induced distributions than Corollary 1.3.10. To this end, let
{Gn}n∈N be the sequence of graphs obtained by attaching a star graph on logn vertices
to a chain of n− logn vertices. Then S(G) = poly(n) while B(G) = logn > const.

Recall the hybrid structure of our proofs. We had (roughly) n hybrid steps as
G might decompose into roughly n connected components by removing the vertices
corresponding to opened indices. On the other hand, when covering a hybrid step, in
the worst case, a connected component could contain (roughly n) vertices. Clearly,
these two worst cases are mutually exclusive but our given hybrid approach was too
rigid to exploit that. In the next section we devise a tighter reduction.

1.3.4 A Tighter Reduction for Directed Graphs

Directed Graphs We slightly refine our definition of directed graphs. In this section
we say a graph G = (V,E) is directed, if it does not contain an undirected edge. That
is, for all (u, v) ∈ V 2 we have {(u, v), (v, u)} ∩ E ≤ 1. We refer to an directed, acyclic
graph as DAG. For a DAG G we require that the vertices are ordered in such a way
that there is no directed path from i to j for i < j. Such an ordering always exists as
G has neither cycles nor undirected edges.

In our proofs we always traverse dependencies backwards. For instance, the distri-
bution of mi solely depends on mj then mi is switched from sampled to resampled
before mj is replaced. As in the previous proofs, we perform n hybrid steps. Thereby,
m1, . . . ,mi will be resampled in the ith hybrid.

Theorem 1.3.11 Let D be the class of efficiently resampleable sequences of distribu-
tions induced by sequences of connected DAGs {Gn}n∈N.

If PKE is (τcpa, εcpa)-IND-CPA secure, then PKE is (τso, εso)-IND-SO-CPA secure
where

τso ≤ τcpa − 3 · τresamp , εso(n) ≤ 3 · nB(Gn)+1 · εcpa

where τresamp is the time of one execution of the resampling algorithm.
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Observe that Theorem 1.3.11 gives a reduction to mult-IND-CPA security tighter
by a factor of roughly n compared to Corollary 1.3.10.

Exp HAsok (n)
01 I ← ∅
02 (pk, sk)←$ PKE.Gen
03 (D, st1)←$ Aso,1(pk, n)
04 m0 ←$ D
05 r←$ Rn
06 c← PKE.Encpk(m0; r)
07 st2 ←$ AOpen

so,2 (st1, c)
08 m← ResampD(m0, [k + 1, n] ∪ I)
09 b′ ←$ Aso,3(st2,m)
10 Stop with b′

Oracle Open(i)
11 I ← I ∪ {i}
12 Return (m0

i , ri)

Figure 1.6: Hybrid experiments Hk(n) used in the proof of Theorem 1.3.11. The experiment
only differs from the IND-SO-CPA experiment (see Figure 1.2) by lines 08 (sampling a hybrid
challenge vector) and 09 where Aso is invoked on it.

Proof of Theorem 1.3.11. Let Aso = (Aso,1,Aso,2,Aso,3) be an adversary that breaks
the (τso, εso)-IND-SO-CPA security of PKE for some n ∈ N. We proceed in a sequence
of hybrid experiments H0,H1, . . . ,Hn as given in Figure 1.6. We switch mk+1 from
sampled to resampled in the hybrid transition Hk to Hk+1. Hybrid Hk returns the
sampled plaintexts for all positions [k + 1, n] ∪ I, but resampled plaintexts on all
positions [k] \ I where the resampling is conditioned on every plaintext in [k + 1, n] ∪ I.

Hybrid H0 is identical to IND-SO-CPA0 experiment and Hn is identical to the
IND-SO-CPA1 experiment. Thus

∣∣∣Pr
[
IND-SO-CPAAso0 (n)⇒ 1

]
−
∣∣∣Pr
[
IND-SO-CPAAso1 (n)⇒ 1

]∣∣∣
=
∣∣∣Pr
[
HAso0 (n)⇒ 1

]
− Pr

[
HAson (n)⇒ 1

]∣∣∣
≤
n−1∑
k=0

∣∣∣Pr
[
HAsok (n)⇒ 1

]
− Pr

[
HAsok+1(n)⇒ 1

]∣∣∣ . (1.2)

We proceed with Lemma 1.3.12 to bound the distance between two consecutive
hybrids Hk and Hk+1.

45



Lemma 1.3.12 There exists Am-cpa = (Am-cpa,1,Am-cpa,2) and nm-cpa ∈ N such that
Am-cpa breaks the (τm-cpa, εm-cpa)-mult-IND-CPA security of PKE for nm-cpa where
τm-cpa ≈ τso + 3 · τresamp and

εm-cpa ≥ Pr
[
Abortk

]
·
∣∣∣Pr
[
HAsok (n)⇒ 1

]
− Pr

[
HAsok+1(n)⇒ 1

]∣∣∣ ,
where

Pr
[
Abortk

]−1 ≤


∑B(Gn)−1
i=0

(
k
i

)
for k < n− 1∑B(Gn)

i=0
(
k
i

)
for k = n− 1

and τresamp is the time of one execution of the resampling algorithm.

left middle rightk+1

Figure 1.7: Structure of G. Edges between particular sets cannot exist if there is no arrow
depicted. If right 6= ∅, there is at least one edge from right to middle since G is connected. left
and middle are disconnected in GI .

Proof Sketch We construct a mult-IND-CPA adversary Am-cpa that interpolates
between hybrids Hk and Hk+1. Ideally, Am-cpa embeds its own challenge exactly at
position k + 1. However, it might have to resample some already resampled plaintexts
in m[k] to avoid inconsistencies as we see shortly.

We introduce some notation for the proof: Let middle denote the connected compo-
nent in G[k+1]\I that contains mk+1. Let right := [k+ 2, n], and left := (middle ∪ right)
(Figure 1.7).

Plaintexts in right are not resampled in hybrids Hk or Hk+1. Further, middle and
left are disconnected in GI . Hence, Am-cpa merely has to guess the neighborhood of
middle in order to correctly resample middle in advance.

Recall that (in particular) plaintexts in left have to be resampled as specified by the
hybrid experiment. However, since middle and left are disconnected in GI , Am-cpa can
wait for all opening queries to happen before resampling the left plaintexts.

Finally, observe that G is connected, i.e., N(middle) contains at least one vertex
from right = [k + 2, n] as long as k < n− 1.

Since right is fixed while resampling anyway, it suffices to guess N(middle) ∩ [k]
whereby for all k < n− 1 we have |N(middle) ∩ [k]| ≤ B(G)− 1.

Proof of Lemma 1.3.12. For k ∈ [0, n] and i ∈ [n] let Openk(i) denote the event that
Aso queries Open(i) in hybrid Hk. Note that the view of Aso is identical until it receives
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Adversary Am-cpa,1(pk, nm-cpa)
01 D←$ Aso,1(pk, n)

02 N∗ ←$

{
{V ′ ⊆ [k] : |V ′| ∈ [0, B(G)− 1]} for k < n− 1
{V ′ ⊆ [k] : |V ′| ∈ [0, B(G)]} else

03
// Let middle∗ denote the connected component
// in G[k+1]\N∗ that contains vertex k + 1.

04 m0 ←$ D
05 m1,0 ← ResampD(m0, N∗ ∪ {k + 1} ∪ right)
06 m1,1 ← ResampD(m0, N∗ ∪ right)
07 Output (m1,0

middle∗ ,m
1,1
middle∗)

Adversary Am-cpa,2(cmiddle∗)
08 r←$ Rn

09 ci ←

{
ci for i ∈ middle∗

PKE.Encpk(m0
i ; ri) else

10 c← (c1, . . . , cn)
11 I ← ∅
12 ()←$ AOpen

so,2 (c)
13 If N∗ 6⊆ I: Abort
14 m1 ←$ ResampD(m0, I ∪ right)

15 mi ←

{
m1
i for i ∈ left

m0
i else

16 m← (m1, . . . ,mn)
17 b′ ←$ Aso,3(m)
18 Output b′

Oracle Open(i)
19 If i ∈ middle∗: Abort
20 I ← I ∪ {i}
21 Return (mi, ri)

Figure 1.8: Pseudocode of adversary Am-cpa = (Am-cpa,1,Am-cpa,2). Am-cpa interpolates
between hybrids Hk, Hk+1 for Aso. For clarity we abstain from making the states output by
and returned to Aso and Am-cpa explicit.

its challenge, hence Pr[Opens(i)] = Pr[Opent(i)] for all s, t ∈ [0, n] and all i ∈ [n].
Additionally, two consecutive hybrids Hk, Hk+1 only differ on mk+1 unless Aso calls
Open(k + 1), i.e. enforcing mk+1 to remain sampled. Thus, we have

Pr
[
HAsok ⇒ 1 ∧Openk(k + 1)

]
= Pr

[
HAsok+1 ⇒ 1 ∧Openk+1(k + 1)

]
and obtain

∣∣∣Pr
[
HAsok (n)⇒ 1

]
− Pr

[
HAsok+1(n)⇒ 1

]∣∣∣
=
∣∣∣Pr
[
HAsok ⇒ 1 ∧Openk(k + 1)

]
− Pr

[
HAsok+1 ⇒ 1 ∧Openk+1(k + 1)

]∣∣∣ . (1.3)
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m1,1

middle •
m1,1
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•

•
m0
k+1

m1,0
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•
m0
k+1

•
m0
k

m0
right

sampled (A’s view)

resampled (A’s view)

. . .

Figure 1.9: Structure of plaintexts sampled during the reduction by Am-cpa interpolating
between hybrids Hk and Hk+1. We assume that Am-cpa guessed N∗ correctly. Plaintexts above
(resp. below) the horizontal dashed line appear sampled (resp. resampled) from Aso’s view. If
Am-cpa challenge contains ciphertexts PKE.Encpk(m1,1

middle) (that is, middle is entirely resampled),
then from Aso’s view all (actually sampled) plaintexts m0

middle appear resampled. The relevant
structures are indicated by solid and dotted lines. If Am-cpa receives PKE.Encpk(m1,0

middle) (middle
plaintexts resampled except for mk+1), then from Aso’s view all (actually sampled) plaintexts
m0

middle appear resampled except for mk+1. The relevant structures are indicated by solid and
dashed lines.

We construct mult-IND-CPA adversary Am-cpa. Its pseudocode is given in Fig-
ure 1.8. Again, the choice of nm-cpa follows from the proof. It relays (pk, n) to Aso.
Receiving D, Am-cpa,1 guesses middle via its neighborhood N∗ (lines 02, 03). We let
middle∗ denote Am-cpa’s guess for component middle. Adversary Am-cpa,1 then pro-
ceeds by sampling m0 (line 04) and resamples m1,0 (resp. m1,1) fixing plaintexts in
N∗ ∪{k+ 1}∪ right (resp. N∗ ∪ right) to obtain its plaintext vectors (m1,0

middle∗ ,m
1,1
middle∗)

sent to the mult-IND-CPA experiment (lines 05-07).
Am-cpa,2 is started on cmiddle∗ , samples fresh randomness and encrypt plaintexts in

middle∗ on its own while embedding its challenge in the middle∗ positions (lines 08, 09).
Then Aso,2 is invoked on c and opening queries are answered honestly unless they occur
on middle∗ where Am-cpa,2 aborts as it guessed middle incorrectly (lines 19 and 21).4

Once Aso,2 terminates, Am-cpa,2 checks if N∗ ⊆ I in line 13, if not Am-cpa’s guess for
middle was wrong and it aborts. Otherwise, Am-cpa,2 resamples plaintexts fixing those
at positions I ∪ right to obtain correctly distributed resampled plaintexts for positions
left (line 14). Eventually, Aso,3 is run on (m1

left,m0
left) (see lines 15-17) and Am-cpa,2

outputs Aso,3’s output (line 18).

Analysis Assume that Am-cpa guessed correctly, i.e. N∗ is the neighborhood of
middle in G[k]. Then middle∗ = middle holds and by definition of middle, Am-cpa will
not abort.

Clearly, Am-cpa correctly simulates Aso’s hybrid view in all left and right positions.
Note that Aso,2 obtains encryptions of resampled encryptions PKE.Encpk(m1,b

middle)
(line 12), but expects sampled encryptions PKE.Encpk(m0

middle). Further, Aso,3 is run on
4Note that we condition our analysis on Aso,2 not issuing Open(k + 1). See Equation (1.3).
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sampled m0
middle expecting resampled mmiddle (line 17). Thus, sampled middle plaintexts

become resampled middle plaintexts from Aso’s view and vice versa.

However, we have mmiddle ≡m0
middle since N(middle) ⊆ I ∪ right, where I ∪ right is

fixed when resampling mmiddle.

For the next arguments the reader may find Figure 1.9 helpful. For Am-cpa run in
experiment mult-IND-CPA1, Aso,2 receives PKE.Encpk(m1,1

middle) where m1,1
middle ≡m0

middle

since N∗∪right = N∪right is fixed when m1,1 is resampled. Hence, all middle plaintexts
sent to Aso,3 appear resampled to it and Aso’s view is identical to hybrid Hk+1.

When Am-cpa is run in the mult-IND-CPA0 experiment, it calls Aso,2 on
PKE.Encpk(m1,0

middle). Thereby m1,0
middle ≡ m1

middle for the same reason as before. In
particular, we have m0

k+1 = m1,0
k+1 since m0

k+1 is fixed while resampling (see line 05).
Consequently, each plaintext in middle except the (k + 1)th appears resampled to Aso,3
and its view is identical to hybrid Hk. Let Abortk denote the event that Am-cpa aborts
its execution because it guessed N∗ incorrectly (see line 02 in Figure 1.8). Clearly,
Am-cpa outputs 1 in its mult-IND-CPA experiment iff Aso outputs 1 in its respective
hybrid and Am-cpa does not abort:

Pr
[
mult-IND-CPAAm-cpa

0 ⇒ 1
]

= Pr
[
HAsok ⇒ 1 ∧Abortk ∧Openk(k + 1)

]
and Pr

[
mult-IND-CPAAm-cpa

1 ⇒ 1
]

= Pr
[
HAsok+1 ⇒ 1 ∧Abortk ∧Openk+1(k + 1)

]
.

We conclude:

εm-cpa =
∣∣∣Pr
[
mult-IND-CPAAm-cpa

0 ⇒ 1
]
− Pr

[
mult-IND-CPAAm-cpa

1 ⇒ 1
]∣∣∣

=
∣∣∣Pr
[
HAsok ⇒ 1 ∧Abortk ∧Openk(k + 1)

]
− Pr

[
HAsok+1 ⇒ 1 ∧Abortk ∧Openk+1(k + 1)

]∣∣∣ .
Since Abortk is independent of

(
HAsoi ⇒ 1 ∧Openi(k + 1)

)
for i ∈ {k, k+ 1} we have

= Pr
[
Abortk

]
·
∣∣∣Pr
[
HAsok ⇒ 1 ∧Openk(k+1)

]
− Pr

[
HAsok+1 ⇒ 1 ∧Openk+1(k+1)

]∣∣∣
= Pr

[
Abortk

]
·
∣∣∣Pr
[
HAsok (n)⇒ 1

]
− Pr

[
HAsok+1(n)⇒ 1

]∣∣∣ .
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Where we applied (1.3) in the last step. Hence, overall:

εm-cpa = Pr
[
Abortk

]
·
∣∣∣Pr
[
HAsok (n)⇒ 1

]
− Pr

[
HAsok+1(n)⇒ 1

]∣∣∣ .
To conclude the proof of Lemma 1.3.12 we observe that Am-cpa picks N∗ uniformly

from a set of size
∑B(Gn)−1
i=0

(
k
i

)
for k < n − 1, and of size

∑B(Gn)
i=0

(
k
i

)
for k = n − 1.

Hence,

Pr
[
Abortk

]−1 ≤


∑B(Gn)−1
i=0

(
k
i

)
for k < n− 1∑B(Gn)

i=0
(
k
i

)
for k = n− 1 .

As Am-cpa submits vectors of length |middle∗|, we let nm-cpa := |middle∗|.
One easily verifies the running time of Am-cpa to be roughly τso + 3 · τresamp.

The remaining proof of Theorem 1.3.11 consists of tedious computations. From
Equation (1.2) and Lemma 1.3.12 we have

∣∣∣Pr
[
IND-SO-CPAAso0 (n)⇒ 1

]
− Pr

[
IND-SO-CPAAso1 (n)⇒ 1

]∣∣∣
≤
n−1∑
k=0

Pr[Abortk]−1 · εm-cpa .

Let B := B(Gn). Since nm-cpa ≤ k + 1 and by Lemma 1.2.3 we have

n−1∑
k=0

Pr
[
Abortk

]−1 · εm-cpa ≤

(
n−2∑
k=0

(k + 1) ·
B−1∑
i=0

(
k

i

)
+ n ·

B∑
i=0

(
n− 1
i

))
· εcpa (1.4)

for a (τcpa, εcpa)-IND-CPA adversary with running time τcpa ≈ τm-cpa. (For now) let
2 ≤ B < n. We evaluate the factor of εcpa in Equation (1.4).

n−2∑
k=0

(k + 1) ·
B−1∑
i=0

(
k

i

)
+ n ·

B∑
i=0

(
n− 1
i

)

=
B−1∑
i=0

(
0
i

)
+ 2 ·

B−1∑
i=0

(
1
i

)
+
n−2∑
k=2

(k + 1) ·
B−1∑
i=0

(
k

i

)
+ n ·

B∑
i=0

(
n− 1
i

)

≤ 5 +
n−2∑
k=2

(k + 1) ·
B−1∑
i=0

ki + n ·
B∑
i=0

(
n− 1
i

)

= 5 +
n−2∑
k=2

(k + 1) · k
B − 1
k − 1 + n ·

B∑
i=0

(
n− 1
i

)
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= 5 +
n−2∑
k=2

k + 1
k − 1︸ ︷︷ ︸
≤3

·(kB − 1) + n ·
B∑
i=0

(
n− 1
i

)

≤ 5 + 3 ·
n−2∑
k=2

(kB − 1) + n ·
B∑
i=0

(
n− 1
i

)

= 5 + 3 ·
n−2∑
k=2

kB − 3 · (n− 3) + n ·
B∑
i=0

(
n− 1
i

)

= 14− 3n+ 3 ·
n−2∑
k=2

kB + n ·
B∑
i=0

(
n− 1
i

)

= 11− 3n+ 3 ·
n−2∑
k=0

kB + n ·
B∑
i=0

(
n− 1
i

)
since B ≥ 1

≤ 11− 3n+ 3 ·
n−2∑
k=0

kB + n ·
B∑
i=0

ni

= 11− 3n+ 3 ·
n−2∑
k=0

kB + n · n
B+1 − 1
n− 1

= 11− 3n+ 3 ·
n−2∑
k=0

kB + n

n− 1︸ ︷︷ ︸
≤2

·(nB+1 − 1) since n ≥ 2

≤ 9− 3n+ 3 ·
n−2∑
k=0

kB + 2 · nB+1

≤ 9− 3n+ 3 ·
n∫

0

kBdk + 2 · nB+1

= 9− 3n+ 3 · n
B+1

B + 1 + 2 · nB+1

= 9− 3n+
(

2 + 3
B + 1

)
· nB+1

≤ 9− 3n+ 3 · nB+1 since B ≥ 2

≤ 3 · nB+1 since n ≥ 3 .

Since G is connected we have B = 0⇔ n = 1 and B = 1⇔ n = 2. Thus, it is easily
verified that the bound holds for (B,n) ∈ {(0, 1), (1, 2)} as well to complete the proof
of Theorem 1.3.11.

Because Markov distributions are DAG-induced by chain graphs and the maximum
border of a chain graph is 2 (see Definition 1.3.3), we immediately obtain a tighter
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version of Corollary 1.3.9 whose proof directly follows from Theorem 1.3.11.

Corollary 1.3.13 If PKE is (τcpa, εcpa)-IND-CPA secure, then PKE is (τso, εso)-IND-
SO-CPA secure w.r.t efficiently resampleable Markov distributions where

τso ≤ τcpa − 3 · τresamp , εso(n) ≤ 3 · n3 · εcpa

and τresamp is the time of one execution of the resampling algorithm.

Further Incremental Improvements Recall that the hybrids in the proof of The-
orem 1.3.11 allowed for a reduction tighter by a factor of n as it suffices to guess a
set of size at most B(G) − 1 instead of B(G) for k < n − 1 as at least one vertex of
the neighborhood of middle is contained in right, thus, fixed during resampling anyway.
One may apply the novel hybrid structure introduced in the proof of Theorem 1.3.11 to
improve the results of Theorem 1.3.7. Thereby, it suffices to guess a connected subgraph
Ck+1 in [k + 1] (instead of [n] as done in the proof of Theorem 1.3.7) containing vertex
k + 1.

Now, recall that the set {k+ 1} ∪ right = [k+ 1, n] ⊂ V of size |[k+ 1, n]| = n− k is
connected in G as G is connected.

The following observation shows that there are at least n− k subsets of [k + 1, n]
that contain k + 1 and are connected in G: Take vertices [k + 1, n] and remove edges
until a tree remains. Now, keeping k + 1 but iteratively removing other vertices with
degree one, results in a still connected subset of [k + 1, n] containing k + 1.

Hence, each subset Si such that k + 1 ∈ Si ⊆ [k + 1] that is connected in G can
be extended to at least n− k different sets S1

i , . . . S
n−k
i ⊆ [n] that are connected in G.

Thus, if G has S(G) connected subgraphs, then for any k ∈ [n] graph G[k+1] has no
more than S(G)/(n− k) connected subgraphs. Now, guessing a connected subgraph
from [k + 1] instead of [n] increases the probability of guessing Ck+1 correctly from at
least 1/S(G) to at least (n− k)/S(G).

Tedious but simple computations show that, eventually, the loss of O(n2) · S(G)
(see Theorem 1.3.7) can be reduced to O(n logn) · S(G).

1.3.5 The Structure of Graphs with Low Connectivity Properties

In this section we devote some time to understanding the structure of graphs for
which Theorem 1.3.7 and Corollary 1.3.10 ensure an at most polynomial loss (in n).
Proposition 1.3.18 and parts of Proposition 1.3.21 were obtained when discussing the
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structure of B-good graphs with Jorge Villar [Vil15, HV17]. To ease our way of speaking
we introduce some notation.

Definition 1.3.14 (good graph sequences). Let {Gn}n∈N be a sequence of connected
graphs such that for all n ∈ N graph Gn has n vertices. We say that {Gn}n∈N is B-good
iff B(Gn) = const for all n ∈ N. We say {Gn}n∈N is S-good iff S(Gn) = poly(n) for
all n ∈ N. We say {Gn}n∈N is good iff {Gn}n∈N is B-good or S-good. A member of a
family of B- good (resp. S-good, good) graphs is called B-good (resp. S-good, good).

Thus, we address the following question in this section:

What do sequences of good graphs look like?

Given Theorem 1.3.5 and the observation at the end of Section 1.3.2 we recall that
any B-good family is S-good, while the converse is generally false.

Clearly, families of chain graphs are good. The same applies to slight variations
of chain graphs obtained by iteratively adding a constant number of vertices v to the
graph such that deg(v) = 1. Further, graphs constructed by taking a chain graph and
attaching5 a constant number of chains to it preserves goodness.

However, playing around with these toy examples we are seemingly stuck with
versions of chain graphs, i.e., quite ‘stretched’ graphs if we want to ensure goodness.
So, are good families of graphs inherently ‘slender’?

At first, one might be tempted trying to characterize the structure of good graphs
through sparsity, as all good graphs discovered so far happen to have few edges. However,
this approach is doomed to fail: Consider the sequences of star graphs and the sequence
of chain graphs on n vertices. Members of both sequences have as few edges as possible
such that they are connected. Though, each star graph is not good while each chain
graph is B- and S-good.

Before turning towards defining what it is supposed to mean for a graph to be
‘slender’, we can readily derive a necessary condition for a graph to be B-good (resp.
S-good).

Definition 1.3.15 (branching paths). Let G = (V,E) be a graph and p be a path in
G. We say that p branches N(p) times.

Recall that N(p) denotes the (open) neighborhood of p (see Section 1.3.1).

Proposition 1.3.16 Any path in a graph G branches at most min{B(G), log2 S(G)}
times.

5Here attach is to be understood as taking one of the two degree-one vertices of the new chain that
is to be added and place an edge between it and any vertex in the graph constructed so far.
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Proof. Let p = (p1, . . . , p`) be a path in G that branches k times, i.e. N(p) = k. Let
{p} := {p1, . . . , p`}. As the induced subgraph G{p} is connected we have k ≤ B(G).

Let 2N(p) denote the power set over N(p). Then for any P ∈ 2N(p) the induced
subgraph G{p}∪P is connected. Hence, S(G) ≥ |2N(p)| = 2|N(p)| = 2k. Thus we have
k ≤ log2 S(G).

An immediate consequence of Proposition 1.3.16 is that paths in a good graph
do not branch more than O(logn) times. Recall that sequences of graphs {Gn}n∈N
correspond to distributions, in particular, chain graphs capture Markov distributions.
Proposition 1.3.16 shows us that good graphs essentially do consist of chain graphs as
any path in it is a chain up to logarithmically many ‘forks’6 (constantly many, in the
case of a B-good graph). Hence, distributions captured by good families of graphs are
conceptually close to Markov distributions.

We now draw our attention towards B-good graphs. We begin by defining ‘slender-
ness’ in a graph-theoretic terminology.

Definition 1.3.17 (graph diameter). Let G = (V,E) be a connected graph. We
define the diameter of G, D(G), as the maximum over the distances of any two distinct
vertices in G:

D(G) := max
u,v∈V
u6=v

{d(u, v)} .

We observe that the diameter of a graph reflects our intuitive understanding of the
graph’s shape. Graphs with a small diameter have only short distances, thus will be
quite ‘compact’. In contrast, a large diameter implies that there are vertices that are
far apart. Hence, the graph is quite ‘long’ (and thus has to be ‘slender’).

Finally, we present two results on B-good graphs. First, the diameter of B-good
graphs grows linearly in |V |. Secondly, B-good graphs are somewhat rare objects. For
the second result we study Erdős–Rényi (random) graphs. We show that any size |V |/2
set is expected to have a neighborhood that grows linearly in |V | rather than being
constant as for B-good graphs.

Proposition 1.3.18 Let G = (V,E) be a connected, undirected graph. Then the
following inequality holds

|V | ≤ 1 +B(G) ·D(G) .

Proof. For a vertex v ∈ V and k ∈ N let Bk(v) := {v′ ∈ V | d(v, v′) ≤ k} ⊆ V denote
the ball of radius k centered on v. Fix any v ∈ V . Then the following two observations
hold:

6Vertices of degree strictly greater than 2.
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1. N(Bk(v)) = Bk+1(v) \Bk(v) for k = 0, . . . , D − 1.

2. N(Bk(v)) ≤ B(G) for k = 0, . . . , D− 1 as Bk(v) is connected for k = 0, . . . , D− 1.

It follows:

V = BD(v) = {v}
D(G)⋃
·
i=1

(Bi(v) \Bi−1(v)) 1.= {v} ∪
D(G)⋃
·
i=1

N(Bi−1(v)) .

Thus

|V | = 1 +
D(G)∑
i=1
|N(Bi−1(v))|

2.
≤ 1 +

D(G)∑
i=1

B(G) = 1 +D(G) ·B(G) .

We instantly obtain our first result:

Corollary 1.3.19 Let {Gn}n∈N = (Vn, En)n∈N be a sequence of connected B-good
graphs. Then the diameter of Gn grows linearly in |Vn|:

D(Gn) = Θ (|Vn|) .

The proof follows from Proposition 1.3.18 and the trivial upper bound D(Gn) ≤ |Vn|.
We conclude by showing that we cannot expect random graphs to be B-good.

Definition 1.3.20 (Erdős–Rényi graph). Let p : N → [0, 1]. For n ∈ N let
V = {v1, . . . , vn} be a set of vertices. For each 1 ≤ i < j ≤ n add an undirected
edge between vi and vj with probability p(n). We let Gn,p(n) := (V,E) denote the
obtained graph (as a random variable). We call Gn,p(n) Erdős–Rényi graph.

Recall that we are solely interested in the structure of connected graphs. Thus,
we can easily derive a lower bound on p(n) as it ought to be chosen such that we
can expect Gn,p(n) to have at least n− 1 undirected edges; a necessary condition for
being connected. As there are

(
n
2
)
pairs of distinct vertices, each of the pairs being

connected with probability p(n) we have to have E(|E|) =
(
n
2
)
· p(n) ≥ n− 1 implying

that p(n) = Ω(n−1).

Proposition 1.3.21 Let p(n) = Ω(n−1), n ∈ N and p := p(n). Let Gn,p = (V,E)
denote a corresponding Erdős–Rényi graph. Let V ′ be an arbitrary subset of V of size
n/2. Then

E [N(V ′)] = Θ(n) .
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Proof. Clearly, E[N(V ′)] ≤ n and it suffices to show that E[N(V ′)] = Ω(n). For the
neighborhood of V ′ we have N(V ′) =

∑
v∈V \V ′ 1 ∃v′∈V ′

(v,v′)∈E
. It follows

E[N(V ′)] =
∑

v∈V \V ′
E[1 ∃v′∈V ′

(v,v′)∈E
]

=
∑

v∈V \V ′
Pr [∃v′ ∈ V ′ s.t. (v, v′) ∈ E]

=
∑

v∈V \V ′
(1− Pr [∀v′ ∈ V ′ s.t. (v, v′) /∈ E])

=
∑

v∈V \V ′

(
1− Pr

[ ∧
v′∈V ′

(v, v′) /∈ E
])

=
∑

v∈V \V ′

(
1−

∏
v′∈V ′

(1− p)
)

= n

2 ·
(

1− (1− p)n/2
)

where all probabilities are taken over the coins in the generation of Gn,p. As p = Ω(n−1)
we conclude that for some constant c > 0 and for sufficiently large n we have

E[N(V ′)] ≥ n

2 ·
(

1−
(

1− c

n

)n/2)
.

It remains to show that limn→∞ E[N(V ′)] · n−1 > 0. It suffices to show

lim
n→∞

(
1−

(
1− c

n

)n/2) !
> 0 .

which clearly holds as limn→∞
(
1− c

n

)n/2 = exp(−c/2).

1.4 Results for Decomposing Distributions

In this section we extend our results to distributions D over plaintext spacesM that
decompose into multiple independent distributions D ' D1 × . . . ×Dn′ , n′ ≤ n over
batchesM1, . . . ,Mn′ , whereM =M1× . . .×Mn′ and for all i ∈ [n′] we have that Di

is a distribution onMi. If a PKE scheme ensures SO security for all distributions Di,
we can lift the security to D by a fairly straight-forward hybrid argument. Importantly,
our results subsume the early positive result of [DNRS99, BY09] assuming all plaintexts
to be independently distributed. In fact Section 1.4 does not only extend our results
but all results to distributions as described above.
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Definition 1.4.1 (Decomposable Distribution). Let {Dn}n∈N be a sequence of dis-
tributions such that for all n ∈ N, Dn is a distribution over some plaintext space
Mn.

We say {Dn}n∈N is decomposable if one can efficiently find n′ : N>0 → N>0,
n′ := n′(n), µi : N → N and distributions Dµi(n) over Mµi(n) for i = 1, . . . , n′, such
that for all n ∈ N:

Dn ' Dµ1(n) × . . .×Dµn′ (n) .

That is, for all n ∈ N one can efficiently write Dn as a product of distributions Dµi(n)

overMµi(n) and
∑n′

i=1 µi(n) = n.
We wrap the process of decomposing a distribution into an algorithm Decomp.
We may write a sequence of decomposable distributions {Dn}n∈N as the product of

sequences of distributions {Dµ1(n)}n∈N × . . .× {Dµn′ (n)}n∈N.

Observation 1.4.2 A decomposable sequence {Dn}n∈N is efficiently resampleable iff
all sequences {Dµi(n)}n∈N are efficiently resampleable.

Further, if a sequence of distributions {Dn}n∈N is decomposable with n′(n) = n for
all n, then {Dn}n∈N is efficiently resampleable.

This is due to the fact that for all n ∈ N, Dn can be written as product of n
distributions Dn ' Dµ1(n) × . . .×Dµn(n) for µi(n) ≡ 1 for all n ∈ N. Thus resampling
of positions i ∈ [n] \ I can be done by sampling from distributions Dµi(n) for all
i ∈ [n] \ I.

For notational brevity we write {µj} for the set
[
1 +

∑j−1
i=1 µj , 1 +

∑j
i=1 µj

]
. Hence,

we may write n-dimensional vectors v as v = (v{µ1}, . . . ,v{µn′}) ∈ Sn where for
i = 1, . . . , n′, v{µi} is of dimension µi.

Example 1.4.3 As a toy example consider the sequence of uniform distributions over
Mn: {Un}n∈N. Clearly, {Un}n∈N, for n′(n) := n, can be decomposed into a product of
n distributions {U1}n∈N × . . .× {U1}n∈N each overM.

Alternatively, let n′ : N → N be arbitrary and let µ1(n), . . . , µn′(n) be such that
for all n ∈ N:

∑n′

i=1 µi(n) = n. Then {Un}n∈N can be decomposed into distributions
{Uµ1(n)}n∈N × . . .× {Uµn′ (n)}n∈N.

Theorem 1.4.4 Let {Dn}n∈N be a decomposable, efficiently resampleable sequence of
distributions. If for all i ∈ [n′] scheme PKE is (τso,i, εso,i)-IND-SO-CPA secure w.r.t.
{Dµi(n)}n∈N, then PKE is (τso, εso)-IND-SO-CPA secure w.r.t. {Dn}n∈N where

τso ≤ min
i∈[n′]

{τso,i} − τresamp − τdecomp , εso(n) ≤
n′∑
i=1

εso,i(n) .

57



Here τresamp is the time of one execution of the resampling algorithm and τdecomp is
the time of one execution of the decomposition algorithm.

Proof of Theorem 1.4.4. As already mentioned the proof follows from a straight-forward
hybrid argument. The hybrid experiments are given in Figure 1.10. In the hybrid step
from Hk to Hk+1 plaintexts coming from distribution Dµk+1 (we drop n as it is already
fixed) are replaced by resampled plaintexts. We employ the IND-SO-CPA security
w.r.t. Dµk+1 to bound the distance between hybrid experiments Hk and Hk+1. Let
Aso = (Aso,1,Aso,2,Aso,3) be an adversary against the (τso, εso)-IND-SO-CPA security
of PKE w.r.t. D.

Exp HAsok (n)
01 I ← ∅
02 (pk, sk)←$ PKE.Gen
03 (D, st1)←$ Aso,1(pk, n)
04 (Dµ1 , . . . ,Dµn′ )← Decomp(D)
05 For i← 1 to n′:
06 m0

{µi} ←$ Dµi

07 r{µi} ←$ Rµi
08 c{µi} ← PKE.Encpk(m0

{µi}; r{µi})
09 c← (c{µ1}, . . . , c{µn′})
10 st2 ←$ AOpen

so,2 (st1, c)
11 For all i← 1 to k:
12 m1

{µi} ←$ ResampDµi
(m0
{µi}, I ∩ {µi})

13 m← (m1
{µ1}, . . . ,m

1
{µk},m

0
{µk+1}, . . . ,m

0
{µn′}

)
14 b′ ←$ Aso,3(st2,m)
15 Stop with b′

Oracle Open(i)
16 I ← I ∪ {i}
17 Return (m0

i , ri)

Figure 1.10: Hybrid experiments Hk(n) used in the proof of Theorem 1.4.4.

Note that H0 is identical to the IND-SO-CPA0 experiment and Hn′ is identical to
the IND-SO-CPA1 experiment (see Figure 1.2). Thus

∣∣∣Pr
[
IND-SO-CPAA0 (n)⇒ 1

]
− Pr

[
IND-SO-CPAA1 (n)⇒ 1

]]
=
∣∣∣Pr
[
HAso0 (n)⇒ 1

]
− Pr

[
HAson′ (n)⇒ 1

]∣∣∣
≤
n′−1∑
k=0

∣∣∣Pr
[
HAsok (n)⇒ 1

]
− Pr

[
HAsok+1(n)⇒ 1

]∣∣∣ . (1.5)

We proceed with the following Lemma.
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Lemma 1.4.5 For each k ∈ {1, . . . , n′} there exists Aso,k = (Aso,k,1,Aso,k,2,Aso,k,3)
and nso ∈ N that (τso,k, εso,k)-breaks the IND-SO-CPA security of PKE w.r.t. to Dµk

where

τso,k ≈ τso+τresamp+τdecomp , εso,k ≥
∣∣∣Pr
[
HAsok−1(n)⇒ 1

]
− Pr

[
HAsok (n)⇒ 1

]∣∣∣ ,
and τresamp is the time of one execution of the resampling algorithm and τdecomp is the
time of one execution of the decomposition algorithm.

Proof of Lemma 1.4.5. We describe adversary Aso,k+1 as given in Figure 1.11 interpo-
lating between hybrids Hk and Hk+1 for Aso. The value of nso ∈ N follows from the
proof.
Aso,k+1,1 relays (pk, n) to Aso. Receiving D, the distribution is decomposed into

(Dµ1 , . . . ,Dµn′ ) (see line 02). Aso,k+1,1 outputs Dµk+1 and halts.
Aso,k+1,2(c{µk+1}) simulates the IND-SO-CPA experiment on all m[n]\{µk+1} on its

own (lines 04-07) and invokes Aso,2 on ciphertexts (c{µ1}, . . . , c{µn′}) (line 07).
Aso,k+1,2 answers opening queries on its own unless they occur on {µk+1}, where

it invokes its own opening oracle Openso to answer. Once Aso,2 terminates, so does
Aso,k+1,2.
Aso,k+1,3(m{µk+1}) resamples plaintexts at positions ∪i∈[k]{µi} on its own (line 12),

embeds its challenge at positions {µk+1} and keeps the sampled plaintexts m0 at all
remaining positions. It invokes Aso,3 on a vector

(m1
{µ1}, . . . ,m

1
{µk},m{µk+1},m

0
{µk+2}, . . . ,m

0
{µn′})

and replay Aso,3’s output to its experiment.

Analysis One easily verifies that Aso,k+1 correctly simulates hybrid experiments Hk
and Hk+1 at all positions until Aso,2 halts.

Now, when Aso,k+1 is run in experiment IND-SO-CPA0, adversary Aso,k+1,3 obtains
sampled plaintexts m{µk+1} thereby simulating Aso’s view as in Hk. If Aso,k+1,3 receives
resampled plaintexts at positions {µk+1}, adversary Aso is run in experiment Hk+1.
Hence

Pr
[
IND-SO-CPAAso,k+1

0 ⇒ 1
]

= Pr
[
HAsok (n)⇒ 1

]
and Pr

[
IND-SO-CPAAso,k+1

1 ⇒ 1
]

= Pr
[
HAsok+1(n)⇒ 1

]
.

The running time of Aso,k+1 is roughly the same as the running time of Aso except for
one additional call of Resamp and Decomp. Aso,k+1 submits a distribution overMµk+1 ,
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Adversary Aso,k+1,1(pk, n)
01 (D)←$ Aso,1(pk, n)
02 (Dµ1 , . . . ,Dµn′ )← Decomp(D)
03 Output Dµk+1

Adversary Aso,k+1,2(c{µk+1})
04 For all i ∈ [n′] \ {k + 1}:
05 m0

{µi} ←$ Dµi

06 r{µi} ←$ Rµi
07 c{µi} ← PKE.Encpk(m0

{µi}; r{µi})
08 c← (c{µ1}, . . . , c{µn′})
09 ()←$ AOpen

so,2 (c)
10 Output ()

Adversary Aso,k+1,3(m{µk+1})
11 For all i ∈ [k]:
12 m1

{µi} ← ResampDµi
(m0
{µi}, I ∩ {µi})

13 m← (m1
{µ1}, . . . ,m

1
{µk},m{µk+1},m0

{µk+2}, . . . ,m
0
{µn′}

)
14 b′ ←$ Aso,3(m)
15 Output b′

Oracle Open(i)
16 I ← I ∪ {i}
17 If i ∈ µk+1:
18 (m0

i , ri)← Openso(i)
19 Return (m0

i , ri)

Figure 1.11: Pseudocode of adversary Aso,k+1 = (Aso,k+1,1,Aso,k+1,2,Aso,k+1,3) run in the
IND-SO-CPA experiment (w.r.t. Dµk+1). Aso,k+1 interpolates between hybrids Hk, Hk+1 for
Aso. We abstain from making the states output by and returned to Aso,k+1 and Aso explicit.
Openso denotes the opening oracle provided by the IND-SO-CPA for Aso,k+1 (line 18) while
Open denotes the opening oracle provided by Aso,k+1 for Aso.

thus Aso,k+1 breaks the IND-SO-CPA security for nso := µk+1. Lemma 1.4.5 follows.

We proceed from Equation (1.5):∣∣∣Pr
[
IND-SO-CPAAso0 (n)⇒ 1

]
− Pr

[
IND-SO-CPAAso1 (n)⇒ 1

]∣∣∣
=
∣∣∣Pr
[
HAso0 (n)⇒ 1

]
− Pr

[
HAson′ (n)⇒ 1

]∣∣∣
≤
n′−1∑
k=0

∣∣∣Pr
[
HAsok (n)⇒ 1

]
− Pr

[
HAsok+1(n)⇒ 1

]∣∣∣
=

n′∑
k=1

∣∣∣Pr
[
HAsok−1(n)⇒ 1

]
− Pr

[
HAsok (n)⇒ 1

]∣∣∣
≤

n′∑
k=1

εso,k

to conclude the proof of Theorem 1.4.4.
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1.5 Extending all Results to Active Attacks

We conclude with a rather short section. We show that all results established for the
relation amongst IND-CPA and IND-SO-CPA security can be lifted to hold between
IND-CCA and IND-SO-CCA security as well. We begin by defining standard and
selective opening security under active attacks.

1.5.1 Security Notions under Active Attacks

Definition 1.5.1 (IND-CCA secure PKE). For ε ∈ R≥0, qd ∈ N we say that PKE
is (τ, qd, ε)-IND-CCA secure if for all τ -time adversaries A = (A1,A2) that interact in
the IND-CCAb experiments as given in Figure 1.12 and query the PKE.Dec oracle at
most qd times we have∣∣∣Pr

[
IND-CCAA0 ⇒ 1

]
− Pr

[
IND-CCAA1 ⇒ 1

]∣∣∣ ≤ ε .
Exp IND-CCAAb
01 (pk, sk)←$ PKE.Gen
02 (m0,m1, st)←$ APKE.Dec

1 (pk, n)
03 c∗ ←$ PKE.Encpk(mb)
04 b′ ←$ APKE.Dec

2 (st, c)
05 Return b′

Oracle PKE.Dec(c)
06 If c = c∗: Abort
07 m← PKE.Decsk(c)
08 Return m

Figure 1.12: The IND-CCAb experiments as used in Definition 1.5.1.

In informal discussions we say that a scheme is IND-CCA secure if for all efficient
adversaries ε is small. We abstain from giving the formal definition of mult-IND-CCA
security that allows an adversary to submit plaintext vectors instead of single plaintexts.
The reader may assemble the mult-IND-CCA experiment by considering Figure 1.1 and
adding the decryption oracle from Figure 1.12 to it. We have a classical result similar
to Lemma 1.2.3:

Lemma 1.5.2 Let PKE be a (τcca, qd, εcca)-IND-CCA secure PKE. Then PKE is
(τm-cca, qd, εm-cca)-mult-IND-CCA secure where

τm-cca ≈ τcca , εm-cca(n) ≤ n · εcca .
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Definition 1.5.3 (IND-SO-CCA secure PKE). Let D be a subset of the class of
sequences of efficiently resampleable distributions as in Definition 1.2.4. For a function
ε : N→ R≥0 and qd ∈ N we say that PKE is (τ, qd, ε)-IND-SO-CCA secure with respect
to D if for all τ -time adversaries A = (A1,A2,A3) that interact in the IND-SO-CCAb
experiments as given in Figure 1.13 and query the PKE.Dec oracle at most qd times
and all n ∈ N, we have∣∣∣Pr

[
IND-SO-CCAA0 (n)⇒ 1

]
− Pr

[
IND-SO-CCAA1 (n)⇒ 1

]∣∣∣ ≤ ε(n) .

Exp IND-SO-CCAAb
01 I ← ∅; c← ∅
02 (pk, sk)←$ PKE.Gen
03 (D, st)←$ APKE.Dec

1 (pk, n)
04 m0 ←$ D
05 r←$ Rn
06 c← PKE.Encpk(m0; r)
07 st′ ←$ AOpen,PKE.Dec

2 (st, c)
08 m1 ←$ ResampD(m0, I)
09 b′ ←$ APKE.Dec

3 (st′,mb)
10 Stop with b′

Oracle Open(i)
11 I ← I ∪ {i}
12 Return (m0

i , ri)

Oracle PKE.Dec(c)
13 If c ∈ c: Abort
14 m← PKE.Decsk(c)
15 Return m

Figure 1.13: Security experiments IND-SO-CCAb used in Definition 1.5.3. We require A1 to
output D such that D ∈ D and D is a distribution overMn. A2 may call Open(i) for i ∈ [n].

If D is the class of all sequences of efficiently resampleable distributions, we say
that PKE is (τ, qd, ε)-IND-SO-CCA secure. In informal statements we say that a PKE
scheme is IND-SO-CCA secure, if for all efficient adversaries and all n ∈ N, we have
that ε is small.

1.5.2 Results for Active Attacks

We state our main results on the relations between IND-CCA and IND-SO-CCA
security. These are essentially the same results established between IND-CPA and
IND-SO-CPA security, adapted to the CCA setting. A proof strategy is sketched at the
end of this section.
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Theorem 1.5.4 Let D be the class of efficiently resampleable sequences of distributions
induced by sequences of connected graphs {Gn}n∈N.

If PKE is (τcca, qd, εcca)-IND-CCA secure, then PKE is (τso-cca, qd, εso-cca)-IND-SO-
CCA secure where

τso-cca ≤ τcca − 2 · τresamp , εso-cca(n) ≤ n · (n− 1) · S(Gn) · εcca

where τresamp is the time of one execution of the resampling algorithm.

Theorem 1.5.5 Let D be the class of efficiently resampleable sequences of distributions
induced by sequences of connected graphs {Gn}n∈N.

If PKE is (τcca, qd, εcca)-IND-CCA secure, then PKE is (τso-cca, qd, εso-cca)-IND-SO-
CCA secure where

τso-cca ≤ τcca − 2 · τresamp , εso-cca(n) ≤ 2 · (n− 1)
(B(Gn)− 1)! · n

B(Gn)+1 · εcca

where τresamp is the time of one execution of the resampling algorithm.

Theorem 1.5.6 Let D be the class of efficiently resampleable sequences of distributions
induced by sequences of connected DAGs.

If PKE is (τcca, qd, εcca)-IND-CCA secure, then PKE is (τso-cca, qd, εso-cca)-IND-SO-
CCA secure where

τso-cca ≤ τcca − 3 · τresamp , εso-cca(n) ≤ 3 · nB(Gn)+1 · εcca

where τresamp is the time of one execution of the resampling algorithm.

Corollary 1.5.7 If a PKE scheme PKE is (τcca, qd, εcca)-IND-CCA secure, then PKE
is (τso-cca, εso-cca)-IND-SO-CCA secure w.r.t efficiently resampleable Markov distribu-
tions where

τso-cca ≤ τcca − 3 · τresamp , εso-cca(n) ≤ 3 · n3 · εcca

where τresamp is the time of one execution of the resampling algorithm.

Theorem 1.5.8 Let {Dn}n∈N be a decomposable, efficiently resampleable sequence of
distributions. If for all i ∈ [n′] scheme PKE is (τso-cca,i, qd,so-cca, εso-cca,i)-IND-SO-CCA
secure w.r.t. {Dµi(n)}n∈N, then PKE is (τso-cca, qd,so-cca, εso-cca)-IND-SO-CCA secure
w.r.t. {Dn}n∈N where

τso-cca ≤ min
i∈[n′]

{τso-cca,i} − τresamp − τdecomp , εso-cca(n) ≤
n′∑
i=1

εso-cca,i(n) .
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Here τresamp is the time of one execution of the resampling algorithm and τdecomp is
the time of one execution of the decomposition algorithm.

The proofs of Theorems 1.5.4 to 1.5.6 and 1.5.8 and Corollary 1.5.7 immediately
follow from the proofs in Section 1.3. To this end, one observes that whenever a
reduction from IND-SO-CCA to (mult)-IND-CCA security submits a decryption query
leading to an abort, the same query posed by an IND-SO-CCA attacker leads to an abort
as well. Hence, whenever an Aso-cca attacker against the IND-SO-CCA security of PKE
issues a decryption query, the reduction can relay the query to the (mult)-IND-CCA
experiment.

Hence, the claims follow from the proofs of Theorems 1.3.7, 1.3.11 and 1.4.4 and Corol-
laries 1.3.10 and 1.3.13.
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Part II

Results in Idealized
Models of Computation





Chapter 2

Selective Opening Security
via Generic Transformations

In this chapter we study three well-known transformations that are known to give rise to
IND-CCA secure PKE schemes from (merely) one-way secure cryptographic primitives
in the random oracle model. We show that, in fact, all transformations do construct
SO-CCA secure PKE schemes. Surprisingly, we do not require stronger assumptions to
establish our results than those used to prove IND-CCA security.

In Section 2.2 we discuss a transformation that can be instantiated with any key
encapsulation mechanism that is one-way secure under plaintext-checking attacks. Most
notably, it covers an instantiation of the widely-employed DHIES. Section 2.3 considers
the OAEP padding. When followed by a trapdoor permutation it results in an IND-CCA
PKE scheme. Eventually, in Section 2.4, we study the Fujisaki-Okamoto transformation
that can be instantiated with any one-way secure PKE scheme.

2.1 Selective Opening Security under Active Attacks

We define the confidentiality notion of SIM-SO-CCA for PKE schemes. Our model
builds on the works of [BHK12, FHKW10]. We discuss the details below.

Definition 2.1.1 (SIM-SO-CCA secure PKE). Consider the experiments from Fig-
ure 2.1. For a function ε : N→ R≥0 we say that a PKE scheme is (τ, qd, ε)-SIM-SO-CCA
secure if for all τ -time adversaries A = (A1,A2) that interact in the (real) r-SO-CCA
experiment and issue at most qd decryption queries to PKE.Dec there exists a (roughly)
τ -time simulator S = (S1,S2) that interacts in the (ideal) i-SO-CCA experiment such
that for all efficient distinguishers Pred : {0, 1}∗ → {0, 1} and all n ∈ N we have∣∣∣Pr

[
r-SO-CCAA(n)⇒ 1

]
− Pr

[
i-SO-CCAS(n)⇒ 1

]∣∣∣ ≤ ε(n) .
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In idealized models we specify an upper bound on the number of allowed queries
to an ideal primitive. For instance, if a PKE scheme involves a hash function and we
assume the hash function to be modeled as a random oracle, we consider (τ, qd, qh, ε)-
SIM-SO-CCA security where an adversary may query the hash function at most qh
times.

In informal discussions we say a PKE scheme is SIM-SO-CCA secure if for all
efficient adversaries A in the r-SO-CCA experiment there exists an efficient simulator S
in the i-SO-CCA experiment such that for all efficient distinguishers and all n ∈ N we
have that ε is small. Note that A may submit any distribution to its real experiment. In
particular, the definition does not suffer from the restriction to efficiently resampleable
distributions as Definition 1.2.5 does.

Exp r-SO-CCAA(n)
01 I ← ∅; c← ∅
02 (pk, sk)←$ PKE.Gen
03 (D, st)←$ APKE.Dec

1 (pk, n)
04 m←$ D
05 r←$ Rn
06 c← PKE.Encpk(m; r)
07 out←$ AOpen,PKE.Dec

2 (st, c)
08 Stop with Pred(D,m, I, out)

Oracle Open(i)
09 I ← I ∪ {i}
10 Return (mi, ri)

Oracle PKE.Dec(c)
11 If c ∈ c: Abort
12 m← PKE.Decsk(c)
13 Return m

Exp i-SO-CCAS(n)
14 I ← ∅

15 (D, st)←$ S1(n)
16 m←$ D

17 out←$ SOpen
2 (st, |m1|, . . . , |mn|)

18 Stop with Pred(D,m, I, out)

Oracle Open(i)
19 I ← I ∪ {i}
20 Return mi

Figure 2.1: Security experiments for defining SIM-SO-CCA security of PKE. With D we denote
a distribution overMn. The randomness space of PKE.Enc is denoted with R. Oracle Open
may be called for all i ∈ [n]. We show the lines of i-SO-CCA aligned to the ones of r-SO-CCA
for easier comparison.

Discussion We give rationale on this formalization of SO security. The notion
compares the information an adversary can deduce about a set of challenge plaintexts in
two settings: a real setting (experiment r-SO-CCA) and an idealized setting (experiment
i-SO-CCA). The real experiment starts with the generation of a key pair. The adversary
receives the public key and specifies a plaintext distribution D. Plaintexts m1, . . . ,mn

are sampled according to this distribution and encrypted using fresh randomnesses
r1, . . . , rn. The ciphertexts are given to the adversary who derives some information out.
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The adversary is supported by two oracles: one that decrypts arbitrary ciphertexts and
one that opens ciphertexts by revealing the corresponding plaintext and the randomness
used to encrypt it (to model sender corruption).

The ideal experiment is similar but with all the artifacts of public-key encryption
removed: there is no key generation, no ciphertext generation, and no decryption
oracle. Beyond that, the adversary (in this context called ‘simulator’) performs as
above: it specifies a plaintext distribution, adaptively requests openings, and derives
some information out.

Clearly, in the ideal setting the confidentiality of plaintexts from unopened ciphertexts
is granted (only their lengths leak in line 17, but this is unavoidable for any practical
PKE scheme and implicitly also happens in line 07). We thus deem a public-key
encryption scheme secure under selective opening attacks if the adversary in the real
setting cannot draw more conclusions about the plaintexts from unopened ciphertexts
than can be drawn in the ideal setting. Formally, it is required that for every A for
r-SO-CCA there exists a corresponding S for i-SO-CCA that derives the same information.
This is tested by distinguisher Pred (outputting some predicate), which also takes further
environmental information into account, for instance the recorded opening history I.
We proceed with some remarks on the model.

In prior works that give simulation-based definitions of SO security there does not
seem to be consensus on the order of quantification of S and Pred. While most papers
(see [HJKS15, LP15]) allow for the simulator to depend on the distinguishing predicate,
the work of [BHK12] implicitly defines a stronger notion that requires the existence
of a simulator that is universal. (Interestingly, many papers that exclusively consider
the weaker notion actually do construct universal simulators.) We adopt the stronger
notion and require the simulator to work for any distinguisher Pred.

Proving SIM-SO-CCA Security The goal is to show that for every adversary
A = (A1,A2) for the r-SO-CCA experiment there exists a simulator S = (S1,S2) for
the i-SO-CCA experiment that deduces the same information.

We walk the reader through the design principles of our simulator. What we
referred to as ‘deduces the same information’ above formally requires that the inputs
(D,m, I, out) of Pred invocations in the r-SO-CCA and i-SO-CCA experiments be similar.
This is achieved by letting S simulate for A the environment of r-SO-CCA in a way
such that: S1 forwards the distribution D obtained from A1 without modification (this
also ensures that the distributions of m1, . . . ,mn match), S2 keeps the index sets I
corresponding to A2’s and its own Open queries consistent (by forwarding the queries),
and S2 forwards A2’s output out without modification.

Running A as a subroutine leads to useful results only if A is exposed to an
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r-SO-CCA-like environment. Effectively this means that S has to ‘fill the blanks’ of
the i-SO-CCA experiment in Figure 2.1. Concretely this involves (a) generating and
providing a public key for A1, (b) providing ciphertexts to A2 that correspond to
plaintexts m1, . . . ,mn, (c) providing adequate randomness when processing opening
queries by A2, and (d) handling decryption queries by A1 and A2.

We proceed with the first transformation.

2.2 Transformation from any OW-PCA secure KEM

The first construction we consider is a generalization of the ‘Diffie-Hellman Integrated
Encryption Scheme’ (DHIES) [BR97, ABR01]. (DHIES or ‘Hashed Elgamal Encryption’
uses a MAC to make plain Elgamal [Gam84] IND-CCA secure in the ROM.)

This generic idea behind DHIES was formalized by Steinfeld et al. [SBZ02] who
showed how to build an IND-CCA secure public-key encryption system from a key
encapsulation mechanism (KEM) that is one-way under plaintext checking attacks
(OW-PCA). The notion of OW-PCA is a comparatively weak notion of security in
which the adversary’s main task is to decapsulate a given encapsulation. In addition to
the public key, the adversary has only access to an oracle that checks, given a tuple
(k, c), whether c is an encapsulation of k.

This construction is IND-CCA secure in the random oracle model [SBZ02]. We show
that it is furthermore SIM-SO-CCA secure in the random oracle model. We stress that
our result generically holds for the entire construction and therefore for any concrete
instantiation of it. Most importantly, it covers the well-known DHIES scheme (when
instantiated with a one-time pad) that is contained in several public-key encryption
standards like IEEE P1363a, SECG, and ISO 18033-2. DHIES is the de-facto standard
for elliptic-curve encryption.

Provable Security of DHIES The IND-CCA security of DHIES in the random
oracle model has been shown to be equivalent to the strong Diffie-Hellman (sDH)
assumption [ABR01, SBZ02].

2.2.1 Key Encapsulation Mechanisms and Message Authentication Codes

Definition 2.2.1 (key encapsulation mechanism). A key encapsulation mechanism
(KEM) for a finite key space K consists of a public-key space PK, a secret-key
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space SK, a ciphertext space C, and a triple of efficient algorithms denoted as KEM =
(KEM.Gen,KEM.Enc,KEM.Dec) of the form

KEM.Gen : →$ PK×SK KEM.Enc : PK →$ K×C KEM.Dec : SK× C → K∪· {⊥} ,

where symbol ‘⊥’ may be used to indicate errors. The randomness space of KEM.Enc
is typically denoted with R. Correctness requires that for all (pk, sk) ∈ [KEM.Gen], if
(k, c) ∈ [KEM.Encpk ] then KEM.Decsk(c) = k.

KEM has unique encapsulations if for all (pk, sk) ∈ [KEM.Gen] and for all c, c′ ∈ C
we have KEM.Decsk(c) = KEM.Decsk(c′)⇒ c = c′.

In the following KEM will always denote a key encapsulation mechanism. For
the results in this section it suffices to assume that the keys output by KEM.Encpk

have high min-entropy given pk.1 However, for simplicity, we assume that for all
(pk, sk) ∈ [KEM.Enc] and all (k, c) ∈ [KEM.Encpk ], key k is uniform in K in this section.

As public-key encryption tends to be computationally expensive, in practice, KEMs
are usually employed to merely transport a rather short (symmetric) key. They are then
combined with highly efficient (symmetric) data encapsulation mechanisms (DEMs)
to obtain efficient hybrid public-key encryption [CS03]. The selective opening security
of hybrid encryption is investigated in Chapter 3. We define one-way security in the
presence of a plaintext-checking oracle (OW-PCA).

Definition 2.2.2 (OW-PCA secure KEM [OP01]). We say a KEM is (τ, qc, ε)-OW-
PCA secure if for all τ -time adversaries A that interact in the OW-PCA experiment as
given in Figure 2.2 and query the KEM.Check oracle at most qc times we have

Pr
[
OW-PCAA ⇒ 1

]
≤ ε .

Exp OW-PCAA
01 (pk, sk)←$ KEM.Gen
02 (k∗, c∗)←$ KEM.Encpk
03 k ← AKEM.Check(pk, c∗)
04 Stop with (k =? k

∗)

Oracle KEM.Check(k, c)
05 Return (KEM.Decsk(c) =? k)

Figure 2.2: OW-PCA experiment as used in Definition 2.2.2.

Informally, a KEM is OW-PCA secure if for all efficient adversaries ε is small.
We continue by defining message authentication codes.

1Observe that this property already follows if the KEM is one-way secure.
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Exp sUF-OT-CMAA
01 k ←$ MAC.Gen
02 (m∗, st)←$ AMAC.Vrfy

1
03 t∗ ←$ MAC.Tagk(m∗)
04 (m̃, t̃)←$ AMAC.Vrfy

2 (st, t∗)
05 Stop with

(MAC.Vrfyk(m̃, t̃)∧(m̃, t̃) 6= (m, t))

Oracle MAC.Vrfy(m, t)
06 Return MAC.Vrfyk(m, t)

Figure 2.3: sUF-OT-CMA experiment used in Definition 2.2.4.

Definition 2.2.3 (message authentication code). A message authentication code
(MAC) for a message spaceM consists of a key space K, a tag space T and a triple of
efficient algorithms MAC = (MAC.Gen,MAC.Tag,MAC.Vrfy) of the form

MAC.Gen : →$ K MAC.Tag : K ×M→$ T MAC.Vrfy : K ×M× T → {0, 1} .

For the MAC to be correct, we require that for all k ∈ [MAC.Gen] and for all m ∈M
if t ∈ [MAC.Tagk(m)] then MAC.Vrfyk(m, t) = 1. We say that for k ∈ K and m ∈M a
tag t (resp. a tuple (m, t)) is valid, if MAC.Vrfyk(m, t) = 1.

In the following MAC will always denote a message authentication code. We define
strong unforgeability under one-time chosen message attacks (sUF-OT-CMA) next:

Definition 2.2.4 (sUF-OT-CMA secure MAC). We say a MAC is (τ, qv, ε)-sUF-OT-
CMA secure if for all τ -time adversaries A = (A1,A2) that interact in the sUF-OT-CMA
experiment as given in Figure 2.3 and query the MAC.Vrfy oracle at most qv times,
we have

Pr
[
sUF-OT-CMAA ⇒ 1

]
≤ ε .

2.2.2 A Transformation from any OW-PCA KEM

We recall a well known transformation [SBZ02] to turn a KEM into a PKE scheme.
Observe that we do not give the transformation in its full generality as we have
instantiated the symmetric encryption with a one-time-pad.

Notation Whenever an encryption procedure of a PKE scheme outputs ciphertexts
ci composed of multiple components c(1)

i , c
(2)
i , . . . we write 〈c

(1)
i , c

(2)
i , . . .〉 for the encoding

of the components into single one.
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Construction 2.2.5 For ` ∈ N letM = {0, 1}` be a plaintext space, KEM be a KEM
for key space K, and MAC be a MAC for messages in M with key space KMAC. Let
H : K →M×KMAC be a (hash) function. Then the procedures given in Figure 2.4 form
a PKE scheme.

For clarity, the encryption procedure is illustrated in Figure 2.5.

Proc PKE.Gen
01 (pk, sk)←$ KEM.Gen
02 Return (pk, sk)

Proc PKE.Encpk(m; r)
03 (k, c(1))← KEM.Encpk(r)
04 (ksym, kmac)← H(k)
05 c(2) ← ksym ⊕m
06 c(3) ←$ MAC.Tagkmac(c(2))
07 Return 〈c(1), c(2), c(3)〉

Proc PKE.Decsk(〈c(1), c(2), c(3)〉)
08 k ← KEM.Decsk(c(1))
09 (ksym, kmac)← H(k)
10 If MAC.Vrfykmac(c(2), c(3)) = 0:
11 Return ⊥
12 Else:
13 m← c(2) ⊕ ksym
14 Return m

Figure 2.4: Construction of a PKE from a KEM, MAC and a hash function H.

KEM.Encpk

c(1)

k
H(k)

m

c(2)

ksym c(2)

kmac

⊕
MAC.Tagkmac(c(2))

c(3)

Figure 2.5: Encryption process of Construction 2.2.5. 〈c(1), c(2), c(3)〉 ← PKE.Encpk(m; r).

Observation 2.2.6 Construction 2.2.5 implicitly strengthens a OW-PCA KEM to an
IND-CCA secure KEM by letting (H(k), c) be the output of the encapsulation, rather
than (k, c), for a random oracle H.2 Further, the one-time pad constitutes a OT-CPA
secure data encapsulation mechanism (DEM), i.e., a symmetric encryption scheme.
Combined with a sUF-OT-CMA secure MAC, we obtain a OT-IND-CCA secure DEM.
It is well known that a IND-CCA KEM in combination with a OT-IND-CCA DEM
results in a IND-CCA secure PKE [HHK10].

Our next theorem strengthens this result by showing that the obtained PKE is even
SIM-SO-CCA secure.

2We implicitly prove the IND-CCA security of the modified KEM in the proof of Theorem 2.2.7.
See the proof of Claim 2.2.12 employing the oracle patching technique.
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2.2.3 Selective Opening Security of the Transformation

Theorem 2.2.7 Let KEM, MAC and H be as required in Construction 2.2.5.
If KEM is (τpca, qc, εpca)-OW-PCA secure and has unique encapsulations, MAC is

(τcma, qv, εcma)-sUF-OT-CMA secure, then the PKE scheme as given in Figure 2.4 is
(τso-cca, qd, qh, εso-cca)-SIM-SO-CCA secure where τso-cca ≤ min{τcma, τpca−O(qh · qd)}
and

εso-cca(n) ≤ n ·
(
εcma + εpca + qh

|K| − qh
+ qd
|C| − qd

)
,

and qd ≤ min{qv, qc−qh2·qh }. Further H is modeled as a random oracle that may be queried
at most qh times.

Proof Sketch Eventually, we construct a simulator S. When S is run in the (ideal)
i-SO-CCA experiment it is capable to simulate the (real) r-SO-CCA experiment for a
SIM-SO-CCA adversary A. Essentially, S has to enrich its interaction with A with
everything that was removed from the real SIM-SO-CCA experiment to obtain the ideal
i-SO-CCA experiment. That is, S has to compute pk, encrypt plaintexts coming from a
distribution specified by A and provide oracles Open and PKE.Dec (see Figure 2.1).

The simulator S will provide A = (A1,A2) with ‘non-committing’ encryptions that
can be opened to any plaintext. The simulator will exploit the programmability of
random oracle H in order to open some c(2) = m⊕ ksym where (ksym, ·)← H(k) to any
plaintext. Hence, S has to ensure that H(k) remains unevaluated until A asks to open
ciphertext 〈c(1), c(2), c(3)〉.

Assume that A2 is invoked on ciphertexts c. Now, adversary A2 may arbitrarily
query oracles H, Open and PKE.Dec (with the usual restriction for PKE.Dec). Say,
for some i ∈ [n], A2 queries H(ki) or submits a valid ciphertext 〈c(1)

i , ·, ·〉 for decryption
but did not query Open(i). Answering such queries would make the simulator commit
to H(ki) = (ksymi , kmaci ) and hence to m = PKE.Decsk(ci), rendering it impossible to
open ci to any plaintext.3

Our proposed simulator will abort when faced with such a query from A. However,
assuming the OW-PCA security of the KEM, and the sUF-OT-CMA security of the
MAC we will argue that it is unlikely for the simulator to abort due to queries as
described above.

Consider A2 submitting a valid decryption query of the form 〈c(1)
i , ·, ·〉 while it did

not query Open(i). Then two cases can occur:

3Clearly, S must not query Open(i) for all i ∈ [n] to learn all mi as the set I tracking the issued
opening queries is an input to Pred.
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1. H(ki) is still unevaluated.
Thus, kmaci is still uniform and we can employ A to break the sUF-OT-CMA
security of the MAC.

2. H(ki) has already been evaluated.
Then A queried H on ki. Hence, we can use A to break the OW-PCA security of
the KEM.

We proceed with the detailed proof.

Proof of Theorem 2.2.7. Let Aso = (Aso,1,Aso,2) be an adversary against the
(τso-cca, qd, qh, εso-cca)-SIM-SO-CCA security of PKE.

We gradually modify the real r-SO-CCA experiments in a sequence of experiments
up to a point where we can give a simulator that, when run in the i-SO-CCA experi-
ment, simulates the r-SO-CCA experiment for an r-SO-CCA attacker. The sequence of
experiments is given in Figures 2.6 and 2.7.

Exp ExpAso0 (n) – ExpAso4 (n)
01 I ← ∅; c← ∅; LH ← ∅
02 (pk, sk)←$ KEM.Gen
03 For i← 1 to n:
04 ri ←$ R
05 (ki, c(1)

i )←$ KEM.Encpk(ri)
06 (ksymi , kmaci )←$ {0, 1}` ×KMAC //Exp0 – Exp1
07 H(ki)← (ksymi , kmaci ) //Exp0 – Exp1
08 (D, st)←$ AH,PKE.Dec

1 (pk, n)
09 m←$ D
10 For i← 1 to n:
11 ci ← 〈c(1)

i ,mi ⊕ ksymi ,MAC.Tagkmac
i

(mi ⊕ ksymi )〉 //Exp0 – Exp1
12 (σsymi , σmaci )←$ {0, 1}` ×KMAC //Exp2 – Exp4
13 ci ← 〈c(1)

i , σ
mac
i ,MAC.Tagσmac

i
(σsymi )〉 //Exp2 – Exp4

14 c← (c1, . . . , cn)
15 out←$ AH,Open,PKE.Dec

2 (st, c)
16 Stop with Pred(D,m, I, out)

Figure 2.6: Sequence of experiments Exp0(n) – Exp4(n) as used in the proof of Theorem 2.2.7.
Provided oracles H, Open and PKE.Dec are specified in Figure 2.7 on page 76.

Experiment Exp0. Experiment Exp0 implements random oracle H by lazy sampling.
To this end, it keeps track of queries H(s) (either by internal procedures or Aso) via
maintaining a list LH . For a query s, H(s) returns hs if there is an entry (s, hs) ∈ LH
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Oracle H(s)
17 If (s, ·) /∈ LH :
18 If s ∈ (k1, . . . , kn):
19 Let i s.t. s = ki
20 Abort //Aso,1: Exp1 – Exp4
21 Abort //Aso,2: Exp4
22 H(ki)← (σsymi ⊕mi, σ

mac
i ) //Exp2 – Exp4

23 Else:
24 hs ←$ {0, 1}` ×KMAC
25 H(s)← hs
26 Return hs
Oracle Open(i)
27 I ← I ∪ {i}
28 H(ki)← (σsymi ⊕mi, σ

mac
i ) //Exp2 – Exp4

29 Return (mi, ri)

Oracle PKE.Dec(〈c(1), c(2), c(3)〉)
30 If 〈c(1), c(2), c(3)〉 ∈ c: Abort
31 If c(1) ∈ c(1): Abort //Aso,1: Exp1 – Exp4
32 k ← KEM.Decsk(c(1))

33 If
(

c(1) ∈ c(1) ∧ (k, ·) /∈ LH∧
MAC.Vrfyσmac

i
(c(2), c(3)) = 1

)
: Abort //Exp3 – Exp4

34 (ksym, kmac)← H(k)
35 If MAC.Vrfykmac(c(2), c(3)) = 0:
36 Return ⊥
37 Else:
38 Return c(2) ⊕ ksym

Figure 2.7: Pseudocode for oracles provided to Aso run in the sequence of experiments as
given in Figure 2.6.
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(line 17), otherwise H samples hs at random, and returns hs (lines 24, 25). We implicitly
assume an update operation LH ← LH ∪ {(s, hs)} to happen in the background.

We introduce some syntactical changes: Experiment Exp0 runs KEM.Encpk to gener-
ate (ki, c(1)

i ) for i ∈ [n] before Aso,1 is started (lines 04, 05). Further, Exp0 for all i ∈ [n]
samples (ksymi , kmaci ) uniformly at random and sets H(ki)← (ksymi , kmaci ) before Aso,1
is invoked (lines 06, 07).

Claim 2.2.8 It holds Pr
[
r-SO-CCAAso(n)⇒ 1

]
= Pr

[
ExpAso0 (n)⇒ 1

]
.

Proof of Claim 2.2.8. Clearly, it makes no difference if the experiment for all i ∈ [n]
samples ri and runs KEM.Enc(ri) on demand or in advance before Aso,1 returns D.

Since H is considered a random oracle, H(s) is sampled uniformly random for every
fresh query H(s). Hence, it does not change the distribution to sample (ksymi , kmaci )
uniformly in the first place and setting H(ki)← (ksymi , kmaci ) afterwards.

Experiment Exp1. We add two abort instructions. Experiment Exp1 aborts if for
any i ∈ [n] Aso,1 queries H(ki) (see line 20) or PKE.Dec(〈c(1)

i , ·, ·〉) (line 31), even if
the latter might be invalid.

Claim 2.2.9 It holds∣∣∣Pr
[
ExpAso0 (n)⇒ 1

]
− Pr

[
ExpAso1 (n)⇒ 1

]∣∣∣ ≤ n · ( qh
|K| − qh

+ qd
|C| − qd

)
.

Proof of Claim 2.2.9. Let Abort denote the event that experiment Exp1 aborts due
to lines 20 or 31. As experiments Exp0 and Exp1 are identical until Abort happens, it
follows that |Pr[ExpAso0 (n)⇒ 1]− Pr[ExpAso1 (n)⇒ 1]| ≤ Pr[Abort] holds.4

Let viaHash (resp. viaDec) denote the event that Abort was caused by a hash
(resp. a decryption) query of Aso. Let si denote the ith hash and di = 〈d(1)

i , d
(2)
i , d

(3)
i 〉

the ith decryption query of Aso. Then

4‘Fundamental Lemma of game playing’ [Sho04c].
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Pr [Abort] = Pr [viaHash] + Pr [viaDec]

≤ Pr [s1 ∈ {ki}ni=1] +
qh∑
i=2

Pr

si ∈ {ki}ni=1

∣∣∣∣∣∣
i−1∧
j=1

sj /∈ {ki}ni=1


+ Pr[d(1)

i ∈ {c
(1)
i }

n
i=1] +

qd∑
i=2

Pr

d(1)
i ∈ {c

(1)
i }

n
i=1

∣∣∣∣∣∣
i−1∧
j=1

d
(1)
j /∈ {c(1)

i }
n
i=1


=

qh∑
i=1

n

|K| − (i−1) +
qd∑
i=1

n

|C| − (i−1)

≤
qh∑
i=1

n

|K| − qh
+

qd∑
i=1

n

|C| − qd
= n ·

(
qh

|K| − qh
+ qd
|C| − qd

)
,

which holds as KEM.Enc samples k ←$ K and KEM has unique encapsulations.

Experiment Exp2. In experiment Exp2 we change the way plaintexts are encrypted
and answer hash queries in a different way. The experiment does not sample keys
(ksymi , kmaci ) before Aso,1 is run (see line 06). Neither is H(ki) programmed accordingly
(line 07).

For all i ∈ [n] ciphertext c(2)
i is replaced by a uniform element σsymi (lines 12, 13). Fur-

ther, a uniform MAC key σmaci is sampled and c(3)
i is computed as

c(3)
i ←$ MAC.Tagσmac

i
(σsymi ) (lines 12, 13).

If for any i ∈ [n] adversary Aso queries H(ki) or Open(i), experiment Exp2 programs
H(ki)← (σsymi ⊕mi, σ

mac
i ) in line 22, resp. in line 28.

Bear in mind that as from now (ki, ·) /∈ LH implies that Open(i) was not called.

Claim 2.2.10 It holds Pr
[
ExpAso1 (n)⇒ 1

]
= Pr

[
ExpAso2 (n)⇒ 1

]
.

Proof of Claim 2.2.10. Assume that experiment Exp2 does not abort. Then for all
i ∈ [n] keys ksymi and kmaci are uniformly random when Aso,1 halts. Therefore for all
i ∈ [n] ciphertext c(2)

i = mi ⊕ ksymi is uniform and c(3)
i is a valid tag of a uniformly

random message under a uniform key. Consequently, in experiment Exp2 the ciphertexts
c(2)
i ← σsymi can be sampled uniformly and tags can be computed using a uniform MAC
key σmaci without changing the distribution of the encryptions ci.

Although, H(ki) is not programmed immediately, H has to be kept consistently.
This is done by letting H(ki)← (σsymi ⊕mi, σ

mac
i ) once H(ki) or Open(i) is called.
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It remains to treat cases 1 and 2 mentioned in the proof sketch of Theorem 2.2.7.

Experiment Exp3. We introduce another abort condition: If Aso,2 issues a decryp-
tion query 〈c(1)

i , c
(2), c(3)〉 for which H(ki) has not been evaluated and it holds that

MAC.Vrfyσmac
i

(c(2), c(3)) = 1, experiment Exp3 aborts (see line 33).

Claim 2.2.11 There exists an adversary Acma that breaks the (τcma, qv, εcma)-sUF-
OT-CMA security of MAC where

τcma ≈ τso-cca , εcma ≥
1
n
·
∣∣∣Pr
[
ExpAso2 (n)⇒ 1

]
− Pr

[
ExpAso3 (n)⇒ 1

]∣∣∣ , qv ≥ qd .

Proof of Claim 2.2.11. Experiments Exp2 and Exp3 are identical until the newly intro-
duced Abort is executed in the latter experiment. Let Abort denote the event that
experiment Exp3 aborts in line 33. It suffices to bound Pr[Abort].

We construct adversary Acma = (Acma,1,Acma,2). Adversary Acma,1 samples
i∗ ←$ [n] and runs adversary Aso,1 as in experiment Exp3. All hash queries by Aso
are answered honestly. Receiving D, Acma,1 samples plaintexts and processes them
as in Exp3 except for the i∗th ciphertext. Here it outputs σsymi∗ to its sUF-OT-CMA
experiment and terminates.

When Acma,2(t∗) is started it assembles ci∗ ← 〈c(1)
i , σ

mac
i , t∗〉 and invokes Aso,2(c).

If Aso,2 should call Open(i∗), Acma,2 aborts. For each decryption query of the form
〈c(1)
i , c

(2)
i , c

(3)
i )〉, Acma,2 invokes its MAC.Vrfy oracle to detect when Aso,2 submits a

valid ciphertext 〈c(1)
i , c

(2), c(3)〉. Once it occurs, Acma,2 outputs (c(2), c(3)) and halts.

Analysis Assume thatAbort happens. Further, sayAcma guessed correctly where to
embed its challenge. That is, Abort happens as Aso,2 submits 〈c(1)

i∗ , m̃, t̃〉 to decryption.
Then (m̃, t̃) 6= (σmaci , t∗) as otherwise (c(1)

i∗ , m̃, t̃) ∈ c. Hence, t̃ is either a new valid
tag t̃ 6= t∗ for message σmaci or t̃ is a valid tag for a new message m̃ 6= σmaci . Thus, Acma
wins the sUF-OT-CMA experiment by returning (m̃, t̃). As i∗ ←$ [n] we have

εcma ≥
1
n
·
∣∣∣Pr
[
ExpAso2 (n)⇒ 1

]
− Pr

[
ExpAso3 (n)⇒ 1

]∣∣∣ .
One easily verifies that the running time of Acma is roughly the running time of Aso.
Further, Acma will issue a query to MAC.Vrfy per decryption query posed by Aso.

Experiment Exp4. Line 21 is added. That is, experiment Exp4 aborts if for some
i ∈ [n] adversary Aso,2 queries H(ki) and did not call Open(i) before.
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Claim 2.2.12 There exists an adversary Apca that breaks the (τpca, qc, εpca)-OW-PCA
security of KEM where

τpca ≥ τso-cca +O(qh · qd) , εpca ≥
1
n
·
∣∣∣Pr
[
ExpAso3 (n)⇒ 1

]
− Pr

[
ExpAso4 (n)⇒ 1

]∣∣∣
and qc ≥ qh · (1 + 2qd).

Interlude: Oracle Patching [CS03] Observe that adversary Apca against the
OW-PCA security of the KEM does not hold the secret key but has to answer decryption
queries posed by Aso. To solve the issue we employ the nifty oracle patching technique
that we describe next.

Say, Aso submits a decryption query of the form 〈c(1), c(2), c(3)〉. Now Apca checks
list LH whether there is an entry (s, ·) such that KEM.Check(s, c(1)) = 1. If so, Apca
uses (ksym, kmac) ← H(s) for decryption. If not, Apca samples uniform random keys
(ksym, kmac) for decryption. Note that the uniqueness of encapsulations permits sampling
of fresh keys here. However, by processing the decryption query Apca committed to
hash value H(k) for k ← KEM.Decsk(c(1)). In order to keep the simulation consistent,
Apca adds (c(1), (ksym, kmac)) to some dedicated list Lpatch.

It remains to explain how hash queries are answered. For each fresh hash query
H(s), Apca has to check whether there is an entry (c(1), ksym, kmac) in Lpatch such that
KEM.Check(s, c(1)) = 1. If there is such an entry, Apca replies to H(s) by returning
(ksym, kmac). If there is no such entry, Apca replies with a uniformly random key pair
from {0, 1}` ×KMAC.

We proceed with the proof of Claim 2.2.12.

Proof of Claim 2.2.12. Let Abort denote the event that experiment Exp4 aborts in
line 21. As experiments Exp3 and Exp4 are identical until Abort happens, it suffices
to bound Pr[Abort].

We describe how to construct adversary Apca. Attacker Apca is started on input
(pk, c∗). Let k∗ ← KEM.Decsk(c∗). Apca picks i←$ [n] and calls Aso,1(pk, n). Receiving
D from Aso,1, Apca samples plaintexts and encrypts them as in Exp4 but lets c(1)

i ← ci∗ .
If Aso,2 submits a hash query H(s), Apca checks whether s ∈ [n] \ {ki∗} in which

case it aborts. If not, Apca checks whether KEM.Check(s, c(1)
i∗ ) = 1 holds. If so, it

returns s to its OW-PCA experiment and halts, otherwise it processes the hash query
by means of the oracle patching technique.

Let us consider the simulation of the decryption oracle. Importantly, Apca still
has to check whether it has to abort due to line 33 introduced in experiment Exp3.
To this end, for any query PKE.Dec(〈c(1), c(2), c(3)〉) it checks if c(1) ∈ {c(1)

i }ni=1 and
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MAC.Vrfyσmac
i

(c(2), c(3)) = 1 hold and aborts if so. Note that Apca can use σmaci for
verification because H(ki) for ki ← KEM.Decsk(c(1)

i ) has not been evaluated; otherwise
Apca would have aborted earlier. Otherwise, decryption queries are answered via the
oracle patching technique.

Opening queries are answered honestly unless Aso,2 queries Open(i∗) where Apca
aborts.

Analysis Assume that Abort happens. Adversary Apca can detect when Abort

happens as it knows all ki except for i∗. However, using its KEM.Check oracle it
can detect if H(k∗) is queried. Otherwise, up to aborts happening, Aso’s view in its
interaction with Apca are identical to its interaction in the Exp4 experiment.
Apca wins its OW-PCA experiment if Abort happens (the first time) due to Aso,2

submitting k∗ = ki∗ . As i∗ ←$ [n] we have

εpca ≥
1
n
·
∣∣∣Pr
[
ExpAso3 (n)⇒ 1

]
− Pr

[
ExpAso4 (n)⇒ 1

]∣∣∣ .
Further, for each hash queryApca iterates over Lpatch and issues at most |Lpatch| ≤ qd

(oracle patching) calls to KEM.Check plus one more call to check whether it holds
that KEM.Check(s, c(1)

i∗ ) = 1.
For each decryption query, Apca queries the KEM.Check oracle at most |LH | ≤ qh

times while checking all entries in LH due to the oracle patching technique.
Hence,

τpca = τso-cca +O(qh · qd) , qc = qh · (1 + 2qd) .

We construct a simulator to conclude the proof of Theorem 2.2.7.

Claim 2.2.13 There exists a simulator S with roughly the same running time as Aso
such that ∣∣∣Pr

[
ExpAso4 (n)⇒ 1

]
− Pr

[
i-SO-CCAS(n)⇒ 1

]∣∣∣ = 0 .

Proof of Claim 2.2.13. We describe S = (S1,S2). Simulator S1(n) is run and invokes
(pk, sk)←$ KEM.Gen. Then it runs Aso,1 on (pk, n). Hash and decryption queries are
answered as in experiment Exp4. When Aso,1 outputs D, S1 relays D to the i-SO-CCA
experiment and halts.

When S2 is started, it computes ciphertexts as in experiment Exp4 and runs Aso,2
on them. The simulator answers decryption and hash queries as before. If Aso,2 queries
Open(i), S2 relays the query to its i-SO-CCA experiment and receives mi. S2 programs
H accordingly (see line 28 in Figure 2.7) and sends (mi, ri) to Aso,2. When Aso,2 halts
with output out, S2 outputs out and terminates.
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If the simulator does not abort, it clearly perfectly simulates the r-SO-CCA experi-
ment for adversary Aso.

Collecting Claims 2.2.8 to 2.2.13 yields the proof of Theorem 2.2.7.

Observe that, here, the simulator S2’s input (|m1|, . . . , |mn|) is redundant as
M = {0, 1}` for a-priori fixed `.

2.2.4 Implications for Practical Encryption Schemes

We now give specific instantiations of SIM-SO-CCA secure schemes obtained via
Construction 2.2.5. We focus on two well-known KEMs, namely the Diffie-Hellman
KEM and the RSA KEM. Further, note that we only require a one-time secure MAC
in Theorem 2.2.7. It is well-known that such MACs can be constructed information-
theoretically [WC81].

DHIES Let G be a group of prime-order p, and let g be a generator. The Diffie-
Hellman KEM DH-KEM = (DH.Gen,DH.Enc,DH.Dec) is defined as follows. The key
generation algorithm DH.Gen picks x ←$ Zp and defines pk := X := gx and sk := x;
the encapsulation algorithm DH.Encpk picks r ←$ Zp and returns (c, k)← (gr, Xr); the
decapsulation algorithm KEM.Decsk(c) returns k ← cx.

OW-PCA security of the DH-KEM is equivalent to the strong Diffie-Hellman (sDH)
assumption [ABR01]. The sDH assumption states that there is no efficient adversary A
that, given two random group elements U := gu, V := gv and a restricted DDH oracle
Ov(·, ·) where Ov(a, b) := (av =? b), computes guv with high probability.

We obtain the DHIES scheme (instantiated with a one-time pad) by instantiating
Construction 2.2.5 with the DH-KEM; we denote the scheme with DHIES⊕. Then
we obtain the following informal corollary whose proof is a direct consequence of
Theorem 2.2.7.

Corollary 2.2.14 DHIES⊕ is SIM-SO-CCA secure in the random oracle model, if
MAC is sUF-OT-CMA secure and the sDH assumption holds in G.

RSA-KEM We obtain another selective-opening secure encryption scheme if we plug
the RSA-KEM (RFC 5990) into the generic transformation given in Figure 2.4.

The RSA-KEM = (RSA.Gen,RSA.Enc,RSA.Dec) is defined as follows. RSA.Gen
computes an RSA modulus N = p · q for some primes p, q. Then it lets e, d be such that
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e · d ≡ 1 mod φ(N). RSA.Gen outputs (pk, sk) ← ((N, e), d). The key encapsulation
outputs (r, re)←$ RSA.Encpk . Decapsulation RSA.Decsk(c) computes k ← ce mod N .

OW-PCA security of the RSA-KEM holds under the RSA assumption [Sho04a].
Hence, under the RSA assumption, the obtained PKE scheme (as described in ISO18033-
2 [Sho04a]) is SIM-SO-CCA secure in the random oracle model.

Both reductions for the OW-PCA security of the DH-KEM and RSA-KEM respectively
are tight.

2.2.5 Selective Opening Security of Hybrid PKE and KEMs

We conclude Section 2.2 with a rather short discussion. As mentioned in Observa-
tion 2.2.6, Construction 2.2.5 can be seen as a hybrid PKE where we implicitly construct
an IND-CCA secure KEM and combine it with a OT-IND-CCA secure DEM. (While
the DEM is assembled from the (OT-IND-CPA secure) one-time pad and a one-time
secure MAC.)

DEMs Let us take a closer look at the employed DEM. Observe that key ksym for the
one-time pad is the output of a random oracle. Thus, allowing a simulator to efficiently
open ciphertexts to any plaintext (by programming H accordingly).

However, the efficient openability comes at the price of a restricted plaintext space:
The obtained PKE can only encrypt plaintexts at most as long as the output length of
H. In Chapter 3 we define simulatable DEMs that allow for encapsulation of plaintext
of arbitrary length while still ensuring efficient openability.

Hybrid PKE Consider a hybrid PKE that is exposed to an SO attack. Let 〈c(1), c(2)〉
denote a hybrid ciphertext of a plaintext m where c(1) is contributed by the KEM
encapsulation (k, c(1))← KEM.Encpk(r) and c(2) ← DEM.Enck(m). We observe that an
SO attacker on the PKE scheme implicitly performs an SO attack on the KEM as well:
Opening a ciphertext reveals (m, r). Thus, the attacker can compute k, ‘the plaintext’
encapsulated in c(1) by running KEM.Encpk(r).

The natural question that arises is as follows: Why do we not require IND-SO-CCA
secure KEMs, rather than IND-CCA, to obtain SIM-SO-CCA secure PKE?

The answer is given by Theorem 1.5.8. Technically, we do require IND-SO-CCA
security. However, IND-CCA security for KEMs tightly implies its IND-SO-CCA
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security. To this end, one may view KEM as a PKE scheme:5 If we let n ∈ N, then
we see that n invocations (on fresh randomness ri) of (ki, ci)← KEM.Encpk(ri) output
‘plaintexts’ (k1, . . . , kn) that come from a product distribution. More precisely, the
distribution Dn of (k1, . . . , kn) over Kn (induced by the randomness of KEM.Gen and
ri) can be written as n independent distributions over K. Hence, the sequence of
distributions {Dn}n∈N is efficiently decomposable and Theorem 1.5.8 from Section 1.5
applies.

Note that in each step of the hybrid argument in the proof of Theorem 1.5.8 the
reduction to IND-CCA security is tight. Thus, in all security proofs proving security
under SO-CCA attacks, we can implicitly employ IND-SO-CCA security for a KEM
while only losing the winning probability of some IND-CCA attacker.

2.3 The OAEP Transformation

The second construction of public-key encryption schemes that we consider is the
well-known Optimal Asymmetric Encryption Padding (OAEP) transformation [BR95].
OAEP is a generic transformation for constructing public-key encryption schemes from
trapdoor permutations that was proposed by Bellare and Rogaway. Since then, it has
become an important ingredient in many security protocols and security standards
like TLS [DR08, Res02], SSH [Har06], S/MIME [RT10, Hou03], EAP [CA06] and Ker-
beros [NSF05, Rae05]. We show that OAEP is SIM-SO-CCA secure when instantiated
with a partial-domain trapdoor permutation (Section 2.3.1). In fact, our result holds
not only for trapdoor permutations, but for injective trapdoor functions as well. Since
SIM-SO-CCA security implies IND-CCA security, our proof also provides an alternative
to the IND-CCA security proof of [FOPS01]. Interestingly, despite that we are analyzing
security in a stronger security model, our proof seems to be somewhat simpler than
the proof of [FOPS01], giving a more direct insight into which properties of the OAEP
construction and the underlying trapdoor permutation make OAEP secure.

Provable Security of OAEP OAEP was initially published [BR95] with a flawed
security proof discovered some years later by Shoup [Sho02]. Shoup showed further-
more that it is unlikely that the security of OAEP can be reduced to the security of
the underlying trapdoor permutation alone. Moreover, Shoup described a modified
construction, termed OAEP+, together with a corresponding security proof.

Boldyreva and Fischlin [BF06] studied the security of OAEP when only one of the
two hash functions is modeled as a random oracle. The latter result was strengthened by

5For the matter of this discussion, we gloss over the syntactical differences.
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Kiltz et al. [KOS10], who proved the IND-CPA security of OAEP without random oracles,
when the underlying trapdoor permutation is lossy [PW08]. Since lossy encryption
implies IND-SO-CPA security [BHY09], this immediately shows that OAEP is IND-SO-
CPA secure in the standard model. However, we stress that prior to our work it was
not clear if OAEP meets the stronger notion of SIM-SO-CCA security, neither in the
standard model nor in the random oracle.

There also exist a number of negative results [Bro06, KP09] showing the impossibility
of instantiating OAEP without random oracles. The latter showed that OAEP cannot
be proven IND-CCA secure in the standard model. Thus, a proof of SIM-SO-CCA
security in the random oracle model is the strongest result we can hope for, since
SIM-SO-CCA security implies IND-CCA security.

2.3.1 Trapdoor Permutations and Partial-Domain One-wayness

Definition 2.3.1 (trapdoor permutation). A trapdoor permutation (TDP) over a
finite set of bitstrings {0, 1}k consists of an evaluation key space EK, a trapdoor space
T D and a triple of efficient algorithms T = (F.Gen, F, F−1) where

F.Gen : →$ EK × T D F : EK × {0, 1}k → {0, 1}k F−1 : T D × {0, 1}k → {0, 1}k

where for all (ek, td) ∈ [F.Gen] we have that Fek is a permutation on {0, 1}k and for all
(ek, td) ∈ [F.Gen] and all s ∈ {0, 1}k we have F−1

td (Fek(s)) = s.

For k = `+ k1 + k0 we can write F as

Fek : {0, 1}`+k1 × {0, 1}k0 → {0, 1}k .

Definition 2.3.2 (partial-domain secure trapdoor permutation). Let T be a TDF
as given in Definition 2.3.1. We say T is (τ, ε)-partial-domain one-way secure if there
exist `, k1, k2 ∈ N such that for all τ -time adversaries A that interact with the PD-OW
experiment as given in Figure 2.8 we have

Pr
[
PD-OWA ⇒ 1

]
≤ ε .

Informally, a trapdoor permutation is partial domain one-way secure if ε is small
for all efficient adversaries. For a partial domain secure TDF T we implicitly assume
that values `, k1, k2 as required in Definition 2.3.2 are part of T ’s description.
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Exp OW-PCAA
01 (ek, td)←$ F.Gen
02 (s, t)←$ {0, 1}`+k1 × {0, 1}k0

03 y ← Fek((s, t))
04 s′ ←$ A(ek, y)
05 Stop with (s =? s

′)

Figure 2.8: Experiment PD-OW as used in Definition 2.3.2.

2.3.2 The Optimal Asymmetric Encryption Padding (OAEP)

We begin by describing the OAEP transformation.

Construction 2.3.3 (OAEP transformation). Let T = (F.Gen, F, F−1) be a trapdoor
permutation over {0, 1}k. For `, k0, k1 ∈ N s.t. k = `+ k0 + k1 define hash functions

G : {0, 1}k0 → {0, 1}`+k1 , H : {0, 1}`+k1 → {0, 1}k0 .

Then the procedures in Figure 2.9 form a PKE scheme for plaintexts in {0, 1}`. We refer
to the PKE scheme as OAEP. The OAEP padding process is illustrated in Figure 2.10.

Proc OAEP.Gen
06 (ek, td)←$ F.Gen
07 pk := ek, sk := td
08 Return (pk, sk)

Proc OAEP.Encpk(m)
09 r ←$ {0, 1}k0

10 s← m‖0k1 ⊕G(r)
11 t← r ⊕H(s)
12 c← Fek((s, t))
13 Return c

Proc OAEP.Decsk(c)
14 (s, t)← F−1

td (c)
15 r ← t⊕H(s)
16 µ← s⊕G(r)
17 Parse µ as m‖ρ ∈ {0, 1}` × {0, 1}k1

18 If ρ 6= 0k1 :
19 Return ⊥
20 Else:
21 Return m

Figure 2.9: Construction of PKE OAEP from a TDP T and two hash functions G, H.

Note that, instead of employing a MAC as Construction 2.2.5 did, the OAEP
transform relies on a 0-padding 0k1 to serve as integrity protection.
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Figure 2.10: The OAEP padding process.

2.3.3 Selective Opening Security of OAEP

We prove that OAEP is SIM-SO-CCA secure in the random oracle model, assuming
the partial-domain one-wayness of the trapdoor permutation T .

Theorem 2.3.4 Let T = (F.Gen, F, F−1) be a TDP and G, H be hash functions as
specified in Construction 2.3.3.

If T is (τpd-ow, εpd-ow)-partial-domain one-way secure then PKE scheme OAEP is
(τso-cca, qd, qg, qh, εso-cca)-SIM-SO-CCA secure where

τso-cca = τpd-ow −O(qd · (qg + n) · (qh + n)) ,

εso-cca(n) ≤ n ·
(
qh · εpd-ow + qg ·

(
2−k0 + 2−`−k1

)
+ n · 2−k0

)
+ qd ·

(
2−k1 + qg · 2−k0

)
,

and G, H are modeled as random oracles that an attacker may query at most qg (resp.
qh) times.

Proof Sketch We prove Theorem 2.3.4 in a sequence of experiments, starting with
the r-SO-CCAOAEP experiment. We gradually modify the experiments, until a simulator
run in the i-SO-CCA experiment can simulate the r-SO-CCA experiment for any SIM-
SO-CCA adversary Aso. Again, the simulator’s strategy is to create ‘non-committing’
ciphertexts c1, . . . , cn which can then be opened to any plaintext mi when Aso queries
Open(i).

We sketch the sequence of experiments that we employ in the proof of Theorem 2.3.4:
In a first step, we replace the original decryption procedure that uses the real trapdoor
td with an equivalent (up to a small error probability) decryption procedure. The
new decryption procedure does not require td and is able to decrypt ciphertexts by
examining the sequence of random oracle queries made by adversary Aso. Here we use
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that A is not able (except for some small probability) to create a new valid ciphertext
c = Fek((s, t)), unless it queries H(s) and G(H(s) ⊕ t). However, in this case the
experiment is able to decrypt c by exhaustive search through all queries to H and G
made by A.

However, as we show, assuming that T is partial-domain one-way, it is unlikely to
happen that Aso asks H(si) before Open(i).

Finally, we conclude with the observation that from Aso’s point of view all values of
H(si) remain equally likely until Open(i) is asked, which implies also that it is very
unlikely that Aso ever queries G(ti ⊕H(si)) before Open(i). This in turn means that
the later simulator does not have to commit to a particular value of G(ti ⊕H(si)), and
thus not to a particular plaintext mi ‖0k1 = si⊕G(ti⊕H(si)), before Open(i) is asked.

We proceed with the detailed proof.

Proof of Theorem 2.3.4. Let Aso = (Aso,1,Aso,2) be an adversary against the
(τso-cca, qd, qg, qh, εso-cca)-SIM-SO-CCA security of OAEP.

Experiment Exp0. Experiment Exp0 given in Figure 2.11 constitutes the r-SO-CCA
experiment adjusted for PKE scheme OAEP. Note that random oracles G and H are
implemented by lazy sampling. To this end, the experiment maintains four lists

LG ⊆ {0, 1}k0 × {0, 1}`+k1 LH ⊆ {0, 1}`+k1 × {0, 1}k0

LAG ⊆ {0, 1}k0 LAH ⊆ {0, 1}`+k1

which are initialized as empty in line 02 (resp. 03). Note that we explicitly updates
these lists as queries are issued.

To simulate the random oracle G, the experiment uses the internal procedure Gint

(lines 29 – 32), which uses list LG to ensure consistency of random oracle responses
(see line 31). Adversary Aso does not have direct access to procedure Gint but only via
procedure G, which stores all values r queried by Aso in an additional list LAG.

Random oracle H is implemented similarly, with procedures Hint and H, using lists
LH and LAH .

Clearly, we have Pr
[
r-SO-CCAAso(n)⇒ 1

]
= Pr

[
ExpAso0 (n)⇒ 1

]
.

Experiment Exp1. Experiment Exp1 proceeds exactly as Exp0, except for decryption
queries that are processed with a new oracle OAEP.Dec1 as given in Figure 2.13.

Claim 2.3.5 It holds∣∣∣Pr
[
ExpAso0 (n)⇒ 1

]
− Pr

[
ExpAso1 (n)⇒ 1

]∣∣∣ ≤ qd · (2−k1 + qg · 2−k0
)
.
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Exp ExpAso0 (n)
01 I ← ∅; c← ∅
02 LG ← ∅; LH ← ∅
03 LAG ← ∅; LAH ← ∅
04 (ek, td)←$ F.Gen
05 (D, st)←$ AG,H,OAEP.Dec

so,1 (ek, n)
06 m←$ D
07 For i← 1 to n:
08 ri ←$ {0, 1}k0

09 si ← mi ‖0k1 ⊕Gint(ri)
10 ti ← ri ⊕Hint(si)
11 ci ← Fek((si, ti))
12 c← (c1, . . . , cn)
13 out←$ AG,H,Open,OAEP.Dec

so,2 (c)
14 Stop with Pred(D,m, I, out)

Oracle OAEP.Dec(c)
15 If c ∈ c: Abort
16 (s, t)← F−1

td (c)
17 r ← t⊕Hint(s)
18 m‖ρ← s⊕Gint(r)
19 If ρ 6= 0k1 :
20 Return ⊥
21 Else:
22 Return m

Oracle Open(i)
23 I ← I ∪ {i}
24 Return (mi, ri)

Oracle G(r)
25 LAG ← LAG ∪ {r}
26 Return Gint(r)

Oracle H(s)
27 LAH ← LAH ∪ {s}
28 Return Hint(s)

Internal Proc Gint(r)
29 If (r, ·) /∈ LG:
30 hr ←$ {0, 1}`+k1

31 LG ← LG ∪ (r, hr)
32 Return hr
Internal Proc Hint(s)
33 If (s, ·) /∈ LH :
34 hs ←$ {0, 1}k0

35 LH ← LH ∪ (s, hs)
36 Return hs

Figure 2.11: Procedures of experiment Exp0(n) instantiating the r-SO-CCA experiment with
PKE OAEP. We abstain from formally defining pk as ek and sk as td. Internal procedures
Hint and Gint are only available to the experiment.

Oracle OAEP.Dec1(c) (Exp1 – Exp5)
37 If c ∈ c: Abort
38 For all (r, hr, s, hs) ∈ LG × LH :

39 If
(
c = Fek(s, r ⊕ hs)
∧ s⊕ hr = m||0k1

)
:

40 Return m
41 Return ⊥

Figure 2.12: Replacement oracle OAEP.Dec1 as used in Exp1 – Exp5.
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For loop (Exp2 – Exp5)
42 For i← 1 to n:
43 si ←$ {0, 1}`+k1 , ti ←$ {0, 1}k0

44 ci ← Fek((si, ti))
45 ri ← H(si)⊕ ti
46 If ri ∈ LG: Abort
47 hri ← si ⊕mi ‖0k1 //Exp2 – Exp4
48 LG ← LG ∪ {(ri, hri)} //Exp2 – Exp4

Figure 2.13: New For loop replacing lines 07 - 11 in Figure 2.11 in experiments Exp2 – Exp5.
Lines 47 and 48 are removed in experiment Exp5.

Proof of Claim 2.3.5. Experiment Exp1 is indistinguishable from experiment Exp0 un-
less Aso queries OAEP.Dec(c) where OAEP.Dec(c) 6= OAEP.Dec1(c). Observe that
this can only hold if Aso queries OAEP.Dec1(c). Now let (s, t)← F−1

td (c), such that(
(s, ·) 6∈ LH ∨ (t⊕H(s), ·) 6∈ LG

)
∧ G(t⊕H(s))⊕ s = m‖0k1 .

Consider a single decryption query c = Fek((s, t)). Assume (s, ·) 6∈ LH . Then H(s)
is uniform and independent from Aso’s view. Hence the probability that there exists
(r, ·) ∈ LG such that r = H(s)⊕ t is at most qg · 2−k0 .

Assume (r, ·) 6∈ LG. Then G(r) is uniform and independent from Aso’s view, thus
the probability that G(r)⊕ s = m||0k1 has the correct syntax is at most 2−k1 .

Hence, taken over all at most qd decryption queries we have∣∣∣Pr
[
ExpAso0 (n)⇒ 1

]
− Pr

[
ExpAso1 (n)⇒ 1

]∣∣∣ ≤ qd · (2−k1 + qg · 2−k0
)
.

Note that procedure OAEP.Dec1 does not require the trapdoor td to perform
decryption.

Experiment Exp2. In experiment Exp2 we modify how the challenge ciphertexts c
that are fed to Aso,2 are computed. To this end, we replace the For loop in lines 07 - 11
in Figure 2.12 by the new instructions given in Figure 2.13. Note that this procedure
first samples (si, ti) uniformly random, then computes ci = F (ek, (si, ti)), and finally
programs the random oracle G such that ci decrypts to mi.

Claim 2.3.6 It holds that∣∣∣Pr
[
ExpAso1 (n)⇒ 1

]
− Pr

[
ExpAso2 (n)⇒ 1

]∣∣∣ ≤ n · (qg + n) · 2−k0 .
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Proof of Claim 2.3.6. Let Abort denote the event that Exp2 aborts in line 46. We
show that experiments Exp1 and Exp2 are identical until Abort. Note that the new
encryption first defines ri ← H(si)⊕ ti for uniformly random ti ←$ {0, 1}k0 . Thus, ri
is distributed uniformly over {0, 1}k0 , exactly as in experiment Exp1.

Now, assume that it is not aborted in line 46. Hence ri 6∈ LG. It follows that hash
function G is programmed such that G(ri) = hri = si ⊕mi ‖0k1 . Since si is uniformly
distributed, so is G(ri), exactly as in experiment Exp1. Thus, the new For loop is a
perfect simulation of the old one conditioned on Abort not happening.

Note that the procedure terminates only if ri ∈ LG. Since for all i ∈ [n] value si is
uniform, so is ri. Thus, Abort happens with probability at most n · (qg + n) · 2−k0 .

Experiment Exp3. We add an abort condition to the Open oracle. See line 50 in
Figure 2.14. That is, experiment Exp3 proceeds exactly like Exp2 but aborts if Aso for
any i ∈ [n] queries H(si) but did not query Open(i).

Claim 2.3.7 There exists an adversary Apd-ow that breaks the (τpd-ow, εpd-ow)-partial
domain one-way security of T where

τpd-ow ≈ τso-cca +O(qd · (qg + n) · (qh + n)) ,

and
εpd-ow ≥

1
n · qh

·
∣∣∣Pr
[
ExpAso2 (n)⇒ 1

]
− Pr

[
ExpAso3 (n)⇒ 1

]∣∣∣ .
Proof of Claim 2.3.7. Let Abort denote the event that experiment Exp3 aborts in line
50 (Figure 2.14). Clearly, experiments Exp2 and Exp3 are identical until Abort happens
and it suffices to bound Pr[Abort].

We construct adversary Apd-ow against the partial-domain one-wayness of T . Ad-
versary Apd-ow is run on (ek, y) where y = Fek((s, t)) for (s, t)←$ {0, 1}`+k1 × {0, 1}k0 .
It samples indices i∗ ←$ [n], q∗ ←$ [qh] and calls Aso,1(ek, n). When Aso,1 outputs D,
adversary Apd-ow samples plaintexts from D and encrypts them as in experiment Exp3

except for ci∗ that is set to ci∗ ← y.
When A makes its q∗th query to H with input s∗, Apd-ow outputs s∗ and terminates.

Analysis Note that cj is correctly distributed due to the changes introduced in
experiment Exp2. Assume that Abort happens. Then, at some point in its execution,
Aso makes the first query H(s′) such that s′ = si is a partial-domain preimage of some
ci. With probability 1/qh it holds that s∗ = si. Moreover, with probability 1/n we have
i = i∗. In this case Apd-ow obtains the partial preimage s = sj of y = cj .
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Oracle Open(i) (Exp3 – Exp5)
49 I ← I ∪ {i}
50 If si ∈ LAH : Abort //Exp3 – Exp5
51 If ri ∈ LAG: Abort //Exp4 – Exp5
52 hri ← si ⊕mi ‖0k1 // Exp5
53 LG ← LG ∪ {(ri, hri)} // Exp5
54 Return (mi, ri)

Figure 2.14: New Open oracle used from experiment Exp3 onwards.

Thus, if Abort happens and Apd-ow guessed i∗ ∈ [n] and q∗ ∈ [qh] correctly, then it
breaks the partial-domain security of T . Hence we obtain Pr[Abort] ≤ n · qh · εpd-ow.

The claim on εpd-ow follows from rearranging.
The running time of Apd-ow consists essentially of the running time of Aso, plus the

time needed to answer decryption queries, which is O((qg + n) · (qh + n)) per query.
Thus, the total overhead in running time is O(qd · (qg + n) · (qh + n)).

Note that in experiment Exp3 there is no i ∈ I such that Aso queries H(si) (as the
experiment would abort in line 50).

Experiment Exp4. We add another abort condition to the Open oracle. See line 51
in Figure 2.14. Experiment Exp4 aborts if for any i ∈ [n] adversary Aso queries G(ri)
before querying Open(i).

Claim 2.3.8 It holds
∣∣∣Pr
[
ExpAso3 (n)⇒ 1

]
− Pr

[
ExpAso4 (n)⇒ 1

]∣∣∣ ≤ n · qg · 2−`−k1 .

Proof of Claim 2.3.8. Due to the abort condition in line 50 introduced in the previous
experiment Exp3 adversary Aso never queries H(si) before querying Open(i). Let
Abort denote the event that experiment Exp4 aborts in line 51. Clearly, experiments
Exp3 and Exp4 are identical until Abort happens. Thus, for all i 6∈ I, H(si) is uniformly
random and independent of Aso’s view. Therefore, all ri = ti ⊕H(si) are uniformly
random and independent of Aso’s view. Because Aso issues at most qg queries to G,
and 1 ≤ i ≤ n we have Pr[Abort] ≤ n · qg · 2−`−k1 .

Experiment Exp5. We move two lines of code. Precisely, lines 47 and 48 (see
Figure 2.13) are removed from the encryption For loop to the Open oracle (see lines
52, 53 in Figure 2.14).

Claim 2.3.9 It holds Pr
[
ExpAso4 (n)⇒ 1

]
= Pr

[
ExpAso5 (n)⇒ 1

]
.
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Proof of Claim 2.3.9. Note that experiment Exp4 aborts if Aso queries G(ri) before
querying Open(i). Thus, there is no need to define the hash value G(ri) before Open(i)
is asked. Therefore we can move the definition of G(ri) from the For loop to the Open

oracle.
This modification is completely oblivious to Aso, which implies the claim.

Claim 2.3.10 There exists a simulator S = (S1,S2) with roughly the same running
time as Aso such that

Pr
[
ExpAso5 (n)⇒ 1

]
= Pr

[
i-SO-CCAS(n)⇒ 1

]
.

Proof of Claim 2.3.10. Note that in experiment Exp5 plaintexts (m1, . . . ,mn) are sam-
pled after Aso,1 outputs D but only used in the Open oracle. This allows us to construct
a simulator, whose instructions are described in Figure 2.15. Note that the view of
Aso when interacting with the simulator is identical to its view when interacting with
experiment Exp5. The claim follows.

The claim follows from collecting the results from Claims 2.3.5 to 2.3.10.

Selective Opening Security of RSA-OAEP The most important application of
the OAEP scheme is clearly the RSA-OAEP encryption scheme, as described in the
PKCS#1 standard [JK03]. Therefore an interesting question is whether the RSA
trapdoor permutation is a partial-domain secure trapdoor permutation in the sense
of Definition 2.3.2. By applying lattice reduction techniques, Fujisaki et al. [FOPS01]
have shown that indeed the partial-domain one-wayness of the RSA permutation is
equivalent to the one-wayness of RSA.
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Simulator S1(n)
01 I ← ∅; c← ∅
02 LG ← ∅; LH ← ∅
03 LAG ← ∅; LAH ← ∅
04 (ek, td)←$ F.Gen
05 (D, st)←$ AG,H,OAEP.Dec

so,1 (ek, n)
06 Return D

Simulator SOpenS
2 (|m1|, . . . , |mn|)

07 For i← 1 to n:
08 si ←$ {0, 1}`+k1

09 ti ←$ {0, 1}k0

10 ci ← Fek((si, ti))
11 ri ← H(si)⊕ ti
12 If ri ∈ LG: Abort
13 c← (c1, . . . , cn)
14 out←$ AG,H,Open,OAEP.Dec

so,2 (c)
15 Stop with Pred(D,m, I, out)

Oracle Open(i)
16 mi ← OpenS(i)
17 I ← I ∪ {i}
18 If si ∈ LAH : Abort
19 If ri ∈ LAG: Abort
20 hri ← si ⊕mi ‖0k1

21 LG ← LG ∪ {(ri, hri)}
22 Return (mi, ri)

Oracle OAEP.Dec1(c)
23 If c ∈ c: Abort
24 For all (r, hr, s, hs) ∈ LG × LH :

25 If
(
c = F (ek, (s, r ⊕ hs)
∧ s⊕ hr = m||0k1

)
:

26 Return m
27 Return ⊥

Oracle G(r)
28 LAG ← LAG ∪ {r}
29 Return Gint(r)

Oracle H(s)
30 LAH ← LAH ∪ {s}
31 Return Hint(s)

Internal Proc Gint(r)
32 If (r, hr) /∈ LG:
33 hr ←$ {0, 1}`+k1

34 LG ← LG ∪ (r, hr)
35 Return hr
Internal Proc Hint(s)
36 If (s, hs) /∈ LH :
37 hs ←$ {0, 1}k0

38 LH ← LH ∪ (s, hs)
39 Return hs

Figure 2.15: Instructions of simulator S to implement the r-SO-CCA experiment for Aso. We
denote the open oracle provided by the ideal experiment for S2 with OpenS .

2.4 The Fujisaki-Okamoto Transformation

We move on to the last transformation covered in this chapter. The Fujisaki-Okamoto
transformation was proposed in [FO99] and excels through its generality. In [Pei14]
it has successfully been applied to construct an efficient lattice-based cryptosystem.
Remarkably, other major transformations to IND-CCA secure PKE schemes like DHIES
[BR97, ABR01], REACT [OP01], OAEP [BR95] could not be applied in this scenario
[Pei14].

Provable Security of the FO Transformation The Fujisaki-Okamoto transfor-
mation employs two hash functions to strengthen a PKE scheme. If instantiated with
one-way secure PKE scheme under with plaintexts ‘spread well’ (taken over the random-
ness (see Definition 2.4.2)), the transformed scheme is IND-CCA secure in the random
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oracle model [FO99, FO13].
In our analysis we consider a slightly modified transformation that was given in the

journal version [FO13]. Further, the journal version clarifies that the two conditions on
which the decryption algorithm aborts (see Figure 2.17) should trigger the same error
symbol to be output. Joye, Quisquater, and Yung [JQY01] have shown that such a
behavior is crucial for security. In fact, it has been practically exploited that in some
implementations the output of the error symbol when generated by the first abort
condition usually appears earlier than that of the second. [ST02]

2.4.1 One-wayness and Ciphertext Distribution

In this section PKE will always denote a PKE scheme (PKE.Gen,PKE.Enc,PKE.Dec)
for a finite plaintext spaceM. The randomness space of PKE.Enc is denoted by R.

Definition 2.4.1 (OW secure PKE). We say PKE is (τ, ε)-OW secure if for all τ -time
adversaries that interact with the OW experiment from Figure 2.16 we have

Pr
[
OWA ⇒ 1

]
≤ ε .

Exp OWA
01 (pk, sk)←$ PKE.Gen
02 m←$ M
03 c←$ PKE.Encpk(m)
04 m′ ←$ A(pk, c)
05 Stop with (m =? m

′)

Figure 2.16: One-way experiment OW as used in Definition 2.4.1.

Informally, we say that PKE is OW (secure) if ε is small for all efficient adversaries.

Definition 2.4.2 (γ-spread PKE). Let m ∈M and (pk, sk) ∈ [PKE.Gen]. We define
the min-entropy γpk(m) of PKE.Encpk(m) as

γpk(m) := − log max
c∈{0,1}∗

{
Pr

r←$R
[c = PKE.Encpk(m; r)]

}
.

We say PKE is γ-spread if for all (pk, sk) ∈ [PKE.Gen] and all m ∈ M we have
γpk(m) ≥ γ.
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Note that for any γ-spread PKE scheme appending γ′ uniform random bits to the
ciphertexts immediately ensures that the scheme is (γ + γ′)-spread at the cost of longer
ciphertexts as mentioned in [FO99]. Hence, as we show, SIM-SO-CCA secure PKE (in
the ROM) exists assuming the existence of one-way secure PKE.

2.4.2 The Fujisaki-Okamoto Transformation

We describe the Fujisaki-Okamoto transformation as given in [FO13].

Construction 2.4.3 (Fujisaki-Okamoto transformation). Let PKE be a PKE for
finite plaintext space M and ciphertext space C. Let R denote the finite randomness
space of PKE.Enc.

Let
MFO := {0, 1}` , RFO :=M , CFO := C × {0, 1}` .

Let G, H be hash functions where

G : RFO → {0, 1}` , H : RFO × {0, 1}` → R .

Then the procedures in Figure 2.17 form a PKE scheme for plaintext spaceMFO. We
refer to the PKE scheme as FO.

Proc FO.Gen
01 (pk, sk)← PKE.Gen
02 Return (pk, sk)

Proc FO.Encpk(m)
03 r ←$ RFO
04 c(2) ← m⊕G(r)
05 h← H(r, c(2))
06 c(1) ← PKE.Encpk(r;h)
07 Return 〈c(1), c(2)〉

Proc FO.Decsk(〈c(1), c(2)〉)
08 r̂ ← PKE.Decsk(c(1))
09 If r̂ /∈ RFO:
10 Return ⊥
11 ĥ← H(r̂, c(2))
12 ĉ(1) ← PKE.Encpk(r̂; ĥ)
13 If c(1) 6= ĉ(1):
14 Return ⊥
15 m← c(2) ⊕G(r̂)
16 Return m

Figure 2.17: Fujisaki-Okamoto Transformation for PKE scheme PKE.

For clarity, the FO encryption process is illustrated in Figure 2.18.
Note that the decryption procedure of the FO transformation performs a check of

‘well-formedness’ by re-encryption in line 12.
We instantiate the symmetric encryption with the one-time pad (see Section 2.2.5)
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and interpret the FO transformation as a transformation of PKE schemes. In its full
generality, hash value G(r) serves as key for a DEM.

m

r

G(r)

⊕

H(r, c(2)) PKE.Encpk(r; h)

c(2)

h

c(2)
c(1)

Figure 2.18: Structure of FO encryption. We have 〈c(1), c(2)〉 ← FO.Encpk(m; r).

2.4.3 Selective Opening Security of the Fujisaki-Okamoto Transformation

Theorem 2.4.4 Let PKE be a PKE and let FO denote the PKE scheme obtained
when instantiating Construction 2.4.3 with PKE.

If PKE is (τow, εow)-OW secure and γ-spread, then FO is (τso-cca, qd, qhash, εso-cca)-
SIM-SO-CCA secure where

τso-cca = τow−O(qd·qhash), εso-cca(n) ≤ n·
(
qd · 2−γ + qhash ·

(
1

|R| − qhash
+ εow

))
,

where G and H are modeled as random oracles that may be queried jointly at most qhash
times.

Proof Sketch The idea is similar to the previous two proofs of SIM-SO-CCA secure
PKE in Sections 2.2 and 2.3. Again, we proceed in a sequence of experiments:

After the first modification the experiment will be capable of answering (almost all)
decryption queries without the secret key. Next, a statistical argument ensures that for
all i ∈ [n] hash functions H(ri, ·) and G(ri) were not evaluated when a SIM-SO-CCA
adversary Aso outputs D and expects encryptions of challenge plaintexts. Thus, we
can rewrite the encryption of challenge plaintexts by moving the programming of G
and the H to oracles G, H and Open procedure. Further, we use PKE’s one-wayness
to argue that Aso,2(c1, . . . , cn) is unlikely to query H(ri, c(2)

i ) or G(ri) for any i ∈ [n].
As a last step, we construct a simulator S suitable to run Aso in a simulated

r-SO-CCA experiment when S is run in the ideal experiment.

Proof of Theorem 2.4.4. Let Aso = (Aso,1,Aso,2) denote an attacker against the
(τso-cca, qd, qhash, εso-cca)-SIM-SO-CCA security of FO.
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We continue with detailed descriptions of the experiments given in Figures 2.19
to 2.21.

Exp Exp0(n) – Exp4(n)
01 I ← ∅; c← ∅
02 LG ← ∅; LH ← ∅
03 (pk, sk)←$ PKE.Gen
04 For i← 1 to n:
05 ri ←$ RFO
06 (D, st)←$ AG,H,FO.Dec

so,1 (pk, n)
07 m←$ D
08 For i← 1 to n:
09 c(2)

i ← G(ri)⊕mi //Exp0 – Exp2
10 hi ← H(ri, c(2)

i ) //Exp0 – Exp2
11 c(1)

i ← PKE.Encpk(ri;hi) //Exp0 – Exp2
12 σgi ←$ {0, 1}` //Exp3 – Exp4
13 c(2)

i ← σgi //Exp3 – Exp4
14 σhi ←$ R //Exp3 – Exp4
15 c(1)

i ← PKE.Encpk(ri;σhi ) //Exp3 – Exp4
16 ci ← 〈c(1)

i , c
(2)
i 〉

17 c← (c1, . . . , cn)
18 out←$ AG,H,Open,FO.Dec

so,2 (st, c)
19 Stop with Pred(D,m, I, out)

Oracle Open(i)
20 I ← I ∪ {i}
21 G(ri)← σgi ⊕mi //Exp3 – Exp4
22 H(ri, ci)← σhi //Exp3 – Exp4
23 Return (mi, ri)

Figure 2.19: Sequence of experiments used in the proof of Theorem 2.4.4. Oracle FO.Dec is
given in Figure 2.20. Hash oracles G and H are given in Figure 2.21.

Experiment Exp0. Experiment Exp0 constitutes the r-SO-CCA experiment adopted
for PKE = FO. Further, hash functions G and H are implemented by lazy sampling.
Additionally, we introduce a merely syntactical change: For all i ∈ [n] the random coins
ri are sampled before Aso,1 is started.

Clearly, we have Pr
[
r-SO-CCAAso(n)⇒ 1

]
= Pr

[
ExpAso0 (n)⇒ 1

]
.

Experiment Exp1. We replace the decryption oracle FO.Dec0 by the new oracle
FO.Dec1 given in Figure 2.20. For a decryption query 〈c(1)c(2)〉, instead of decrypting
c(1) to obtain r̂ and querying H(r̂, c(2)), experiment Exp1 aborts if Aso did not submit
some tuple (r̂, c(2)) to H s.t. c(1) = PKE.Encpk(r̂;H(r̂, c(2))). Otherwise the experiment
retrieves r̂ from LH .
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Oracle FO.Dec0(〈c(1), c(2)〉) (Exp0)
24 If 〈c(1), c(2)〉 ∈ c: Abort
25 r̂ ← PKE.Decsk(c(1))
26 If r̂ /∈ RFO:
27 Return ⊥
28 ĥ← H(r̂, c(2))
29 If c(1) 6= PKE.Encpk(r̂; ĥ):
30 Return ⊥
31 m← c(2) ⊕G(r̂)
32 Return m

Oracle FO.Dec1(〈c(1)c(2)〉) (Exp1 – Exp4)
33 If 〈c(1), c(2)〉 ∈ c: Abort
34 If @(r̂, c(2), ĥ) ∈ LH s.t.

c(1) = PKE.Encpk(r̂; ĥ):
35 Return ⊥
36 Else:
37 Let r̂ s.t. (r̂, c(2), ĥ) ∈ LH

∧ c(1) = PKE.Encpk(r̂; ĥ)
38 m← c(2) ⊕G(r̂)
39 Return m

Figure 2.20: Decryption oracles as used in the sequence of experiments given in Figure 2.19.
Oracle FO.Dec0 is used in experiment Exp0, oracle FO.Dec1 is used from experiment Exp1
on.

Claim 2.4.5 It holds∣∣∣Pr
[
ExpAso0 (n)⇒ 1

]
− Pr

[
ExpAso1 (n)⇒ 1

]∣∣∣ ≤ n · qd · 2−γ .

Proof of Claim 2.4.5. Recall that a ciphertext 〈c(1), c(2)〉 is valid if decryption does not re-
sult in ⊥. That is, for r ← PKE.Decsk(c(1)) we have r ∈ RFO and
c(1) = PKE.Encpk(r;H(r, c(2))).

Now consider decryption oracles FO.Dec0 and FO.Dec1. We see that invalid
ciphertexts are decrypted to ⊥ in both procedures. Further, if a valid ciphertext is
decrypted to m 6= ⊥ in oracle FO.Dec1 the same holds for FO.Dec0. On the contrary,
a valid ciphertext query 〈c(1), c(2)〉 answered with m 6= ⊥ by FO.Dec0 might result in a
⊥ reply by FO.Dec1. Precisely, it happens if Aso did not query H(r̂, c) before calling
FO.Dec(〈c(1), c(2)〉), i.e., there is no entry (r̂, c(2), ·) in list LH. Hence, the distance
between experiments Exp0 and Exp1 is upper-bounded by the probability that Aso
submits a valid 〈c(1), c(2)〉 to FO.Dec while H(r̂, c) is still undefined.

We now show that (r, c(2)) 6= (ri, c(2)
i ) for all i ∈ [n]. A (without loss of generality)

submits a ciphertext 〈c(1), c(2)〉 /∈ {〈c(1)
i , c

(2)
i 〉}i∈[n]. If c(2) 6= c(2)

i for all i ∈ [n] the claim
follows. Otherwise, assume that for some i ∈ [n] we have c(2) = c(2)

i , then c(1) 6= c(1)
i . As

c(1) ← PKE.Encpk(r;H(r, c(2))) it follows (r,H(r, c(2))) 6= (ri, H(ri, c(2)
i )). Thus, either

r 6= ri or H(r, c(2)) 6= H(ri, c(2)
i ), implying r 6= ri since we assumed c(2) = c(2)

i . Hence,
H(r, c(2)) is independent of H(ri, c(2)

i ) for all i ∈ [n] and we can employ the γ-spreadness
of PKE. Thereby, the probability of Aso submitting a valid decryption query 〈c(1), c(2)〉
without querying H(r̂, c(2)) is at most n · 2−γ for a single decryption query.

The claim follows.

Note that FO.Dec1 does not require knowledge of sk to process decryption queries.
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Oracle G(t)
40 If t ∈ {r1, . . . , rn}: //Aso,1: Exp2 – Exp4
41 Abort //Aso,1: Exp2 – Exp4
42 Let i ∈ [n] s.t. t = ri //Aso,2: Exp4
43 If i /∈ I: Abort //Aso,2: Exp4
44 G(t)← σgi ⊕mi //Aso,2: Exp3 – Exp4
45 If (t, ·) /∈ LG:
46 gt ←$ {0, 1}`
47 G(t)← gt
48 Return gt
Oracle H(s1, s2)
49 If s1 ∈ {r1, . . . , rn}: //Aso,1: Exp2 – Exp4
50 Abort //Aso,1: Exp2 – Exp4
51 Let i ∈ [n] s.t. s1 = ri //Aso,2: Exp3 – Exp4
52 If s2 = ci: //Aso,2: Exp3 – Exp4
53 If i /∈ I: Abort //Aso,2: Exp4
54 H(s1, s2)← σhi //Aso,2: Exp3 – Exp4
55 If (s1, s2, ·) /∈ LH :
56 hs ←$ R
57 H(s1, s2)← hs
58 Return hs

Figure 2.21: Hash oracles G and H as part of the sequence of experiments from Figure 2.19.

Experiment Exp2. We add abort conditions to the G and H oracles (see lines 40/41
and 49/50). If Aso,1 queries G(ri) or H(ri, ·) for some i ∈ [n], experiment Exp2 aborts.

Claim 2.4.6 It holds∣∣∣Pr
[
ExpAso0 (n)⇒ 1

]
− Pr

[
ExpAso1 (n)⇒ 1

]∣∣∣ ≤ n · qhash
|R| − qhash

.

Proof of Claim 2.4.6. Observe that for all i ∈ [n] the value ri is uniformly random from
Aso,1’s point of view. Experiment Exp2 aborts if for any i ∈ [n] adversary Aso,1 queries
H(ri, ·) or G(ri). Let us denote the respective event with Abort. Now, Pr[Abort] can
be upper-bounded by the sum over the probability of aborting on the ith hash query
(to either G or H) conditioned on Abort did not happen in the first i− 1 hash queries.
Hence,

Pr[Abort] ≤ n ·
qhash∑
i=1

1
|RFO| − (i− 1) ≤

n · qhash
|R| − qhash

.
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Experiment Exp3. We modify the encryption of challenge plaintexts. Instead of
querying H(ri, c(2)

i ) (resp. G(ri)) we pick σhi ← R (resp. σgi ←$ {0, 1}`) uni-
formly at random (see lines 12, 14). The challenge ciphertexts are computed as
(c(1)
i , c

(2)
i ) = (PKE.Encpk(ri;σhi ), σgi ) (see lines 13, 15).

We accordingly program the hash functions (if Aso should query them) as
G(ri) ← σgi ⊕ mi (line 44) and H(ri, c(2)

i ) ← σhi (lines 51, 52, 54). The same pro-
gramming is performed when Aso queries Open(i) (lines 21 and 22).

Claim 2.4.7 It holds

Pr
[
ExpAso2 (n)⇒ 1

]
= Pr

[
ExpAso3 (n)⇒ 1

]
.

Proof of Claim 2.4.7. Fix i ∈ [n] and observe that during the For loop (line 08) values
H(ri, ci) and G(ri) are uniformly random. Thus, we can choose some uniform σhi for
encryption instead of evaluating H(ri, ci).

The same argument applies for G. Thus, value G(ri)⊕mi is uniform and we can
replace it by some uniform σgi . The additional instructions within G, H and Open

ensure that for all i ∈ [n] values H(ri, ci) and G(ri) are programmed consistently.

Observe that, from experiment Exp3 on, for all i ∈ [n] ciphertext ci = 〈c(1)
i , c

(2)
i 〉 is

independent of plaintext mi when Aso,2 is run on c.
We now ensure that for all i ∈ [n] the ciphertext 〈c(1)

i , c
(2)
i 〉 remains independent of

mi unless Aso,2 queries Open(i)

Experiment Exp4. We add abort conditions to the hash functions. Experiment Exp4

aborts Aso,2 if for any i ∈ [n] it queries H(ri, c(2)
i ) or G(ri) and did not call Open(i).

See lines 42/43 and 53.

Claim 2.4.8 There exists an adversary Aow that breaks the (τow, εow)-OW security
of PKE where τow ≈ τso-cca +O(qd · qh) and

εow ≥
1

n · qhash
·
∣∣∣Pr
[
ExpAso3 (n)⇒ 1

]
− Pr

[
ExpAso4 (n)⇒ 1

]∣∣∣ .
Proof of Claim 2.4.8. Let Abort denote the event that a newly introduced Abort
happens in experiment Exp4. As experiments Exp3 and Exp4 are identical until Abort,
we have |Pr[ExpAso3 ]− Pr[ExpAso4 ]| ≤ Pr[Abort].

We construct adversary Aow. It is run on (pk, c∗). It samples i∗ ←$ [n], q∗ ←$ [qhash]
and invokes Aso,1(pk, n). On Aso’s q∗th hash query, either G(t) or H(s1, ·), adversary
Aow outputs t (resp. s1) and halts.
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When Aso,1 outputs D, Aow processes them as in experiment Exp4 except for
ciphertext ci∗ ← (c∗, σgi ).
Aow answers opening queries honestly unless Aso,2 queries Open(i∗) where Aow

aborts.

Analysis Assume that Abort happens. Then, with probability 1/n it will happen
for i = i∗. In particular, Aso will not call Open(i∗) and will query G(ri∗) or H(ri∗ , ·)
where ri∗ = PKE.Decsk(c(2)). With probability 1/qhash, adversary Aso will make that
query as its j∗th. Clearly, Aow breaks OW security by returning ri. The claim on εow
follows.

The running time of Aow is at least the running time of Aso. Further, Aow simulates
the decryption oracle as in experiment Exp4. To this end, for each decryption query, it
iterates over all entries in LH , |LH | ≤ qhash. That is, the overall overhead for answering
decryption queries is O(qd · qhash).

Note that from now on for all i ∈ [n] ciphertext ci remains independent of the
sampled plaintexts until Aso queries Open(i).

Claim 2.4.9 There exists a simulator S = (S1,S2) such that

Pr
[
ExpAso4 (n)⇒ 1

]
= Pr

[
i-SO-CCAS(n)⇒ 1

]
.

Proof of Claim 2.4.9. We describe S run in the i-SO-CCA experiment assuming that
Aso does not cause abort to happen.
S1(n) runs PKE.Gen on its own to obtain (pk, sk). S1 invokes Aso,1(pk, n). Hash

and decryption queries by Aso are answered as in experiment Exp4. Once Aso,1 halts
with D, simulator S1 halts with output D as well.

Once S2 is run, it computes ciphertexts as in experiment Exp4 and runs Aso,2(c). If
Aso,2 queries Open(i), simulator S2 relays the query to its ideal experiment to obtain
mi. Then S2 programs the hash functions as in experiment Exp4 and forwards (ri,mi)
to Aso,2. When Aso,2 halts with output out, S2 outputs out and terminates.

The claim from Theorem 2.4.4 follows from collecting the results of Claims 2.4.5
to 2.4.9.
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Chapter 3

Selective Opening Security
of Hybrid Encryption

We already established results on widely standardized PKE schemes in Chapter 2.
However, they remain of little use to obtain practical PKE resisting selective opening
attacks: Recall that in all covered transformations the symmetric encryption consists of
one-time-padding the plaintext with the output of a random oracle to ensure efficient
openability. In the case of the OAEP transform (Construction 2.3.3) by design, in the
cases of Constructions 2.2.5 and 2.4.3 by our choice. This severely limits the results
of Chapter 2 to plaintexts that are not longer than the output lengths of the used
random oracle, e.g., less than 512 bits when using SHA-3 [Dwo15].

PKE in practice is usually composed of a KEM employed to transport a short
(symmetric) key, while a highly efficient data encapsulation mechanism is used to
encrypt the plaintext. Thus, one might consider using DHIES⊕ (Corollary 2.2.14) and
the PKE obtain by using the RSA-KEM in Construction 2.2.5 as a KEM. Unfortunately,
SO security of a KEM, generally, does not carry over to a PKE built following the
KEM/DEM-approach [BDWY11].

In this chapter we study the selective opening security of hybrid PKE schemes
as employed in practice. Contrary to previous approaches (e.g. [LP15]) we focus on
properties of a DEM rather than the KEM that render the whole hybrid PKE scheme
selective opening secure. To this end, we introduce the notion of simulatability for
DEMs built around blockciphers. If a DEM offers simulatabilty and one-time integrity
protection, we may combine it with any IND-CCA secure KEM to obtain an SIM-SO-
CCA secure PKE in the ideal cipher model (see [CPS08]).

We recall some important cryptographic notions next.
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3.1 Preliminaries

We define partial permutations and blockciphers. In our proofs, the former play an
important role for the abstraction of the latter.

3.1.1 Symmetric Primitives

Definition 3.1.1 ((partial permutation), blockcipher). For a finite domain D we
denote the set of all permutations on D with P(D) and the set of all partial permutations
on D with PP(D). Precisely, a relation R ⊆ D × D is a partial permutation if
αRβ, α′Rβ ⇒ α = α′ and αRβ, αRβ′ ⇒ β = β′; relation R is a permutation if in
addition |R| = |D| holds. A blockcipher with key space K and domain D is a family
(Ek)k∈K of permutations Ek ∈ P(D).

Definition 3.1.2 (ideal cipher). A blockcipher (Ek)k∈K with key space K and domain
D obtained by for all k ∈ K letting Ek ←$ P(D) is called ideal cipher.

We associate with a partial permutation R ∈ PP(D) the partial functions
R+ : D → D and R− : D → D that evaluate R left-to-right and right-to-left, respectively.
For instance, if (α, β) ∈ R then R+(α) = β and R−(β) = α. We write Dom(R) and
Rng(R) for the domain and range of R+, i.e., for the sets {α ∈ D | ∃β : (α, β) ∈ R}
and {β ∈ D | ∃α : (α, β) ∈ R}, respectively. If α /∈ Dom(R) and β /∈ Rng(R) we denote
with R ← R ∪ {(α, β)} the operation of ‘programming’ R such that R+(α) = β and
R−(β) = α for the updated R, which is again a partial permutation. Note that any
partial permutation can be completed to a (full) permutation by adding sufficiently
many such pairs (α, β) to it. More importantly, if a partial permutation is selected
according to the uniform distribution over some subset of PP(D), it can be extended to
a permutation uniformly distributed in P(D) by adding random such pairs (α, β) to it.

Definition 3.1.3 (keyed hash function). A keyed hash function for a message spaceM
consists of a key space K, a tag space T , and an efficient function khf : K ×M→ T .

We proceed with specifying the syntax and functionality of DEMs. As a correspond-
ing notion of authenticity we define integrity of ciphertexts [BN00]. In a nutshell, a
DEM offers this feature if no adversary with access to an encapsulation oracle can
find a fresh ciphertext that corresponds to a valid message, i.e., is not rejected by
the decapsulation algorithm. Relevant to our work is in particular the corresponding
one-time notion where the adversary can pose at most one encapsulation query.
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Definition 3.1.4 (data encapsulation mechanism). A data encapsulation mechanism
(DEM) for a plaintext spaceM consists of a finite key space K, a ciphertext space C,
and a pair of efficient algorithms DEM = (DEM.Enc,DEM.Dec) of the form

DEM.Enc : K ×M→ C DEM.Dec : K × C →M∪· {⊥} ,

where symbol ‘⊥’ may be used to indicate errors. Correctness requires that for all k ∈ K
and m ∈M, if DEM.Enc(k,m) = c then DEM.Dec(k, c) = m.

Recall from Section 2.2 that we combined the one-time pad with a OT-secure MAC
to obtain integrity protection. As for practical DEMs, the latter might be realized in
other ways than employing a MAC, we introduce the notion of (one-time) integrity of
ciphertexts [BN00].

Definition 3.1.5 (OT-INT-CTXT secure DEM). A data encapsulation mechanism is
(τ, qd, ε)-OT-INT-CTXT secure if for all τ -time adversaries A = (A1,A2) that interact
in the OT-INT-CTXT experiment from Figure 3.1 and issue at most qd queries to the
DEM.Dec oracle we have

Pr
[
OT-INT-CTXTA ⇒ 1

]
≤ ε .

Exp OT-INT-CTXTA
01 c∗ ←$ ∅
02 k ←$ K
03 (m, st)←$ ADEM.Dec

1
04 c∗ ← DEM.Enc(k,m)
05 ()←$ ADEM.Dec

2 (st, c∗)
06 Stop with 0

Oracle DEM.Dec(c)
07 If c = c∗: Abort
08 m← DEM.Dec(k, c)
09 If m 6= ⊥:
10 Stop with 1
11 Return ⊥

Figure 3.1: Experiment for defining OT-INT-CTXT security of DEMs.

3.1.2 Hybrid Encryption

KEMs While we assumed KEMs to sample keys uniformly in Section 2.2, we drop
the requirement in the following.

We define IND-CCA security for KEMs next.
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Definition 3.1.6 (IND-CCA secure KEM). A key encapsulation mechanism KEM is
(τ, qd, ε)-IND-CCA secure if all τ -time adversaries A = (A1,A2) that interact in the
IND-CCAb experiments from Figure 3.2 and issue at most qd queries to the KEM.Dec

oracle we have ∣∣∣Pr
[
IND-CCAA0 ⇒ 1

]
− Pr

[
IND-CCAA1 ⇒ 1

]∣∣∣ ≤ ε .
Exp IND-CCAAb
01 c∗ ← ∅
02 (pk, sk)←$ KEM.Gen
03 st ←$ AKEM.Dec

1 (pk)
04 (k∗0 , c∗)←$ KEM.Encpk
05 k∗1 ←$ K
06 b′ ←$ AKEM.Dec

2 (st, c∗, k∗b )
07 Stop with b′

Oracle KEM.Dec(c)
08 If c = c∗: Abort
09 k ← KEM.Decsk(c)
10 Return k

Figure 3.2: Security experiments IND-CCAb for defining IND-CCA security of KEMs.

In most applications a DEM is combined with a KEM (see Definition 2.2.1) to
obtain (hybrid) PKE [CS03] as follows:

Construction 3.1.7 (hybrid encryption). Take a DEM (DEM.Enc,DEM.Dec) for a
plaintext spaceM and a KEM (KEM.Gen,KEM.Enc,KEM.Dec) for the key space of the
DEM. Let the randomness space of PKE.Enc be defined as the randomness space of
KEM.Enc. Then the algorithms in Figure 3.3 form the hybrid PKE scheme.

Proc PKE.Gen
01 (pk, sk)←$ KEM.Gen
02 Return (pk, sk)

Proc PKE.Encpk(m; r)
03 (k, c(1))← KEM.Encpk(r)
04 c(2) ← DEM.Enc(k,m)
05 Return 〈c(1), c(2)〉

Proc PKE.Decsk(〈c(1), c(2)〉)
06 k ← KEM.Decsk(c(1))
07 If k = ⊥: Return ⊥
08 m← DEM.Dec(k, c(2))
09 Return m

Figure 3.3: Hybrid construction of PKE from a KEM and a DEM.

3.2 Simulatable DEMs and our Main Result

In this section we present our main result on hybrid public key encryption. We define a
combinatorial property of a DEM called simulatability. Then we show that any KEM
and any DEM satisfying standard security notions yield a SIM-SO-CCA secure hybrid
PKE (in the ideal cipher model) if the DEM is simulatable. [CPS08, EM93, KR01].
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3.2.1 Simulatable DEMs

Many practical DEMs are constructed from blockciphers, possibly in combination
with further symmetric building blocks like universal hash functions or MACs. We
formalize next what it means for a DEM to make use of a blockcipher in a black-box way.
Virtually all blockcipher-based DEMs, and in particular those specified by the major
standardization bodies, are of this type. In our definition, K denotes the key space of
the blockcipher and K′ denotes the cartesian product of the key spaces of the remaining
cryptographic primitives used by the scheme. For instance, in an encrypt-then-MAC
construction, K′ would be the key space of the message authentication code; if the
construction requires no further keyed primitive, K′ would be the trivial set containing
a single element.

Recall from Definition 3.1.1 that P(D) and PP(D) denote the sets of all permutations
and partial permutations, respectively, on domain D.

The next two definitions provide the syntactical requirements we impose on DEMs.
The first definitions establishes how a DEM may be built around a blockcipher. The
second definition specifies how a DEM shall employ its key material.

Definition 3.2.1 (oracle DEM). An oracle data encapsulation mechanism (oDEM) for
a domainD and a plaintext spaceM consists of a finite key spaceK′, a ciphertext space C,
and efficient algorithms O.Enc and O.Dec that have oracle access to a permutation π
on D (in both directions) and are of the form

O.Encπ : K′ ×M→ C O.Decπ : K′ × C →M∪· {⊥} ,

where symbol ‘⊥’ may be used to indicate errors. Correctness requires that for all
π ∈ P(D), k′ ∈ K′, and m ∈M, if O.Encπ(k′,m) = c then O.Decπ(k′, c) = m.

Definition 3.2.2 (permutation-driven DEM). A DEM for plaintext spaceM with
keyspace K′′ = K ×K′ is (K,D)-permutation-driven if there exists an oracle DEM for
D andM with algorithms O.Encπ : K′ ×M→ C and O.Decπ : K′ × C →M∪· {⊥} and
a blockcipher (Ek)k∈K on domain D such that for all k′ ∈ K′ and m ∈M and c ∈ C we
have

DEM.Enc((k, k′),m) = O.EncEk(k′,m) and DEM.Dec((k, k′), c) = O.DecEk(k′, c) .

(3.1)

According to this definition, for any specific permutation-driven DEM many corre-
sponding oracle DEMs, i.e., O.Enc and O.Dec algorithms, and blockciphers E might
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exist. In practice, however, a single canonical specification of these algorithms will stick
out. In particular, this holds, as we will see, for the standardized DEMs studied in
Section 3.3. For the sake of a concise notation, we thus assume that suitable O.Enc,
O.Dec, and E algorithms are always uniquely given.

We next define a combinatorial property called simulatability that holds for an oracle
DEM if, in principle, the encapsulation algorithm could commit to a ciphertext before
seeing the corresponding plaintext; intuitively, this is only possible if the permutation
in the oracle is ‘flexible enough’, i.e., can be ‘programmed’. We formalize this idea by
splitting the encapsulation routine into two components, Fake and Make.

First Fake outputs a ciphertext c without seeing the plaintext m (but it length |m|),
then Make, on input m, is meant to find a possible (partial) permutation instance π̃
under which indeed m would be encapsulated to c. To be useful in our later selective
opening related proofs where we want to embed π̃ into an ideal cipher, π̃ is further
required to be uniformly distributed (conditioned on the formulated requirements).

Definition 3.2.3 (simulatable oracle DEM). Consider an oracle DEM for a do-
main D and a plaintext space M that has an encapsulation algorithm of the form
O.EncΠ : K′ ×M→ C. Consider algorithms Fake and Make of the form

Fake : K′ × N→$ C × Σ and Make : Σ×M→$ PP(D) ,

where Σ is a state space shared between the two algorithms. We say that the oracle
DEM is ε-simulatable (by Fake and Make) if for all k′ ∈ K′ and m ∈M, for the random
variable (defined over the coins of Fake and Make)

Πm
k′ = {π̃ : (c, st)←$ Fake(k′, |m|); π̃ ←$ Make(st,m)}

we have

(1) the partial permutation Πm
k′ can be extended to a uniformly distributed permuta-

tion on D, i.e., by ‘filling up’ Πm
k′ with random pairs one obtains a permutation

uniformly distributed in P(D);

(2) the ciphertext output by Fake deviates from the one that would be output by
O.Enc if invoked with an extension of the partial permutation output by Make
with probability at most ε. More precisely, for any uniformly distributed extension
π ∈ P(D) of Πm

k′ we have Pr[c 6= O.Encπ(k′,m)] ≤ ε (where the probability is also
taken over the random extension of Πm

k′ to π);

(3) the joint running time of Fake(k′, |m|) and Make(st,m) does not exceed the
running time of O.Enc(k′,m), not counting the latter’s oracle queries.
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In informal discussions, when we say that a data encapsulation mechanism is simulatable
we mean that it is permutation-driven and Fake,Make algorithms exist for which the
corresponding oracle DEM ε-simulatable with a small value ε.

Remark 3.2.4 We note that simulatability is a purely information-theoretic property
of an oracle DEM.

Concerning the above definition it is important to understand that the random coins
of Fake and Make, and the coins used to extend the partial permutation in items (1)
and (2), belong to the same probability space.

In line with a comment made above, for all practical DEMs that are simulatable,
corresponding specifications for the Fake and Make algorithms emerge canonically. For
the sake of notational clarity, from now on we thus assume uniqueness.

Proving Simulatability. We discuss a general technique for proving the simulatability
of an oracle DEM. The Fake and Make algorithms are typically explicitly provided
in the proof. Fake’s strategy is to mimic the behavior of O.Enc by executing it and
answering blockcipher queries with random elements from D. Make constructs a
partial permutation π̃ that fits this random assignment by starting with the empty
relation π̃ = ∅ and iteratively adding pairs (α, β) ∈ D × D to π̃ that help meeting
the O.Encπ̃(k′,m) = c goal, always taking care that also the απ̃β, α′π̃β ⇒ α = α′ and
απ̃β, απ̃β′ ⇒ β = β′ requirements from Definition 3.1.1 are not violated (Make aborts
if simultaneously reaching these conditions turns out to be impossible). Simulatability
requirement (1) is achieved by ensuring that for each addition of (α, β) to π̃ either
α or β are uniformly distributed, conditioned on the prior state of π̃. Proving the
bound from condition (2) typically requires a combinatorial argument that assesses the
probability of collisions. Requirement (3) follows by inspection of the specifications of
Fake and Make.

3.2.2 Selective Opening Security from Simulatable DEMs

Our main result is on the SO security of public-key encryption obtained by combining
an arbitrary KEM with a permutation-driven DEM. Our analysis is conducted in the
ideal cipher model for the blockcipher underlying the DEM. We give an informal version
of our main theorem and an outline of the proof. We caution that some technical
preconditions are omitted in the statement as we give it here. See Section 3.4 for the
full theorem statement and proof.
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Exp r-SO-CCAA(n)
01 For all k ∈ K: Ek ← ∅
02 I ← ∅; c← ∅
03 (pk, sk)←$ KEM.Gen
04 (D, st)←$ APKE.Dec,E

1 (pk, n)
05 m←$ D
06 For i← 1 to n:
07 ri ←$ R
08 (k′′i , c

(1)
i )← KEM.Encpk(ri)

09 (ki, k′i)← k′′i
10 c(2)

i ← O.EncE(ki;·)(k′i,mi)
11 ci ← 〈c(1)

i , c
(2)
i 〉

12 c← (c1, . . . , cn)
13 out←$ AOpen,PKE.Dec,E

2 (st, c)
14 Stop with Pred(D,m, I, out)

Oracle Open(i)
15 I ← I ∪ {i}
16 Return (mi, ri)

Oracle PKE.Dec(〈c(1), c(2)〉)
17 If 〈c(1), c(2)〉 ∈ c: Abort
18 k′′ ← KEM.Decsk(c(1))
19 If k′′ = ⊥: Return ⊥
20 (k, k′)← k′′

21 m← O.DecE(k;·)(k′, c(2))
22 Return m

Oracle E+(k, α)
23 If α /∈ Dom(Ek):
24 β ←$ D \ Rng(Ek)
25 Ek ← Ek ∪ {(α, β)}
26 Return E+

k (α)

Oracle E−(k, β)
27 If β /∈ Rng(Ek):
28 α←$ D \Dom(Ek)
29 Ek ← Ek ∪ {(α, β)}
30 Return E−k (β)

Figure 3.4: Experiment r-SO-CCA adapted towards the analysis of a PKE scheme constructed
following the KEM/DEM paradigm using a permutation-driven DEM with corresponding
oracle DEM algorithms O.Enc and O.Dec, in the ideal cipher model. We further abbreviate
the pair E+,E− of ideal cipher oracles with just E.

Theorem 3.2.5 (informal). Combine any KEM and any permutation-driven DEM
to obtain a PKE scheme. If the KEM is IND-CCA secure, the DEM is OT-INT-CTXT
secure and the corresponding oracle DEM is simulatable, then the combined PKE scheme
is SIM-SO-CCA secure, in the ideal cipher model.

Proof Sketch In Figure 3.4 we reproduce the r-SO-CCA experiment from Figure 2.1
with the hybrid construction of the encryption scheme, the oracle DEM underlying
the DEM, and the ideal cipher model made explicit. (In the i-SO-CCA experiment
there is nothing to be adapted.) We correspondingly equip adversary A and the DEM
algorithms with oracles E+ and E− that implement an ideal blockcipher on domain D.
In particular, for each key k, oracles E+(k; ·) and E−(k; ·) are inverses of each other. For
a concise notation, we typically just write E for the pair consisting of E+ and E−. We
implement ideal cipher E via lazy sampling and keep track of made assignments using
an experiment internal family (Ek)k∈K of partial permutations Ek ∈ PP(D). Note that
we do not provide the KEM algorithms with access to E, meaning we assume the KEM
does not use the same blockcipher as the DEM. See Section 3.4 for a discussion.

When it comes to constructing S from A, the strategy is to let the former run the
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Simulator S1(n)
01 For all k ∈ K: Ek ← ∅
02 c← ∅
03 (pk, sk)←$ KEM.Gen
04 D←$ AE,PKE.Dec

1 (pk, n)
05 Return D

Simulator SOpenS
2 (|m1|, . . . , |mn|)

06 For i← 1 to n:
07 ri ←$ R
08 (k′′i , c

(1)
i )← KEM.Encpk(ri)

09 (ki, k′i)← k′′i
10 (c(2)

i , sti)←$ Fake(k′i, |mi|)
11 ci ← 〈c(1)

i , c
(2)
i 〉

12 c← (c1, . . . , cn)
13 out←$ AE,OpenA,PKE.Dec

2 (c)
14 Return out

Oracle Open(i)
15 mi ← OpenS(i)
16 π̃ ←$ Make(sti,mi)
17 Eki ← Eki ∪ π̃
18 Return (mi, ri)

Oracle PKE.Dec(〈c(1), c(2)〉)
as in Figure 3.4

Oracle E+(k, α)
as in Figure 3.4

Oracle E−(k, β)
as in Figure 3.4

Figure 3.5: Simplified version of simulator S = (S1,S2), constructed from adversary A =
(A1,A2). We write OpenS for the opening oracle provided to S2. For simplicity we do not
annotate the state information passed from A1 to A2 and from S1 to S2.

latter as a subroutine: Simulator S converts its own input to an input for A, uses the
output of A as the own output, and answers, and in some cases relays, oracle queries
posed by A. We give the footprint of a universal such simulator that leverages on the
simulatability of the (permutation-driven) DEM in Figure 3.5. For the sake of clarity,
we simplified the specifications of algorithms S1 and S2 quite a bit, removing many
technicalities. While we briefly discuss the missing parts below, for the full details of
the simulator and a formal analysis we refer to Section 3.4.
S will only benefit from internally running A, if A is in the r-SO-CCA experiment.

As already mentioned in ‘Proving SIM-SO-CCA Security’ on page 69, S has to:
(a) generate and provide a public key for A1, (b) prove ciphertexts to A2 that

correspond to plaintext m1, . . . ,mn, (c) prove adequate randomness when processing
opening queries of A2, and (d) handle decryption queries of A1 and A2.

Further, ideal cipher queries of A1 and A2 have to be taken care of. The latter
is straight-forward when deploying lazy sampling, i.e., using the mechanisms of the
r-SO-CCA version from Figure 3.4. Also (a) and (d) are easy to deal with: The
public key pk provided to A1 is a regular KEM key generated by S1 (lines 03, 04); in
particular, secret key sk is known to S and can be used to process decryption queries.
Concerning (b), creating ciphertexts c1, . . . , cn for A2 consists, in principle, of two parts:
letting the KEM establish session keys and encapsulating plaintext with the DEM.
Component S2 of our simulator does the former according to the specification, i.e.,

111



by invoking algorithm KEM.Enc with fresh randomness (lines 07, 08), while for the
latter, as it cannot invoke DEM.Enc (or, more precisely, O.Enc) for not knowing the
plaintexts it needs to encapsulate, it leverages on the simulatability of the DEM and
obtains the corresponding ciphertext from an execution of the Fake algorithm (line 10).
How S2 deals with (c) is now immediate: for each created ciphertext it knows the
randomness used, so it can release it in an opening query (line 18). Note, however,
that knowledge of this randomness brings A2 into the position to verify the DEM
ciphertext components generated by Fake (e.g., by decapsulating or re-encapsulating
them); correspondingly, the Open oracle in addition runs the Make algorithm and
embeds the partial permutation proposed by it into ideal cipher E (lines 16, 17). By
the definition of simulatability of a DEM, this fixes the ideal cipher such that overall
consistency is established.

As announced earlier, in Figure 3.5 we leave out some details of our simulator.
These are related to situations in which S cannot uphold a proper environment for A
and has to abort its execution. This is the case when Fake and Make fail to properly
simulate O.Enc (the definition of simulatability considers a small probability of failure),
or if the partial permutation output by Make cannot be embedded into the ideal cipher
(line 17). The latter condition can result from various actions of adversary A, for
instance (explicitly) from queries to the E oracles, or (implicitly) from evaluations of E
during the processing of a decryption query. In the full proof given in Section 3.4 we
show that if the KEM is IND-CCA secure and the DEM is OT-INT-CTXT secure, then
the probability is small that any of these conditions is met. (Very briefly speaking, we
use the KEM notion for bounding the probability of explicit queries, and we use the
DEM notion for bounding the probability of implicit ones.)

Classifying the Result We briefly describe how our result relates to standard results
on the IND-CCA security of hybrid PKE. To obtain IND-CCA secure hybrid encryption
we require1 an IND-CCA secure KEM to be combined with an IND-OT-CCA secure
KEM. Thereby, IND-OT-CCA security of a DEM follows from its IND-OT-CPA and
OT-INT-CTXT security [BN00]. Observe that in Theorem 3.2.5 we do require the
KEM to be IND-CCA and the DEM to be OT-INT-CTXT secure while we assume
the (corresponding oracle) DEM to be simulatable instead of IND-OT-CPA secure.
One easily verifies that simulatability implies IND-OT-CPA security in the ideal cipher
model.2 That is, simulatability is the key property of the DEM lifting the security of
the hybrid PKE from IND-CCA to SIM-SO-CCA security (in the ideal cipher model).

1See [HK07] for an exception.
2In a nutshell, it allows the IND-OT-CPA experiment to compute an attacker’s challenge plaintext-

independently.
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See Section 2.2.5 for a discussion on why employing an IND-CCA (rather than an
IND-SO-CCA) secure KEM is sufficient for our results.

3.3 Simulatability of practical DEMs

We prove that all blockcipher-based DEMs that were standardized by the National
Institute of Standards and Technology (NIST) are permutation-driven and simulatable.
Concretely we analyze the CTR and CBC modes of operation (SP 800-38A [Dwo01]),
a CBC variant with ciphertext stealing (CTS) (Addendum to SP800-38A [Dwo10]),
the CCM mode (SP 800-38C [Dwo07a]), and the GCM mode (SP800-38D [Dwo07b]).
More precisely, as for our results on selective opening security only those DEMs are
relevant that offer ciphertext integrity (see Definition 3.1.5), instead of plain CTR,
CBC, and CBC/CTS encryption we actually analyze their encrypt-then-MAC variants,
where we assume arbitrary strongly unforgeable MACs. Further, as CCM and GCM
are authenticated encryption schemes with associated data (AEAD [Rog02]), we turn
them into DEMs by using them with a fixed nonce N0 and an empty associated data
string A0. As the four named modes follow different design principles, some of which
might be incompatible with simulatability, analyzing all of them is more than just a
matter of due diligence. For instance, GCM is an encrypt-then-MAC and CCM is a
MAC-then-encrypt design. Further, while CTR mode encrypts by xoring blockcipher
outputs with the plaintext, CBC mode encrypts by pushing plaintexts blocks through
the cipher, and CCM combines both approaches.

In the following we specify the mentioned DEMs in their oracle DEM form, assuming
that the underlying blockcipher (Ek)k∈K is over domain D = {0, 1}`. We show their
simulatability by proposing and analyzing corresponding Fake and Make algorithms,
following the general strategy suggested at the end of Section 3.2.1.

Notation For n ∈ N, we let [1 .. n] := {1, . . . , n}. For a bitstring x of length at least `
we write msb`(x) for its left-most ` bits and lsb`(x) for its right-most ` bits (‘most/least
significant bits’).

3.3.1 CTR-then-MAC

We analyze the DEM obtained by first encrypting the provided plaintext with the
CTR0 mode of operation of a blockcipher (counter mode with fixed initial counter
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value) and then appending a deterministic MAC tag to the ciphertext.
We specify the O.Enc and O.Dec algorithms of CTR0-DEM in Figure 3.6, where we

assume that G : [1 .. V ]→ D denotes a fixed injective function (a ‘counter generator’)
for some sufficiently large value V . The MAC is represented by a keyed hash function
khf : K′ × {0, 1}∗ → {0, 1}T . The plaintext space of CTR0-DEM isM = {0, 1}∗ and
the ciphertext space is C = {0, 1}≥T .

O.Encπ(k′,m)
01 Write |m| as (l − 1)`+ l∗

02 Split m into m1 . . .ml−1m
∗
l

03 ml ← m∗l ‖0`−l∗

04 For i← 1 to l:
05 ui ← G(i)
06 vi ← π(ui)
07 ci ← mi ⊕ vi
08 c∗l ← msbl∗(cl)
09 c̄← c1 . . . cl−1c

∗
l

10 t← khf(k′, c̄)
11 c← c̄t
12 Return c

O.Decπ(k′, c)
13 If |c| < T : Return ⊥
14 Split c into c̄t
15 If t 6= khf(k′, c̄):
16 Return ⊥
17 Write |c̄| as (l − 1)`+ l∗

18 Split c̄ into c1 . . . cl−1c
∗
l

19 cl ← c∗l ‖0`−l∗

20 For i← 1 to l:
21 ui ← G(i)
22 vi ← π(ui)
23 mi ← ci ⊕ vi
24 m∗l ← msbl∗(ml)
25 m← m1 . . .ml−1m

∗
l

26 Return m

Figure 3.6: CTR0-DEM. Lines 01 and 17 uniquely identify quantities l and l∗ such that
l ∈ N≥1 and 0 ≤ l∗ < `, and |m| = (l − 1)` + l∗ and |c̄| = (l − 1)` + l∗, respectively.
Correspondingly, line 02 assumes |m1| = . . . = |ml−1| = ` and |m∗l | = l∗, and line 18 assumes
|c1| = . . . = |cl−1| = ` and |c∗l | = l∗. Further, line 14 assumes |t| = T .

Lemma 3.3.1 CTR0-DEM is ε-simulatable with ε = (dL/`e2 − dL/`e)/2`+1, where
L is the maximum plaintext length (in bits).

Proof. Consider algorithms Fake and Make from Figure 3.7. The idea of Fake is to
compute intermediate ciphertext c̄ on basis of uniformly distributed blockcipher outputs
(see how line 02 in Fake replaces l-many iterations of line 07 in O.Enc), but to compute
the MAC tag on c̄ faithfully. Note that the correct length of c̄ is known to Fake as it
coincides with the length of m. Inspection shows that, given m, algorithm Make finds
a minimal partial permutation π̃ such that Fake and Make jointly mimic the behavior
of O.Enc (see here how lines 16–19 of Make arrange the entries of π̃ such that they
are consistent with lines 06–07 of O.Enc). In some invocations of the algorithms, the
described process might fail (lines 17, 18), namely when partial permutation π̃ would
become inconsistent (i.e., the updated π̃ would stop being an element of PP). In such
cases Make aborts, outputting the empty partial permutation π̃ = ∅.
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We next show that the conditions from Definition 3.2.3 are met. Observe that, as
Fake picks values c1, . . . , cl uniformly and independently of each other, the same holds for
the values v1, . . . , vl computed in line 16. That is, in each iteration of line 19 a value vi is
added to Rng(π̃) that is uniform conditioned on the (then) current state of Rng(π̃). Thus
condition (1) holds. To establish the correctness bound of condition (2) we analyze the
probability that Make aborts. By the injectivity of function G the ui-values from line 15
are pairwise distinct, so the abort condition of line 17 is never met. Further, as values vi
computed in line 16 are uniformly distributed and independent of each other, the abort
condition of line 18 is met with probability ε = (0 + . . .+ (l− 1))/|D| = ((l2− l)/2)/|D|
(accumulated over all iterations of the loop). Plugging in the maximum value l = dL/`e
gives the bound claimed in the statement. Condition (3) is clear.

Fake(k′, |m|)
01 Write |m| as (l − 1)`+ l∗

02 c1, . . . , cl ←$ D
03 c∗l ← msbl∗(cl)
04 c̄← c1 . . . cl−1c

∗
l

05 t← khf(k′, c̄)
06 c← c̄t
07 st ← (c1, . . . , cl)
08 Return c, st

Make(st,m)
09 π̃ ← ∅
10 Write |m| as (l − 1)`+ l∗

11 Parse st as (c1, . . . , cl)
12 Split m into m1 . . .ml−1m

∗
l

13 ml ← m∗l ‖0`−l∗

14 For i← 1 to l:
15 ui ← G(i)
16 vi ← mi ⊕ ci
17 If ui ∈ Dom(π̃): Abort
18 If vi ∈ Rng(π̃): Abort
19 π̃ ← π̃ ∪ {(ui, vi)}
20 Return π̃

Figure 3.7: Fake and Make for CTR0-DEM. We write ‘Abort’ as an abbreviation for ‘Return ∅’.

3.3.2 CBC-then-MAC

We consider the DEM obtained by encrypting the plaintext with CBC0 mode
(cipher block chaining with initialization vector zero) and appending a MAC tag to the
ciphertext. As a variant we also look at CBC0-CTS (CBC0 with ‘ciphertext stealing’)
that supports a complementary plaintext space.

We specify the O.Enc and O.Dec algorithms of CBC-DEM in Figure 3.8 and of
CBC-CTS-DEM in Figure 3.9. Similarly as for CTR0-DEM, the MAC is represented
by a keyed hash function of the form khf : K′ × {0, 1}∗ → {0, 1}T . The plaintext space
of CBC-DEM consists of all plaintexts that have a length that is a multiple of the
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blocklength `, i.e.,M =
⋃
λ≥`,`|λ{0, 1}λ; the ciphertext space is C =

⋃
λ≥`,`|λ{0, 1}λ+T .

In contrast, CBC-CTS-DEM supports all plaintexts lengths that are not a multiple of `,
with a minimum value of `+1; formally,M =

⋃
λ≥`,`-λ{0, 1}λ and C =

⋃
λ≥`,`-λ{0, 1}λ+T .

Together, CBC-DEM and CBC-CTS-DEM can handle plaintexts of any length not
smaller than `.3

O.Encπ(k′,m)
01 Write |m| as l`
02 Split m into m1 . . .ml

03 c0 ← 0`
04 For i← 1 to l:
05 ui ← mi ⊕ ci−1
06 ci ← π(ui)
07 c̄← c1 . . . cl
08 t← khf(k′, c̄)
09 c← c̄t
10 Return c

O.Decπ(k′, c)
11 If |c| < T : Return ⊥
12 Split c into c̄t
13 If t 6= khf(k′, c̄):
14 Return ⊥
15 Write |c̄| as l`
16 Split c̄ into c1 . . . cl
17 c0 ← 0`
18 For i← 1 to l:
19 ui ← π−1(ci)
20 mi ← ui ⊕ ci−1
21 m← m1 . . .ml

22 Return m

Figure 3.8: CBC-DEM (for multi-block plaintext). Lines 01 and 15 identify quantity l ∈ N≥0

such that |m| = l` and |c̄| = l`, respectively. Correspondingly, line 02 assumes |m1| = . . . =
|ml| = ` and line 16 assumes |c1| = . . . = |cl| = `. Further, line 12 assumes |t| = T .

Lemma 3.3.2 CBC-DEM is ε-simulatable where ε = ((L/`)2 − (L/`))/2`, and
CBC-CTS-DEM is ε-simulatable with ε = (bL/`c2 +bL/`c)/2`, where L is the maximum
plaintext length (in bits).

Proof. The proof is similar to the one of Lemma 3.3.1. Consider algorithms Fake
and Make from Figure 3.10. The idea of Fake is to compute intermediate ciphertext c̄
on basis of uniformly distributed blockcipher outputs (see how line 02 of Fake replaces
l-many iterations of line 06 of O.Enc), but to compute the MAC tag on c̄ faithfully.
Note that the correct length of c̄ is known to Fake as it coincides with the length of m.
Inspection shows that, given m, algorithm Make finds a minimal partial permutation π̃
such that Fake and Make jointly mimic the behaviour of O.Enc (see here how lines 14–17
of Make arrange the entries of π̃ such that they are consistent with lines 05, 06 of O.Enc).
In some invocations of the algorithms, the described process might fail (lines 15, 16),
namely when partial permutation π̃ would become inconsistent. In such cases Make
aborts, outputting the empty partial permutation π̃ = ∅.

3Instead of specifying different algorithms for different classes of plaintext length, one could also
join them together into a single, more general algorithm. This is usually done in standards [Dwo10],
but we abstain from doing so in this thesis to avoid rather obstructive case distinctions in the analysis.
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O.Encπ(k′,m)
01 Write |m| as l`+ l∗

02 Split m into m1 . . .mlm
∗
l+1

03 ml+1 ← m∗l+1 ‖0`−l∗

04 c0 ← 0`
05 For i← 1 to l + 1:
06 ui ← mi ⊕ ci−1
07 ci ← π(ui)
08 c∗l ← msbl∗(cl)
09 c̄← c1 . . . cl−1c

∗
l cl+1

10 t← khf(k′, c̄)
11 c← c̄t
12 Return c

O.Decπ(k′, c)
13 If |c| < T : Return ⊥
14 Split c into c̄t
15 If t 6= khf(k′, c̄):
16 Return ⊥
17 Write |c̄| as l`+ l∗

18 Split c̄ into c1 . . . cl−1c
∗
l cl+1

19 ul+1 ← π−1(cl+1)
20 m∗l+1 ← msbl∗(ul+1)⊕ c∗l
21 cl ← c∗l ‖ lsb`−l∗(ul+1)
22 c0 ← 0`
23 For i← 1 to l:
24 ui ← π−1(ci)
25 mi ← ui ⊕ ci−1
26 m← m1 . . .mlm

∗
l+1

27 Return m

Figure 3.9: CBC-CTS-DEM (for plaintext that require padding). Lines 01 and 17 uniquely
identify quantities l and l∗ such that l ∈ N≥1 and 1 ≤ l∗ < `, and |m| = l` + l∗ and |c̄| = l` + l∗,
respectively. Correspondingly, line 02 assumes |m1| = . . . = |ml| = ` and |m∗l+1| = l∗, and
line 18 assumes |c1| = . . . = |cl−1| = ` and |c∗l | = l∗ and |cl+1| = `. Further, line 14 assumes
|t| = T .

We next show that the conditions from Definition 3.2.3 are met. Observe that,
as Fake picks values c1, . . . , cl uniformly and independently of each other, in each
iteration of line 17 a value ci is added to Rng(π̃) that is uniform conditioned on the
then current state of Rng(π̃). Thus condition (1) holds. To establish the correctness
bound of condition (2) we analyze the probability that Make aborts. With values
c1, . . . , cl−1, also the values u2, . . . , ul computed in line 14 are uniformly distributed
and independent of each other, so the abort condition of line 15 is met with probability
(0 + . . .+ (l − 1))/|D| = ((l2 − l)/2)/|D| (accumulated over all iterations of the loop).
The same bound holds for line 16. Plugging in the maximum value l = L/` gives the
bound claimed in the statement. Condition (3) is clear.

Algorithms Fake and Make for CBC-CTS-DEM are given in Figure 3.11. The
analysis is similar. Here, however, we have l = bL/`c and for lines 17 and 18 the
accumulated probabilities of abort amount to (0 + . . .+ l)/|D| each.
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Fake(k′, |m|)
01 Write |m| as l`
02 c1, . . . , cl ←$ D
03 c̄← c1 . . . cl
04 t← khf(k′, c̄)
05 c← c̄t
06 st ← (c1, . . . , cl)
07 Return c, st

Make(st,m)
08 π̃ ← ∅
09 Write |m| as l`
10 Parse st as (c1, . . . , cl)
11 Split m into m1 . . .ml

12 c0 ← 0`
13 For i← 1 to l:
14 ui ← mi ⊕ ci−1
15 If ui ∈ Dom(π̃): Abort
16 If ci ∈ Rng(π̃): Abort
17 π̃ ← π̃ ∪ {(ui, ci)}
18 Return π̃

Figure 3.10: Fake and Make for CBC-DEM. We write ‘Abort’ as an abbreviation for ‘Return ∅’.

Fake(k′, |m|)
01 Write |m| as l`+ l∗

02 c1, . . . , cl+1 ←$ D
03 c∗l ← msbl∗(cl)
04 c̄← c1 . . . cl−1c

∗
l cl+1

05 t← khf(k′, c̄)
06 c← c̄t
07 st ← (c1, . . . , cl+1)
08 Return c, st

Make(st,m)
09 π̃ ← ∅
10 Write |m| as l`+ l∗

11 Parse st as (c1, . . . , cl+1)
12 Split m into m1 . . .mlm

∗
l+1

13 ml+1 ← m∗l+1 ‖0`−l∗

14 c0 ← 0`
15 For i← 1 to l + 1:
16 ui ← mi ⊕ ci−1
17 If ui ∈ Dom(π̃): Abort
18 If ci ∈ Rng(π̃): Abort
19 π̃ ← π̃ ∪ {(ui, ci)}
20 Return π̃

Figure 3.11: Fake and Make for CBC-CTS-DEM. We write ‘Abort’ as an abbreviation for
‘Return ∅’.

3.3.3 CCM

We analyze the CCM mode of operation (‘CTR mode with CBC-MAC’) with fixed
nonce and associated data field; we call this mode CCM0-DEM. CCM is parameterized
by an authentication tag length T , a formatting function F : N×A×M→ D+ (whereN
and A denote the nonce space and the associated data space, respectively), and a counter
generation function G : N×[0 .. V ]→ D, where V is a sufficiently large value. While only
one set of instantiations of F and G is suggested in SP 800-38C (and if it is chosen the
resulting version of CCM is the one used in wireless encryption standard IEEE 802.11),
the specification is explicitly modular in the sense that it works with any F and G that
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meet certain conditions. Amongst others, the conditions listed in [Dwo07a] imply that
for all N ∈ N the function G(N ; ·) is injective and that for all (N,A,m) ∈ N ×A×M
and z0 . . . zr = F (N,A,m) we have that z0 /∈ G(N, [0 .. V ]). Now, if we fix any
nonce N0 and any associated data string A0 (e.g., the all-zero string for N0 and the
empty string for A0) and define the restrictions F0 : M → D+; m 7→ F (N0, A0,m)
and G0 : [0 .. V ]→ D; i 7→ G(N0, i), then the algorithms of the resulting oracle DEM
associated with CCM are given in Figure 3.12. The plaintext space of CCM0-DEM is
M = {0, 1}∗ and the ciphertext space is C = {0, 1}≥T .

O.Encπ(k′,m)
01 z0 . . . zr ← F0(m)
02 y0 ← π(z0)
03 For i← 1 to r:
04 xi ← zi ⊕ yi−1
05 yi ← π(xi)
06 u0 ← G0(0)
07 v0 ← π(u0)
08 t← yr ⊕ v0
09 t∗ ← msbT (t)
10 Write |m| as (l − 1)`+ l∗

11 Split m into m1 . . .ml−1m
∗
l

12 ml ← m∗l ‖0`−l∗

13 For j ← 1 to l:
14 uj ← G0(j)
15 vj ← π(uj)
16 cj ← mj ⊕ vj
17 c∗l ← msbl∗(cl)
18 c← c1 . . . cl−1c

∗
l t
∗

19 Return c

O.Decπ(k′, c)
20 If |c| < T : Return ⊥
21 Write |c| as (l − 1)`+ l∗ + T
22 Split c into c1 . . . cl−1c

∗
l t
∗

23 cl ← c∗l ‖0`−l∗

24 For j ← 1 to l:
25 uj ← G0(j)
26 vj ← π(uj)
27 mj ← cj ⊕ vj
28 m∗l ← msbl∗(ml)
29 m← m1 . . .ml−1m

∗
l

30 z0 . . . zr ← F0(m)
31 y0 ← π(z0)
32 For i← 1 to r:
33 xi ← zi ⊕ yi−1
34 yi ← π(xi)
35 u0 ← G0(0)
36 v0 ← π(u0)
37 t← yr ⊕ v0
38 If t∗ 6= msbT (t): Return ⊥
39 Return m

Figure 3.12: CCM0-DEM. Lines 10 and 21 uniquely identify quantities l and l∗ such that
l ∈ N≥1 and 0 ≤ l∗ < `, and |m| = (l − 1)` + l∗ and |c| = (l − 1)` + l∗ + T , respectively.
Correspondingly, line 11 assumes |m1| = . . . = |ml−1| = ` and |m∗l | = l∗, and line 22 assumes
|c1| = . . . = |cl−1| = ` and |c∗l | = l∗ and |t∗| = T .

Lemma 3.3.3 CCM0-DEM is ε-simulatable with ε ≤ bL/`c2/2`−2, where L is the
maximum plaintext length (in bits).

Proof. Consider algorithms Fake and Make from Figure 3.13. The idea of Fake is to
compute the visible ciphertext components on basis of uniformly distributed blockcipher
outputs while completely ignoring the blockcipher invocations of CCM’s internal CBC-
MAC computation (see how line 08 and l-many iterations of line 16 of O.Enc (in
Figure 3.12) are replaced by lines 40 and 43 of Fake, while lines 02 and 05 of O.Enc
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have no counterpart). Inspection shows that, given m, algorithm Make finds a minimal
partial permutation π̃ such that Fake and Make jointly mimic the behaviour of O.Enc
(see here how lines 52 – 55, 58 – 61, 63 – 66, 71 – 74 of Make arrange the entries of
π̃ such that they are consistent with lines 02, 05, 07/08, 15/16 of O.Enc). In some
invocations of the algorithms, the described process might fail (in lines 53/54, 59/60,
64/65, 72/73), namely when partial permutation π̃ would become inconsistent. In such
cases Make aborts, outputting the empty partial permutation π̃ = ∅.

Fake(k′, |m|)
40 t←$ D
41 t∗ ← msbT (t)
42 Write |m| as (l − 1)`+ l∗

43 c1, . . . , cl ←$ D
44 c∗l ← msbl∗(cl)
45 c← c1 . . . cl−1c

∗
l t
∗

46 st ← (t, c1, . . . , cl)
47 Return c, st

Make(st,m)
48 π̃ ← ∅
49 Write |m| as (l − 1)`+ l∗

50 Parse st as (t, c1, . . . , cl)
51 z0 . . . zr ← F0(m)
52 y0 ←$ D
53 If z0 ∈ Dom(π̃): Abort
54 If y0 ∈ Rng(π̃): Abort
55 π̃ ← π̃ ∪ {(z0, y0)}
56 For i← 1 to r:
57 xi ← zi ⊕ yi−1
58 yi ←$ D
59 If xi ∈ Dom(π̃): Abort
60 If yi ∈ Rng(π̃): Abort
61 π̃ ← π̃ ∪ {(xi, yi)}

62 u0 ← G0(0)
63 v0 ← yr ⊕ t
64 If u0 ∈ Dom(π̃): Abort
65 If v0 ∈ Rng(π̃): Abort
66 π̃ ← π̃ ∪ {(u0, v0)}
67 Split m into m1 . . .ml−1m

∗
l

68 ml ← m∗l ‖0`−l∗

69 For j ← 1 to l:
70 uj ← G0(j)
71 vj ← mj ⊕ cj
72 If uj ∈ Dom(π̃): Abort
73 If vj ∈ Rng(π̃): Abort
74 π̃ ← π̃ ∪ {(uj , vj)}
75 Return π̃

Figure 3.13: Fake and Make for CCM0-DEM. We write ‘Abort’ as an abbreviation for
‘Return ∅’.

We next show that the requirements from Definition 3.2.3 are met. To see that
condition (1) holds, observe that in Make the values y0, yi, v0, and vj are uniformly
distributed and independent of each other at the point they are added to Rng(π̃) in
lines 55, 61, 66, 74. To establish the correctness bound of condition (2) we assess the
probability that Make aborts. Using a similar analysis as in the proof of Lemma 3.3.1
we obtain the following (accumulated) probabilities: The abort conditions in lines 53
and 54 are never met; for lines 59 and 60 the probabilities are (1 + . . .+ r)/|D| each;

120



by the properties of CCM’s functions F0 and G0, for lines 64 and 65 the probabilities
are r/|D| and (r + 1)/|D|; for line 72 the probability is lr/|D|; finally, for line 73 the
probability is ((r + 2) + . . . + (r + l + 1))/|D|. If we assume reasonable behavior of
function F0 and let r = l, we obtain quantity 4l2/|D| as an upper bound for the sum of
these probabilities. This establishes the claimed bound. Condition (3) is clear.

3.3.4 GCM

The GCM mode of operation (‘Galois/Counter Mode’) is a nonce-based AEAD
parameterized by an authentication tag length T . To deploy GCM as a DEM we use it
with a fixed nonce and an empty associated data field and call this version GCM0-DEM.
Internally, GCM combines CTR mode encryption with a Wegman-Carter-style MAC
[WC81]. The former uses an injective counter generation function G : [0 .. V ]→ D\{0`},
where V is a sufficiently large value, and the latter is built around a polynomial-
based universal hash function named GHASH defined over finite field GF(2`). For
our purposes it suffices to represent the MAC by a keyed hash function of the form
khf : D × {0, 1}∗ → D. The algorithms of GCM0-DEM, in the abstraction of an oracle
DEM, are specified in Figure 3.14. The supported plaintext space isM = {0, 1}∗, and
the ciphertext space is C = {0, 1}≥T .

Lemma 3.3.4 GCM0-DEM is ε-simulatable with ε ≤ (dL/`e2 + 4dL/`e)/2`−1, where
L is the maximum plaintext length (in bits).

Proof. The structure of GCM0-DEM is quite similar to the one of CTR0-DEM: both
modes first encrypt the plaintext using CTR mode, then they append a MAC tag to
the ciphertext. Two potentially interesting differences are that (a) in GCM0-DEM,
the MAC key is derived by enciphering the value 0` under the blockcipher, and (b) in
GCM0-DEM, the MAC tag is a GHASH value that is blinded with a blockcipher output
(as is standard for Wegman-Carter MACs). Despite these differences, extending the
proof of Lemma 3.3.1 to the GCM setting is straight-forward. The corresponding Fake
and Make algorithms are given in Figure 3.15 and do not require further explanation.

We show that the requirements from Definition 3.2.3 are met. To see that condi-
tion (1) holds, observe that in Make the values vi, v, and v0 are uniformly distributed
and independent of each other at the point they are added to Rng(π̃) in lines 20, 27, 33.
To establish the correctness bound of condition (2) we assess the probability that
Make aborts. The analysis is particularly simple: the conditions in lines 18, 25, 31 are
never met by construction, and the conditions in lines 19, 26, 32 are met with a total
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O.Encπ(k′,m)
01 Write |m| as (l − 1)`+ l∗

02 Split m into m1 . . .ml−1m
∗
l

03 ml ← m∗l ‖0`−l∗

04 For i← 1 to l:
05 ui ← G(i)
06 vi ← π(ui)
07 ci ← mi ⊕ vi
08 c∗l ← msbl∗(cl)
09 c̄← c1 . . . cl−1c

∗
l

10 u← 0`
11 v ← π(u)
12 h← khf(v, c̄)
13 u0 ← G(0)
14 v0 ← π(u0)
15 t← h⊕ v0
16 t∗ ← msbT (t)
17 c← c̄t∗

18 Return c

O.Decπ(k′, c)
19 If |c| < T : Return ⊥
20 Write |c| as (l − 1)`+ l∗ + T
21 Split c into c̄t∗
22 u← 0`
23 v ← π(u)
24 h← khf(v, c̄)
25 u0 ← G(0)
26 v0 ← π(u0)
27 t← h⊕ v0
28 If t∗ 6= msbT (t): Return ⊥
29 Split c̄ into c1 . . . cl−1c

∗
l

30 cl ← c∗l ‖0`−l∗

31 For i← 1 to l:
32 ui ← G(i)
33 vi ← π(ui)
34 mi ← ci ⊕ vi
35 m∗l ← msbl∗(ml)
36 m← m1 . . .ml−1m

∗
l

37 Return m

Figure 3.14: GCM0-DEM. Lines 01 and 20 uniquely identify quantities l and l∗ such that
l ∈ N≥1 and 0 ≤ l∗ < `, and |m| = (l − 1)` + l∗ and |c| = (l − 1)` + l∗ + T , respectively.
Correspondingly, line 02 assumes |m1| = . . . = |ml−1| = ` and |m∗l | = l∗, line 21 assumes
|t∗| = T , and line 29 assumes |c1| = . . . = |cl−1| = ` and |c∗l | = l∗.

probability of (0 + . . .+ (l+ 1))/|D|. This establishes the claimed bound. Condition (3)
is clear.
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Fake(k′, |m|)
01 Write |m| as (l − 1)`+ l∗

02 c1, . . . , cl ←$ D
03 c∗l ← msbl∗(cl)
04 c̄← c1 . . . cl−1c

∗
l

05 t←$ D
06 t∗ ← msbT (t)
07 c← c̄t∗

08 st ← (c1, . . . , cl, t)
09 Return c, st

Make(st,m)
10 π̃ ← ∅
11 Write |m| as (l − 1)`+ l∗

12 Parse st as (c1, . . . , cl, t)
13 Split m into m1 . . .ml−1m

∗
l

14 ml ← m∗l ‖0`−l∗

15 For i← 1 to l:
16 ui ← G(i)
17 vi ← mi ⊕ ci
18 If ui ∈ Dom(π̃): Abort
19 If vi ∈ Rng(π̃): Abort
20 π̃ ← π̃ ∪ {(ui, vi)}
21 c∗l ← msbl∗(cl)
22 c̄← c1 . . . cl−1c

∗
l

23 u← 0`
24 v ←$ D
25 If u ∈ Dom(π̃): Abort
26 If v ∈ Rng(π̃): Abort
27 π̃ ← π̃ ∪ {(u, v)}
28 h← khf(v, c̄)
29 u0 ← G(0)
30 v0 ← h⊕ t
31 If u0 ∈ Dom(π̃): Abort
32 If v0 ∈ Rng(π̃): Abort
33 π̃ ← π̃ ∪ {(u0, v0)}
34 Return π̃

Figure 3.15: Fake and Make for GCM0-DEM. We write ‘Abort’ as an abbreviation for
‘Return ∅’.

3.4 Selective Opening Secure Hybrid Encryption

We anticipated the main result of this chapter in Section 3.2: A PKE scheme constructed
from any KEM and a permutation-driven DEM offers SIM-SO-CCA security in the
ideal cipher model, if the KEM provides confidentiality (IND-CCA), the DEM provides
authenticity (OT-INT-CTXT), and the DEM is simulatable (see Definition 3.2.3).
Prerequisites like IND-CCA and OT-INT-CTXT on the KEM and DEM, respectively,
are standard for proofs of the IND-CCA security of hybrid encryption, so the important
finding is that the added constraint of simulatability suffices to lift security to the
stronger notion of SIM-SO-CCA security.4

We discussed an informal version of our result in Section 3.2.2. Recall from the
4We note that a typical proof of IND-CCA security of hybrid PKE requires the DEM to also offer

some kind of confidentiality (e.g., OT-IND-CCA). A corresponding notion appears only implicitly in
our theorem statement, as it follows from the DEM’s simulatability (in the ideal cipher model).
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included proof sketch that an important subgoal was bounding the probability of the ideal
cipher being evaluated on input a key established by the KEM before a corresponding
Open query is posed. (If the cipher is evaluated earlier, the partial permutation found
by Fake and Make cannot be smoothly embedded into it any more.) In the following we
argue that without putting further restrictions on the KEM, bounding this probability
to any small value is in general impossible. Indeed, consider for a moment a KEM
where KEM.Enc, before outputting a key k and a ciphertext c, evaluates the blockcipher
used by DEM.Enc on input key k and a value d0, where the latter is any fixed element
d0 ∈ D in the cipher’s domain, and assume KEM.Enc completely ignores the result.
Even though this blockcipher evaluation is completely pointless and should not affect
security of the overall design, for such a KEM our arguments would not work. Below,
in the formal version of our theorem statement, we correspondingly restrict the set of
considered KEMs to those that do not evaluate the blockcipher at all. This admittedly
is a limitation of our result, but we believe it is a mild one. Indeed, all practical KEMs
we are aware of do not (internally) invoke blockcipher operations at all. This holds in
particular for Hashed Elgamal, PSEC-KEM, Cramer-Shoup KEM, and RSA-KEM. In
the following theorem statement, if E is a blockcipher, we say a KEM is E-independent
if no KEM algorithm evaluates E+ or E−.

We proceed with the statement and proof of our main theorem.

Theorem 3.4.1 Let DEM be a (K,D)-permutation-driven DEM with corresponding
oracle DEM oDEM and blockcipher E. Let KEM denote an E-independent KEM for
the key space of the DEM. Let PKE denote the hybrid PKE scheme obtained when
instantiating Construction 3.1.7 in Figure 3.3 with KEM and DEM.

Let DEM be (τctxt, qd,ctxt, εctxt)-OT-INT-CTXT secure and KEM (τcca, qd,cca, εcca)-
IND-CCA secure.

If oDEM is εsim-simulatable, then PKE is (τso-cca, qd,so-cca, qic, εso-cca)-SIM-SO-CCA
secure where

τso-cca ≤ min{τctxt, τcca} , ε(n) ≤ n ·
(

3 · εcca + εctxt + εsim + 2 · n+ qic + qd
|K|

)
,

and qd,so-cca ≤ min{qd,ctxt, qd,cca}. Further, E is modeled as an ideal cipher that may
be queried at most qic times by an adversary.

See Section 3.2.2 for a proof sketch including the high-level ideas. We proceed with
a detailed proof of Theorem 3.4.1.

Proof of Theorem 3.4.1. For the keys (ki, k′i) ← k′′i output by the n iterations of
KEM.Enc, and J ⊆ [n] let KJ denote the set {kj | j ∈ J } of blockcipher keys ki
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I ← ∅
01 For all k ∈ K: Ek ← ∅
02 I ← ∅; c← ∅
03 (pk, sk)←$ KEM.Gen
04 (D, st)←$ AE,PKE.Dec

1 (pk, n)
(m1, . . . ,mn)←$ D

05 For i← 1 to n:
06 ri ←$ R
07 (k′′i , c

(1)
i )← KEM.Encpk(ri)

08 (ki, k′i)← k′′i
09 If ki ∈ K[i−1] ∪ supp(E): Abort
10 (c(2)

i , sti)←$ Fake(k′i, |mi|)
11 ci ← 〈ci,1, ci,2〉
12 c← (c1, . . . , cn)
13 out←$ AE,Open,PKE.Dec

2 (st, c)
Stop with Pred(D,m1, . . . ,mn, I, out)

Oracle Open(i)
14 I ← I ∪ {i}
15 If ki ∈ K[i−1] ∪ supp(E): Abort
16 π̃ ←$ Make(sti,mi)
17 Eki ← π̃

18 If c(2)
i 6= O.EncE(ki;·)(k′i,mi): Abort

19 Return (mi, ri)

Oracle PKE.Dec(〈c(1), c(2)〉)
20 If 〈c(1), c(2)〉 ∈ c: Abort
21 If c1 ∈ c(1)

[n]\I : Return ⊥
22 k′′ ← KEM.Decsk(c(1))
23 If k′′ = ⊥: Return ⊥
24 (k, k′)← k′′

25 m← O.DecE(k,·)(k′, c(2))
26 Return m

Oracle E+(k, α)
27 If k ∈ K[n]\I : Abort
28 If α /∈ Dom(E+

k ):
29 β ←$ D \ Rng(E+

k )
30 Ek ← Ek ∪ {(α, β)}
31 Return β

Oracle E−(k, β)
32 If k ∈ K[n]\I : Abort
33 If β /∈ Dom(E−k ):
34 α←$ D \ Rng(E−k )
35 Ek ← Ek ∪ {(α, β)}
36 Return α

Figure 3.16: Proposed simulator S = (S1,S2) inlined into the i-SO-CCA experiment. S1 in
lines 01 – 04, S2 given in lines 05 – 13. Instructions in gray boxes are executed by the ideal
experiment. The whole code corresponds to the last experiment Exp6 in our proof. For J ⊆ [n]
we denote KJ := {kj | j ∈ J }. Further, we denote supp(E) := {k ∈ K | Ek 6= ∅}.

for i ∈ J . For the family of partial permutations (Ek)k∈K maintained by S to imple-
ment ideal cipher E, let supp(E) := {k ∈ K | Ek 6= ∅} denote the set of keys k ∈ K
where partial permutation Ek is not empty.

Let Aso = (Aso,1,Aso,2) denote an attacker against the (τso-cca, qd,so-cca, qic, εso-cca)-
SIM-SO-CCA security of PKE.

We define a simulator (S1,S2) by giving its pseudocode in Figure 3.16. Simulator
S1 consists of lines 01 – 04, S2 consists of lines 05 – 13. Their code is enhanced
by bookkeeping and abort events, while the explicit invocation of S1, S2 and their
input/output behaviour is merged into the ideal experiment. Instructions in gray boxes
are performed by the ideal experiment.

We show that S, when run in the ideal experiment, can simulate the real experiment
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for Aso. To this end we proceed in a sequence of experiments tracing how likely it is
for Aso to distinguish two consecutive experiments. The sequence interpolates between
the real experiment (Exp0 = r-SO-CCA, see Figure 3.4) and a simulated real experiment
(Exp6, see Figure 3.16) provided by the simulator S inlined into the ideal experiment.

We proceed with detailed descriptions of the experiments given in Figures 3.17
to 3.19.

Exp ExpAso0 (n)− ExpAso6 (n)
01 For all k ∈ K: Ek ← ∅
02 I ← ∅; C ← ∅
03 Bad← false //Exp4
04 (pk, sk)←$ KEM.Gen
05 (D, st)←$ AE,PKE.Dec

so,1 (pk, n)
06 (m1, . . . ,mn)←$ D
07 For i← 1 to n:
08 ri ←$ R
09 (k′′i , c

(1)
i )← KEM.Encpk(ri)

10 (ki, k′i)← k′′i
11 If ki ∈ K[i−1] ∪ supp(E): Abort //Exp2 – Exp6
12 c(2)

i ← O.EncE(ki;·)(k′i,mi) //Exp0 – Exp2
13 (c(2)

i , sti)←$ Fake(k′i, |mi|) //Exp3 – Exp6
14 π̃ ←$ Make(sti,mi) //Exp3 – Exp5
15 Eki ← π̃ //Exp3 – Exp5
16 If c(2)

i 6= O.EncE(ki;·)(k′i,mi): Abort //Exp3 – Exp5
17 ci ← 〈c(1)

i , c
(2)
i 〉

18 c← (c1, . . . , cn)
19 out←$ AOpen,PKE.Dec,E

so,2 (st, c)
20 If Bad: Abort //Exp4
21 Stop with Pred(D,m1, . . . ,mn, I, out)

Figure 3.17: Experiments Exp0 – Exp6 used in the proof of Theorem 3.4.1. Oracles Open,
PKE.Dec, E+ and E− are given in Figure 3.18.

Experiment Exp0. The r-SO-CCA experiment as given in Figure 3.4.

Experiment Exp1. Line 23 is added: Any decryption query of the form 〈c(1), c(2)〉 is
answered with ⊥ if c(1) ∈ c(1)

[n]\I . That is, there exists i ∈ [n] such that c(1) = c(1)
i and

Aso,2 did not query Open(i).

Claim 3.4.2 There exists an adversary A(1)
cca that (τ (1)

cca, q
(1)
d,cca, ε

(1)
cca)-breaks the IND-

CCA security of KEM and an adversary Actxt that (τctxt, qd,ctxt, εctxt)-breaks the OT-
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Oracle PKE.Dec(〈c(1), c(2)〉)
22 If 〈c(1), c(2)〉 ∈ c: Abort
23 If c(1) ∈ c(1)

[n]\I : Return ⊥ //Exp1 – Exp6
24 k′′ ← KEM.Decsk(c(1))
25 If k′′ = ⊥: Return ⊥
26 (k, k′)← k′′

27 m← O.DecE(k,·)(k′, c(2))
28 Return m

Oracle Open(i)
29 I ← I ∪ {i}
30 If ki ∈ K[i−1] ∪ supp(E): Abort //Exp6
31 π̃ ←$ Make(sti,mi) //Exp6
32 Eki ← π̃ //Exp6
33 If c(2)

i 6= O.EncE(ki;·)(k′i,mi): Abort //Exp6
34 Return (mi, ri)

Figure 3.18: Provided Oracles in experiments Exp0 – Exp6 as given in Figure 3.17.

INT-CTXT security of DEM with

τ (1)
cca ≈ τso-cca ≈ τctxt , q(1)

d,cca ≥ qd,so-cca , qd,ctxt ≥ qd,so-cca,

ε(1)
cca + εctxt ≥

1
n
·
∣∣∣Pr
[
ExpAso0 (n)⇒ 1

]
− Pr

[
ExpAso1 (n)⇒ 1

]∣∣∣ .
Proof of Claim 3.4.2. Experiments Exp0 and Exp1 proceed identically, untilAso submits
a ciphertext 〈c(1), c(2)〉 to decryption where c(1) ∈ c(1)

[n]\I and PKE.Decsk(〈c1, c2〉) 6= ⊥.
We fix some i ∈ [n] and analyze the probability that Aso submits a ciphertext

〈c(1), c(2)〉 where c(1) ∈ c(1)
{i}\I and PKE.Dec(sk, 〈c(1), c(2)〉) 6= ⊥; we denote this event by

‘〈c(1)
i , c

(2)〉9 ⊥’.
We perform a preparational modification before bounding Pr[〈c(1)

i , c
(2)〉9 ⊥]. To

this end, we replace k′′i as output by the ith invocation of KEM.Encpk with a uniformly
random key.

We lose an additional summand of εcca in the bound on Pr[〈ci,1, c2〉9 ⊥] as shown
by the following reduction run by adversary A(1)

cca = (A(1)
cca,1,A

(1)
cca,2): Adversary A

(1)
cca,1

is started on pk and invokes Aso,1(pk, n). It uses its decapsulation oracle to answer
decryption queries from Aso,1. When Aso,1 outputs D, A(1)

cca,1 halts. When A(2)
cca,2(c∗, k∗b )

is started, it parses (kb, k′b) ← k∗b and computes all ciphertexts faithfully except for
ci ← 〈c∗,O.EncE(kb;·)(k′b,mi)〉. Adversary A(1)

cca,2 calls Aso,2(c1, . . . , cn). Decryption
queries 〈c(1), c(2)〉 by Aso,2 are answered employing the decapsulation oracle for c(1) 6= c∗

and using key k∗b otherwise.
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Analysis The reduction perfectly simulates Exp1 until Aso,2 queries Open(i) which
the reduction cannot answer. However, to bound the probability of event ‘〈c(1)

i , c
(2)〉9 ⊥’

it suffices to make sure that the reduction simulates Aso’s interface as expected in the
r-SO-CCA experiment as long as the event can occur. Note that ‘〈c(1)

i , 2〉9 ⊥’ cannot
happen after query Open(i).

We now show how to break the OT-INT-CTXT security of the DEM assuming
‘〈c(1)

i , c
(2)〉 9 ⊥’ happens. We construct adversary Actxt = (Actxt,1,Actxt,2). When

Actxt,1 is started, it runs KEM.Gen and starts Aso,1(pk, n). Decryption queries are
answered using sk. Once Aso,1 outputs D, Actxt,1 samples plaintext m←$ D, outputs
mi and halts. Then Actxt,2(c∗2) is started whereby c(2)∗ ← DEM.Enc(k′′$ ,mi) constitutes
a data encapsulation ofmi under a random key k′′$ . Additionally, Actxt,2 runs KEM.Encpk

to obtain (k, c(1)∗) and invokesAso,2(c1, . . . , ci−1, 〈c(1)∗, c(2)∗〉, . . . , cn). AdversaryActxt,2
answers all further decryption queries on its own, unless the ciphertext is of the
form 〈c(1)∗, c(2)〉 where it submits c(2) to its decapsulation oracle DEM.Dec of the
OT-INT-CTXT experiment and relays the reply to Aso,2.

Analysis Clearly, Actxt wins the OT-INT-CTXT experiment when Aso submits a
ciphertext that causes ‘〈c(1)

i , c
(2)〉9 ⊥’ to happen.

We obtain Pr[〈c(1)
i , c

(2)〉9 ⊥] ≤ ε′cca + εctxt. Adversaries A(1)
cca and Actxt (roughly)

have the same running time and may have to issue a query to the KEM.Dec (resp.
DEM.Dec) oracle when receiving a decryption query from Aso. The claim follows from
the union-bound over all i ∈ [n].

Note that, ideally, one would wish to employ IND-CCA security of the KEM once
to replace a key output by KEM.Encpk by a uniform key. However, once done, opening
queries by Aso,2 cannot be answered anymore.

The next modification ensures that (if it is not aborted) the ith invocation of the
oracle data encapsulation, i.e., O.EncE(ki;·), has access to an empty partial permutation
Eki . This is a preparational step to ensure that later, when O.Enc is replaced with Fake
and Make, the partial permutation output by Make can be embedded into Eki .

Experiment Exp2. Line 11 is added. That is, Exp2 aborts if the ith iteration of O.Enc
would have oracle access to a non-empty permutation E(ki; ·).5

5As of now, in the ith iteration of the For loop, we have K[i−1] ⊆ supp(E) as the invocation of
O.EncE(ki;·) adds elements to Eki . Later, in experiment Exp6, we do not invoke code that (implicitly)
adds elements to Eki and rely on set K[i−1] to detect collisions amongst the (blockcipher) keys.
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Claim 3.4.3 There exists an adversary A(2)
cca that (τ (2)

cca, q
(2)
d,cca, ε

(2)
cca)-breaks the IND-

CCA security of KEM where

τ (2)
cca ≈ τso-cca , q(2)

d,cca ≥ qd,so-cca ,

and

ε(2)
cca ≥

1
n
·
∣∣∣Pr
[
ExpAso1 (n)⇒ 1

]
− Pr

[
ExpAso2 (n)⇒ 1

]∣∣∣− n+ qic + qd
|K|

.

Proof of Claim 3.4.3. We bound Pr[ki ∈ K[i−1] ∪ supp(E)] for fixed i ∈ [n]. Again, we
replace k′′i output by the ith invocation of KEM.Encpk with a uniform key first. We show
how to break KEM’s IND-CCA security if the two experiments should differ noticeably.

We construct adversary A(2)
cca = (A(2)

cca,1,A
(2)
cca,2). It is executed on pk and starts

Aso,1(pk, n). Decryption queries are answered using the decapsulation oracle. When
Aso,1 halts, A(2)

cca,1 halts as well. Then A(2)
cca,2(c∗, k∗b ) is started. Let (kb, k′b)← k∗b . Next,

A(2)
cca,2 runs the For loop from line 08. In the ith iteration A(2)

cca,2 aborts Aso and returns
1 iff kb ∈ K[i−1] ∪ supp(E).

Analysis The simulation is perfect until A(2)
cca,2 halts. Further we have

ε(2)
cca ≥ |Pr[ki ∈ K[i−1] ∪ supp(E)]− Pr[k$ ∈ K[i−1] ∪ supp(E)]| ,

where k$ ←$ K.

Note that each decryption query or query to the ideal cipher oracles adds at most
one element to supp(E), hence |K[i−1] ∪ supp(E)| ≤ n+ qic + qd. Thus, we obtain

Pr[k$ ∈ K[i−1] ∪ supp(E)] ≤ (n+ qic + qd) / |K| ,

and
Pr[ki ∈ K[i−1] ∪ supp(E)] ≤ εcca + (n+ qic + qd) / |K| .

The claim follows from the union-bound over i ∈ [n] and rearranging. One easily checks
that A(2)

cca runs roughly as long as Aso and the bound on q(2)
d,cca holds.

Experiment Exp3. The faithful data encapsulation is replaced by algorithms Fake
and Make. More precisely, for each iteration of the For loop (line 07) we replace the
invocation O.DecE(ki;·)(k′i,mi) (line 12) with running Fake(k′i, |mi|) and Make(mi) back
to back (lines 13,14). Eki gets assigned partial permutation π̃ as output by Make (see
line 15) and a check is performed whether Eki has been programmed ‘consistently’; if
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Oracle E+(k, α)
35 If k ∈ K[n]\I : //Exp4 – Exp6
36 Bad← true // Exp4
37 Abort //Exp5 – Exp6
38 If α /∈ Dom(E+

k ):
39 β ←$ D \ Rng(E+

k )
40 Ek ← Ek ∪ {(α, β)}
41 Return β

Oracle E−(k, β)
42 If k ∈ K[n]\I : //Exp4 – Exp6
43 Bad← true // Exp4
44 Abort //Exp5 – Exp6
45 If β /∈ Dom(E−k ):
46 α←$ D \ Rng(E−k )
47 Ek ← Ek ∪ {(α, β)}
48 Return α

Figure 3.19: Ideal cipher oracles E+, E− provided in Exp0 – Exp6 as given in Figure 3.17.

not, experiment Exp3 aborts (line 16).

Claim 3.4.4
∣∣∣Pr
[
ExpAso2 (n)⇒ 1

]
− Pr

[
ExpAso3 (n)⇒ 1

]∣∣∣ ≤ n · εsim.
Proof of Claim 3.4.4. Fix i ∈ [n]. Due to the modifications in experiments Exp1 and
Exp2, partial permutation Eki is empty at the time of invoking O.Enc. Hence, once
we replace O.Enc by Fake and Make, the partial permutation as output by Make can
always be embedded into Eki . Particularly, partial permutations Eki accessed by O.Enc
and π̃ output by Make are identically distributed when randomly extended to a full
permutation on D. We conclude that the abort in line 16 happens with probability at
most εsim as oDEM is εsim-simulatable. The claim follows from the union-bound over
all i ∈ [n].

Recall from the proof outline that, eventually, Make shall be run as part of the
Open procedure. The upcoming modifications ensure that partial permutation Eki

remains empty until Open(i) is queried.

Experiment Exp4. Line 03 is added to initialize a flag Bad as false. Lines (35, 36)
are added to the E+ oracle, lines (42, 43) are added to the E− oracle and line 20 is
added. That is, if E+ or E− is queried on (ki, z) for any z and i /∈ I, Bad is set to true
and the experiment aborts after the execution of A2 (in line 20).

Claim 3.4.5 There exists an adversary A(3)
cca that (τ (3)

cca, q
(3)
d,cca, ε

(3)
cca)-breaks the IND-

CCA security of KEM where τ (3)
cca ≈ τso-cca, q(3)

d,cca ≥ qd,so-cca and

ε(3)
cca ≥

1
n
·
∣∣∣Pr
[
ExpAso3 (n)⇒ 1

]
− Pr

[
ExpAso4 (n)⇒ 1

]∣∣∣− qic + qd
|K|

.

Proof of Claim 3.4.5. Fix i ∈ [n] and let ‘k ∈ K{i}\I ’ denote the event that E+ or
E− is queried on (k, z) where k ∈ K{i}\I . (That is, the condition in lines 35 or 42
holds, even when replacing K[n]\I with K{i}\I). Again, we replace key k′′i output in
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the ith invocation of KEM.Enc with a uniform key (k$, k
′
$)← k′′$ . The reduction run by

A(3)
cca = (A(3)

cca,1,A
(3)
cca,2) proceeds as in the proof of Claim 3.4.3 to bridge Exp0 and Exp1.

However, here, A(3)
cca,2 halts after Aso,2 ’s execution and outputs 1 iff Bad is true.

Analysis The reduction is perfect unless Aso,2 queries Open(i) which cannot be
answered. Similarly to before, it suffices to guarantee the correctness of the simulation as
long as the abort in line 20 can potentially happen. Note that after query Open(i), Bad

cannot be set to true as K{i}\I = ∅. Hence, |Pr[k ∈ K{i}\I ]− Pr[k ∈ {k$} \ I]| ≤ εcca
for uniform k$ ←$ K.

Further, k$ is uniform from Aso’s view: Only ciphertext 〈c(1)
i , c

(2)
i 〉 might contain

information on k$. However, c(1) is independent of k$ as it is sampled after KEM.Encpk

outputs c(1) and data encapsulation c(2)
i is independent of k$ as we run Fake(k′i,mi) to

compute c(2)
i . Thus, Pr[k ∈ {k$} \ I] ≤ (qic + qd)/|K| and collecting the probabilities

and applying the union-bound gives the desired bound.
One easily verifies the statements on the running time and decapsulation queries by

A(3)
cca.

Experiment Exp5. Lines 37 and 44 are added. Instead of aborting after the execution
of A2 if Bad =true, experiment Exp5 aborts as soon as Bad (as introduced in Exp4)
is set to true. Now obsolete lines 03, 20, 36 and 43 are removed for clarity. Note that
this step is purely cosmetic since we condition our analysis on ‘Abort does not happen’
anyway.

Claim 3.4.6 Pr
[
ExpAso4 (n)⇒ 1

]
= Pr

[
ExpAso5 (n)⇒ 1

]
.

Proof of Claim 3.4.6. The claim follows from observing that experiment Exp5 aborts
in lines 37 or 44 if and only if experiment Exp4 aborts in line 20.

Experiment Exp6. An abort event is added in line 30. The invocation of Make, the
embedding of a partial permutation and the consistency check are moved from the For
loop in lines 14 – 16 to the Open oracle (lines 31 – 32).

Claim 3.4.7 Pr
[
ExpAso5 (n)⇒ 1

]
= Pr

[
ExpAso6 (n)⇒ 1

]
.

Proof of Claim 3.4.7. The abort event in line 30 is solely added for clarity but is
never met: Assume that line 30 would cause an abort, then the condition in line 11, or
lines 35/42 would have been satisfied earlier. Hence, for all i ∈ [n]: a) in experiment Exp5

partial permutation Eki ← π̃ as output by Make in line 14 is information-theoretically
hidden from A until it queries Open, and b) in Exp6 partial permutation Eki remains
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empty until A queries Open. Thus, embedding partial permutation π̃ into Eki always
succeeds. Further, moving the invocation of Make, the embedding and checking to the
Open oracle is completely oblivious to A.

We observe that the code as given in experiment Exp6 in Figure 3.17 matches the
code of the simulator as given in Figure 3.16. Further, observe that all IND-CCA
adversaries A(1)

cca, A(2)
cca, A(3)

cca have roughly the same running time and pose the same
number of decryption queries. Further, for their winning probabilities we have

max{ε′cca, ε′′cca, ε′′cca} ≤ εcca .

The claim of Theorem 3.4.1 follows by collecting the results from Claims 3.4.2
to 3.4.7.6

6Note that we obtain a slightly better bound than given in Theorem 3.4.1 that happens to be
slightly messier.
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Conclusion & Open Problems

In this thesis we presented contributions to the understanding of selective opening
attacks, security against the former, respectively. Our results fall into two categories:
Results in the standard model, and results in the random oracle (resp. ideal cipher)
model.

Our standard model results in Part I are the first non-trivial implications results
on the relation of IND-CPA and IND-SO-CPA security. Motivated by an observation
on ‘memomoryless’ distributions we developed a new reduction. We could show that
IND-CPA securtiy entails IND-SO-CPA security for a class of distributions strictly larger
than what was previously known. However, the conditions imposed on distributions
covered by our positive result are quite significant and restrict the distribution to be
chain-like. Interestingly, we exploit the lack of dependencies while the separation result
of [HRW16] relies on ‘distributions with many dependencies’. As already mentioned in
the introduction, the latter negative result and our positive result leaves an uncharted
territory of distributions for which we do not know whether IND-CPA implies IND-SO-
CPA security.

For our results in idealized models we first concentrated on well-known transfor-
mations that are known to obtain IND-CCA security in the random oracle model.
Surprisingly, we could show that all transformations do obtain the (strictly) stronger
notion of SIM-SO-CCA security. Yet, for these transformations we required the plaintext
to be one-time padded with the output of random oracle in order to ensure efficient
openability. Thus, the schemes covered by our results are of rather limited use in
practice. However, we could generalize the concept to simulatable DEMs allowing for
efficient openability for arbitrary plaintexts in the ideal cipher model. When combined
with a standard IND-CCA secure KEM we showed that the obtained hybrid encryption
scheme achieves the strong notion of SIM-SP-CCA as well. Note that for all results in
Part II the use of idealized primitives allowed us to circumvent the negative result of
[BDWY11] as no ‘committing’ PKE scheme can obtain SIM-SO security.
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