
Decoding Random Linear Codes in Õ(20.054n)

Alexander May⋆, Alexander Meurer⋆⋆, Enrico Thomae⋆ ⋆ ⋆

Faculty of Mathematics
Horst Görtz Institute for IT-Security
Ruhr-University Bochum, Germany

{alex.may,alexander.meurer,enrico.thomae}@rub.de

Abstract. Decoding random linear codes is a fundamental problem in
complexity theory and lies at the heart of almost all code-based cryptog-
raphy. The best attacks on the most prominent code-based cryptosystems
such as McEliece directly use decoding algorithms for linear codes. The
asymptotically best decoding algorithm for random linear codes of length
n was for a long time Stern’s variant of information-set decoding running
in time Õ

(
20.05563n

)
. Recently, Bernstein, Lange and Peters proposed a

new technique called Ball-collision decoding which offers a speed-up over
Stern’s algorithm by improving the running time to Õ

(
20.05558n

)
.

In this paper, we present a new algorithm for decoding linear codes that
is inspired by a representation technique due to Howgrave-Graham and
Joux in the context of subset sum algorithms. Our decoding algorithm
offers a rigorous complexity analysis for random linear codes and brings
the time complexity down to Õ

(
20.05363n

)
.

Keywords: Information set decoding, representation technique.

1 Introduction

Linear codes have various applications in information theory and in cryptog-
raphy. Many problems for random linear codes such as the so-called syndrome
decoding are known to be NP-hard [2] and thus coding-based cryptography hopes
to transfer this hardness to an average case hardness for cryptographic construc-
tions. Since it is unlikely that hard coding problems are efficiently solvable on
quantum computers, coding-based constructions are also one of the most promi-
nent candidates for quantum-resistant cryptography.

Even many of today’s lattice-based constructions like Regev’s cryptosys-
tem [12] or the HB protocol [7] inherently rely on the hardness of syndrome
decoding via a variant called Learning Parity with Noise (LPN) problem. Given
the importance of the syndrome decoding problem, it is a major task to un-
derstand its complexity in order to properly define cryptographic parameters
that offer a sufficient security level. Let us introduce some notion that helps to
investigate the syndrome decoding problem for linear codes.

⋆ Supported by DFG project MA 2536/7-1 and by ICT-2007-216676 ECRYPT II,
⋆⋆ Ruhr-University Research School, Germany Excellence Initiative [DFG GSC 98/1],

⋆ ⋆ ⋆ and by DFG through an Emmy Noether grant.

A binary linear [n, k , d]-code C of length n is a linear subspace of the vector
space F

n
2 . The dimension k of C is the dimension of the subspace. The distance

d of C is defined as the minimal Hamming distance between two codewords.
An [n, k , d]-code C can be defined via some basis matrix G ∈ F

k×n
2 for the

subspace, called a generator matrix, i.e. C = {xG : x ∈ F
k
2}. Alternatively, we

can define C via a parity check matrix H ∈ F
(n−k)×n

2 whose kernel equals C, i.e.
we have C = {x ∈ F

n
2 : Hxt = 0}. Moreover, let C have distance d and let c ∈ C

be a codeword. Assume that we transmit x = c + e for some error vector with
Hamming weight w := wt(e) ≤ ⌊d−1

2 ⌋. Then c is the unique closest codeword in
C to x.

The term s(x) := Hxt = H(ct + et) = Het is called the syndrome of x.
Notice that e defines the unique linear combination of exactly w columns of H
that sum to Het over Fn

2 . Finding this linear combination allows to recover the
closest codeword c = x + e. Hence, the so-called syndrome decoding of linear
codes amounts to finding a subset I of ω out of n vectors from F

n−k
2 such that

the vectors in I sum to a fixed target value s(x).
A naive linear decoding algorithm is thus to search over all

(
n
w

)
linear com-

binations of columns in H. Obviously w < n
2 , therefore the search space

(
n
w

)
is

maximal for w as large as possible. Thus, in coding based cryptosystems like
McEliece [11] one usually fixes the weight of the error vector e to w := ⌊d−1

2 ⌋.
Throughout the paper, we assume for simplicity that we know w . We would like
to stress that our decoding algorithm also works with the same asymptotical run-
ning time for unknown w , if we incorporate a loop over all possible values of w
within the interval (0, ⌊d−1

2 ⌋], since our asymptotical running time is dominated
by the largest value of w .

The running time of a decoding algorithm is a function of the three code
parameters [n, k , d]. A random [n, k , d]-code is defined via a random parity check

matrix H ∈R F
(n−k)×n
2 . It is well-known that for sufficiently large n random

linear codes reach the so-called Gilbert-Varshamov bound (see [6], Chapter 2
for an introduction). More precisely, the code rate k

n
of a random linear code

asymptotically reaches 1−H (d
n
), where H is the binary entropy function. Solving

for d allows us to express the asymptotical running time for random linear codes
as a function of [n, k] only. We obtain a worst case running time as a function
of n if we take the maximum over all values of 0 ≤ k ≤ n. For all decoding
algorithms in this work the worst case appears for codes of rate k

n
≈ 0.47.

Related work. Let s(x) = Hxt be the syndrome of some erroneous codeword
x = c + e with c ∈ C and weight-w error e. We briefly show how to extract
e from s(x) by an algorithm called information set decoding, that was already
mentioned in the initial security analysis of McEliece [11] and further explored
by Lee and Brickell [9].

The idea of information set decoding is to reduce the search space by linear
algebra. The first step is to randomly permute the columns of H, which basi-
cally permutes the coordinates of the error vector e. Then, one transforms the

permuted H ∈ F
(n−k)×n
2 into systematic form (Q|In−k) with Q ∈ F

(n−k)×k
2 and

2

In−k the (n − k)-dimensional identity matrix. Next, one fixes a weight p and
computes for all linear combinations of p columns in Q the sum with the given
syndrome s(x). If this sum has Hamming weight exactly w − p, then we can
simply choose another w − p columns from the identity matrix In−k in order to
obtain a weight-w linear combination of columns that sum to s(x).

Obviously, information set decoding succeeds if we permute e such that ex-
actly p out of its w 1-entries are in the first k coordinates, and the remaining
(w − p) 1-entries fall into the last n − k coordinates. Optimization of p yields a
running time of Õ

(
20.05751n

)
.

In 1988, Leon [10] and Stern [13] further improved information set decoding
by enforcing a window of 0-entries of size ℓ in the last n− k entries of e. Assume
that this length-ℓ window is e.g. in positions k + 1, . . . , k + ℓ of e. Then the
weight-p linear combination of Q has to exactly match the syndrome s(x) in the
ℓ positions 1, . . . , ℓ, since we are no longer allowed to use the first ℓ columns from
In−k . Stern [13] proposed to compute those weight-p linear combinations of Q
by a birthday technique via the sum of two disjoint weight-p2 sums of columns

in Q. This algorithm lowers the time complexity to Õ
(
20.05563n

)
by increasing

the memory complexity to Õ
(
20.013n

)
.

In this work, we study a variant of Stern’s information set decoding algorithm
which is an instantiation of an algorithm by Finiasz and Sendrier from 2009 [5].
We call this instantiation FS-ISD. In FS-ISD, the 0-window is removed by simply
removing the corresponding ℓ columns, i.e., by adjusting the systematic form to(
Q | 0

In−k−ℓ

)
with Q ∈ F

(n−k)×(k+ℓ)
2 .

A different approach for removing the length-ℓ 0-window restriction in Stern’s
algorithm was recently proposed by Bernstein, Lange and Peters [4], called Ball-
collision decoding by the authors. In Ball-collision decoding, one allows to have
a small non-zero weight q in the length-ℓ window. Both algorithms, FS-ISD
and Ball-collision decoding, share the same time complexity Õ

(
20.05558n

)
and

memory complexity Õ
(
20.014n

)
.

As a sideline of our work we show that any parameter choice (p, q, ℓ) for
Ball-collision decoding can be transformed into parameters (p′, ℓ′) for the FS-
ISD algorithm with the same asymptotic time complexity. That is, FS-ISD is
asymptotically at least as efficient as Ball-collision decoding. We conjecture that
both algorithms actually behave asymptotically equivalent. Since FS-ISD offers a
simpler description than Ball-collision, we focus on improving the FS-ISD variant
in this work.

Our contribution. We provide a new information set decoding algorithm
based on FS-ISD. The major subproblem in FS-ISD is to find exactly p columns
of an ℓ-row submatrix Q′ of the (n − k) × (k + ℓ) matrix Q that sum to the
corresponding ℓ coordinates of the syndrome s(x).

More precisely, let Q′ = [q′
1 . . .q

′
k+ℓ] and s′(x) be the projections of Q

and s(x) on the desired ℓ coordinates. Then we have to find an index set
I ⊆ {1, . . . , k + ℓ} with |I | = p and

∑
i∈I q

′
i = s′(x). We call this problem

3

the submatrix matching problem. Our improvement of information set decoding
comes from a more efficient algorithm for the submatrix matching problem than
the birthday algorithm of Stern. Our algorithm for the submatrix matching prob-
lem might be of independent interest as this problem is again a parametrized
version of syndrome decoding.

In FS-ISD, the submatrix matching problem is solved by splitting the interval
[1, k + ℓ] into the two disjoint intervals [1, k+ℓ

2] and [k+ℓ
2 + 1, k + ℓ]. Then one

searches in a birthday-type manner for two index sets I1 ⊂ [1, k+ℓ
2] and I2 ⊂

[k+ℓ
2 + 1, k + ℓ] of cardinality p

2 each, such that
∑

i∈I1
q′
i =

∑
i∈I2

q′
i + s′(x).

Our approach is inspired by a clever representation technique used in a recent
subset sum algorithm of Howgrave-Graham and Joux from Eurocrypt 2010 [8].
We choose I1 and I2 in the submatrix matching problem both from the whole
interval [1, k + ℓ] instead of taking two disjoint intervals of size k+ℓ

2 . Let I be a
solution with

∑
i∈I q

′
i = s′(x) and |I | = p.

Then the major observation is that I has
(

p
p/2

)
different representations of

the form I = I1 ∪ I2 with |I1| = |I2| =
p

2 . Thus, we also have
(

p
p/2

)
identities of

the form ∑

i∈I1

q′
i =

∑

i∈I2

q′
i + s′(x), (1)

instead of just one unique representation as in FS-ISD.
Interestingly, Finiasz and Sendrier also allow for non-disjoint splittings in [5].

However, their framework does not make use of different representations. It
is precisely the representation technique that allow us to bypass their lower
bound argument and to asymptotically beat the lower bound for information set
decoding given in [5]. Our algorithms achieves an asymptotic running time of
Õ
(
20.05363n

)
using memory Õ

(
20.021n

)
.

The correctness of our algorithm is rigorously proven under the assumption
that H is a uniformly random {0, 1}-matrix. This assumption is plausible in the
cryptographic setting, since it is actually the goal of crypto designers to hide
the structure of the underlying code, e.g. the Goppa code in McEliece, by linear
transformations.

time space

Lee-Brickell 0.05751n -
Stern 0.05563n 0.013n
FS-ISD / Ball-collision 0.05558n 0.014n
Lower bound from [5] 0.05556n 0.014n
Our algorithm with FS-ISD space 0.05402n 0.014n
Our algorithm 0.05363n 0.021n

Table 1. Comparison of exponents in the asymptotic worst-case complexities.

Table 1 summarizes the worst-case complexity of decoding algorithms. No-
tice that Stern’s algorithm, FS-ISD and Ball-collision are typical time-memory
tradeoffs that decrease the running time complexity at the cost of an increased
memory complexity. In contrast, our algorithm does not only benefit from a

4

mere time-memory tradeoff. For example, if we restrict our memory complexity
to Õ

(
20.014n

)
as in FS-ISD we still obtain an improved running time.

Roadmap. Our paper is organized as follows. We first introduce some useful
notation in Section 2. In Section 3, we briefly recall the state of the art in
information set decoding, including Stern’s algorithm, FS-ISD and Ball-Collision
decoding. In Section 4, we provide an algorithm for the submatrix matching
problem. This leads to our new information set decoding algorithm in Section 5,
for which we provide some experimental results in Section 6.

2 Notation

By [k] we define the set of natural numbers between 1 and k , i.e. [k] = {1, . . . , k}.
The cardinality of a finite set I is denoted by |I |. For a better readability we
represent matrices Q and vectors e by bold letters. For index sets I ⊂ [n],
J ⊂ [k] and an n × k matrix Q = (qi,j)i∈[n],j∈[k] ∈ F

n×k
2 , we denote by QI

J :=
(qi,j)i∈I ,j∈J the submatrix containing the |I | rows and |J | columns defined by I
and J , respectively. When we consider submatrices ofQ where either columns or

rows are chosen, we simply write QJ or QI meaning QJ = Q
[n]
J and QI = QI

[k].

We extend this notion to vectors s ∈ F
n
2 and write sL ∈ F

|L|
2 for the projection of

s onto the coordinates defined by L. Further, for a matrix Q = (qi,j)i∈[n],k∈[k] ∈

F
n×k
2 and index sets L ⊆ [n] with |L| = ℓ, we define a mapping πL : Fn×k

2 → F
ℓ
2

where

πL(Q) :=
∑k

i=1 Q
L
{i} ∈ F

ℓ
2

is the projection of the sum of Q′s columns onto the ℓ rows defined by L.
As before, we sometimes omit the index set L which means that we consider
the sum of Q’s columns without projecting it to a certain number of rows, i.e.
π(Q) = π[n](Q) ∈ F

n
2 .

By wt(x) we denote the Hamming weight of a vector x ∈ F
n
2 , i.e., wt(x)

counts the number of non-zero entries of x. By supp(x) := {i ∈ [n] : xi = 1} we
denote the support of a vector x, i.e., the set of indices corresponding to non-zero
coordinates of x ∈ F

n
2 . We represent the n-dimensional identity matrix by In and

the i-th unit vector by ui . Observe that
∑

i∈supp(x) ui = x for every x ∈ F
n
2 . For

a set of natural number I ⊂ N, we introduce the shifted set k+I := {k+i : i ∈ I }
for arbitrary k ∈ N.

Throughout the asymptotic complexity analysis of our exponential algo-
rithms we make use of the soft Landau notation Õ which suppresses arbitrary
polynomial factors, i.e., p(n)2n = Õ(2n) for every polynomial p(n). We often
need to estimate binomial coefficients of the form

(
αn
βn

)
asymptotically. Stirling’s

formula yields
(
αn

βn

)
= Õ(2αH (β/α)n), (2)

where H (x) = −x log2(x)− (1− x) log2(1− x) is the binary entropy function.

5

3 Information Set Decoding Algorithms

3.1 Information Set Decoding

Let C be an [n, k , d]-code with parity check matrixH. Furthermore, let x = c+e,
c ∈ C be an erroneous codeword with error e, wt(e) = ⌊d−1

2 ⌋. In order to find
e, information set decoding proceeds as follows.

Initially, we apply a random permutation to the columns of H, resulting
in a permuted matrix H̃. Then we apply Gaussian Elimination on the right-
hand square submatrix H̃I , I = {k + 1, . . . , n}. If H̃I is invertible, Gaussian
Elimination will succeed and we obtain a systematic form1 (Q|In−k) of H̃, see
Figure 1.

After the first step all the work can be done within the k columns of submatrix
Q. In the Lee-Brickell algorithm [9] one checks for every I ⊆ [k] with cardinality
|I | = p whether wt(π(QI) + s(x)) = ω − p. If so, we can easily choose ω − p
columns in the In−k part of H̃ indexed by J = k + supp(π(QI) + s(x)) ⊆
[k + ℓ+ 1, n] which eliminate the remaining 1-entries. This in turn implies that∑

i∈I Q{i} +
∑

j∈J uj−k = s(x).

Therefore, I and J determine the support of the permuted error vector ẽ =
eUP , i.e., we can set supp(ẽ) := I ∪ J which finally reveals the error e.

·

t

= s(x)tQ In−k

︷ ︸︸ ︷
k

︷ ︸︸ ︷
n − k

QI1 QI2

︷︸
︸︷ℓ

︸︷︷︸
p
2

︸︷︷︸
p
2

0 0 01 1 0

︸ ︷︷ ︸
weight ω−p

Fig. 1. Collision Decoding by Stern - Het = s(x)t . The error vector e contains two
blocks each of p

2
1’s in its upper half corresponding to the columns ofQI1 andQI2 . Since

QI1 and QI2 sum up to s(x) on the rows defined by [ℓ] we have to fix a corresponding
zero-block in coordinates {k + 1, . . . , k + ℓ} of e. The remaining (ω − p) 1’s are then
distributed over the remaining coordinates {k + ℓ+ 1, . . . ,n} of e.

1 In more detail, we transform H by multiplying it by two invertible matrices
UP ∈ F

n×n
2 , UG ∈ F

n−k×n−k
2 corresponding to the initial column permutation and

the Gaussian Elimination, respectively. Then (Q|I) = UG(HUP). Notice, that the
transformation UG also needs to be applied to the syndrome s(x), which we omit
for simplicity of exposition.

6

3.2 Stern’s Algorithm

In the late 80s, Leon and Stern [13] introduced the idea of forcing the first
ℓ coordinates of π(QI) already to the coordinates of s(x). Let s[ℓ](x) be the
projection of s(x) onto the coordinates in [ℓ].

We enumerate for all I1 ⊆ [1, k2], I2 ⊆ [k2 +1, k] the projected vectors π[ℓ](QI1)
and π[ℓ](QI2) + s[ℓ](x) in two lists. Then we search for collisions in these lists,
meaning that we look for two weight-p2 sums of columns that are equal to the
syndrome s(x) within the coordinates of [ℓ].

If wt(π(QI1) + π(QI2) + s(x)) = ω − p holds for one of these collisions, we
again set the corresponding ω−p coordinates in the second half of the permuted
error vector ẽ to 1, see Fig. 1 for an illustration.

To analyze Stern’s algorithm we have to consider both the complexity of
each iteration and the probability of success. The complexity of each iteration
is dominated by the collision finding step in two lists. This can be done by a
simple sort-and-match technique. Neglecting log factors, we obtain complexity

CStern(p, ℓ) := max





(
k/2

p/2

)
,

(
k/2
p/2

)2

2ℓ



 . (3)

In order to analyze the success probability, we need to compute the proba-
bility that a random permutation of the error e ∈ F

n
2 of weight wt (e) = ω has a

good weight distribution, i.e., ẽ needs to have weight p/2 both on its coordinates
in [1, k/2] and [k/2+1, k] and zero-weight on all coordinates with indices in the
set {k +1, . . . , k + ℓ} as illustrated in Fig. 1. Thus, we obtain success probability

PStern(p, ℓ) :=

(
k/2
p/2

)2(n−k−ℓ
ω−p

)
(
n
ω

) . (4)

The overall running time of Stern’s algorithm is hence given by CStern ·P
−1
Stern.

Optimizing this expression for p and ℓ under the natural constraints 0 ≤ p ≤ ω
and 0 ≤ ℓ ≤ n − k − ω + p we obtain time complexity Õ

(
20.05563n

)
and space

complexity Õ
(
20.013n

)
. The optimal parameter choice is given by p = 0.003n

and ℓ = 0.013n.

3.3 The Finiasz-Sendrier ISD Algorithm

The idea of the FS-ISD algorithm is to increase the success probability for having
a permuted error vector ẽ of the desired form by allowing ẽ to spread it’s 1’s over
all coordinates, instead of fixing a certain ℓ-width 0-window. This is realized by
changing the systematic form during the Gaussian Elimination process.

As before, we first randomly permute the columns of H, which results in a
permuted matrix H̃ = HUP . Then we carry out a partial Gaussian Elimination

7

on the right-hand lower square submatrix H̃I
J ∈ F

(n−k−ℓ)×(n−k−ℓ)
2 with index

sets I = {ℓ+ 1, . . . , n − k} and J = {k + ℓ+ 1, . . . , n}.

Next, we force an ℓ × (n − k − ℓ) zero block in the remaining ℓ rows of the
submatrix H̃J by adding rows of the identity matrix. Mathematically, we repre-
sent the partial Gaussian Elimination plus row elimination by a multiplication
with an (n − k) × (n − k) invertible matrix UG . Therefore, the initial step in
FS-ISD, which we denote Init(H), yields a modified systematic form

(
Q

0

In−k−ℓ

)
= UGHUP .

In Fig. 2, we illustrate the Birthday collision step of FS-ISD which is the same
as in Stern’s algorithm but for a submatrix Q[ℓ] which now has k + ℓ columns
instead of k columns.

0

︷ ︸︸ ︷k + ℓ ︷ ︸︸ ︷n − k − ℓ

︷︸
︸︷ℓ

︷
︸︸

︷

n − k − ℓ

︸︷︷︸
p

2

︸︷︷︸
p

2

Q[ℓ]

In−k−ℓQ

Fig. 2. Birthday collision search in FS-ISD.

A straight-forward modification of the analysis of Stern’s algorithm from Sec-
tion 3 yields a complexity of

TFS-ISD(p, ℓ) := max

{
SFS-ISD(p, ℓ),

SFS-ISD(p, ℓ)
2

2ℓ

}
(5)

per iteration, where SFS-ISD(p, ℓ) =
((k+ℓ)/2

p/2

)
denotes the size of the initial lists

and thus represents also the space complexity. Furthermore, the success proba-
bility of getting an error vector e of the desired form is now given by

PFS-ISD(p, ℓ) :=

((k+ℓ)/2
p/2

)2(n−k−ℓ
ω−p

)
(
n
ω

) . (6)

Thus, we obtain a total complexity ofCFS-ISD(p, ℓ) = TFS-ISD(p, ℓ)·PFS-ISD(p, ℓ)
−1.

Optimizing this expression yields a worst-case running time of Õ
(
20.05558n

)

within space complexity Õ
(
20.014n

)
. The optimal parameter choice is given by

p = 0.003n and ℓ = 0.014n.

8

3.4 Ball-collision Decoding

In 2011, Bernstein, Lange and Peters [4] presented another information set de-
coding algorithm, which they called Ball-collision decoding (BCD for shorthand).
The general idea of BCD is very similar to the idea of the FS-ISD algorithm,
namely the authors increase the success probability of one iteration in Stern’s
algorithm by allowing an additional number of ones within the fixed width-ℓ
0-window.

Therefore, BCD allows for q additional 1’s within the 0-window, or in other
words for a Hamming ball of radius q within the 0-window. More precisely, let I
be an index set with |I | = p

2 chosen from the intervals [1, k/2] or [k/2+1, k]. Each
entry (I , π[ℓ](QI)) in the initial lists of Stern’s algorithm has to be expanded by
all possible projected weight-q/2 column sums π[ℓ](IJ) of the identity matrix
I – for index sets J of size |J | = q/2 contained either in [k + 1, k + ℓ/2] or
[k + ℓ/2 + 1, k + ℓ].

Analogously to the analysis of Stern’s algorithm in Sect. 3, we obtain an
asymptotic time complexity for one iteration of BCD of

TBCD(p, ℓ, q) := max

{
SBCD(p, ℓ, q),

SBCD(p, ℓ, q)
2

2ℓ

}
. (7)

The space consumption is SBCD(p, ℓ, q) =
(
k/2
p/2

)(ℓ/2
q/2

)
. Similarly one obtains a

success probability of

PBCD(p, ℓ, q) :=

((
k/2
p/2

)(ℓ/2
q/2

))2 (
n−k−ℓ
ω−p−q

)
(
n

ω

) . (8)

Eventually, the overall complexity of BCD is given by CBCD(p, ℓ, q) = TBCD(p, ℓ, q)·
PBCD(p, ℓ, q)

−1.

Intuitively, FS-ISD and BCD proceed in a similar fashion by allowing ẽ to
spread its 1’s in a more flexible way at the cost of slightly increasing the workload
and space complexity per iteration. Indeed, the following theorem shows that
FS-ISD is asymptotically at least as efficient as BCD.

Theorem 1. Let (p, q, ℓ) be a parameter set for the BCD algorithm. Then (p+
q, ℓ) is a parameter set for FS-ISD satisfying

CFS-ISD(p + q, ℓ) ≤ CBCD(p, ℓ, q) .

We make use of the following easy combinatorial lemma.

Lemma 1. For all k , ℓ ∈ N and all positive p, q ∈ N with p + q ≤ k + ℓ it holds

(
k + ℓ

p + q

)
≥

(
k

p

)(
ℓ

q

)
.

9

Proof. Vandermonde’s identity states that for all positive m ≤ k + ℓ, we have(
k+ℓ
m

)
=
∑m

i=0

(
k

i

)(
ℓ

m−i

)
. Therefore,

(
k + ℓ

p + q

)
=

m∑

i=0

(
k

i

)(
ℓ

p + q − i

)
≥

(
k

p

)(
ℓ

q

)
.

Proof (of Theorem 1). Let (p, q, ℓ) be a valid parameter set for the BCD algo-
rithm, i.e., 0 < p < ω, 0 < ℓ < n − k and 0 < q < min{ℓ, ω− p}. Then (p + q, ℓ)
is a valid parameter set for FS-ISD, i.e., 0 < p + q < ω and 0 < ℓ < n − k .

Recall from Section 3.3 and 3.4 that

TFS-ISD(p + q, ℓ) := max

{
SFS-ISD(p + q, ℓ),

SFS-ISD(p + q, ℓ)2

2ℓ

}

with

SFS-ISD(p + q, ℓ) =

(
(k + ℓ)/2

(p + q)/2

)

and

TBCD(p, ℓ, q) := max

{
SBCD(p, ℓ, q),

SBCD(p, ℓ, q)
2

2ℓ

}

with

SBCD(p, ℓ, q) =

(
k/2

p/2

)(
ℓ/2

q/2

)
.

Let us first assume that the maximum in TBCD is S 2
BCD · 2−ℓ, i.e., we have

2ℓ ≤ SBCD. Using Lemma 1, we obtain

SBCD(p, ℓ, q) =

(
k/2

p/2

)(
ℓ/2

q/2

)
≤

(
(k + ℓ)/2

(p + q)/2

)
= SFS-ISD(p + q, ℓ). (9)

Hence 2ℓ ≤ SFS-ISD(p+q, ℓ) follows, i.e., the maximum in TFS-ISD is also reached
in the right component. Recall from Section 3.3 and 3.4 that

PFS-ISD(p+q, ℓ) :=

((k+ℓ)/2
p/2

)2(n−k−ℓ
ω−p−q

)
(
n
ω

) and PBCD(p, ℓ, q) :=

((
k/2
p/2

)(ℓ/2
q/2

))2 (
n−k−ℓ
ω−p−q

)
(
n
ω

) .

We can now deduce

CFS-ISD(p + q, ℓ) = TFS-ISD(p + q, ℓ)PFS-ISD(p + q, ℓ)−1

=

(
n
ω

)

2ℓ
(
n−k−ℓ
ω−p−q

) = TBCD(p, ℓ, q)PBCD(p, ℓ, q)
−1 = CBCD(p, ℓ, q) .

It remains to consider the case where TBCD reaches it maximum in the
left component SBCD which implies 2ℓ > SBCD. Let us first consider the case

10

SFS-ISD < 2ℓ, i.e., TFS-ISD = SFS-ISD. We can use the inequality in (9) again and
obtain

CFS-ISD(p + q, ℓ) = TFS-ISD(p + q, ℓ)PFS-ISD(p + q, ℓ)−1

=

(
n
ω

)
(
n−k−ℓ
w−p−q

)
SFS-ISD(p + q, ℓ)

≤

(
n
ω

)
(
n−k−ℓ
w−p−q

)
SBCD(p, ℓ, q)

= TBCD(p, ℓ, q)PBCD(p, ℓ, q)
−1 = CBCD(p, ℓ, q) .

Contrary, let 2ℓ ≤ SFS-ISD, i.e., TFS-ISD = S 2
FS-ISD/2

ℓ. Since SBCD < 2ℓ, we
obtain

CFS-ISD(p + q, ℓ) =

(
n

ω

)
(
n−k−ℓ
w−p−q

)
2ℓ

<

(
n

ω

)
(
n−k−ℓ
ω−p−q

)
SBCD(p, ℓ, q)

= CBCD(p, ℓ, q) . �

Due to Theorem 1, we take the FS-ISD algorithm as a starting point for our
new construction, in which we improve on the birthday-collision step.

4 How to solve the submatrix problem

Recall that in each iteration of the FS-ISD algorithm one has to find in a pro-
jected ℓ× (k + ℓ) - submatrix a weight-p sum of columns that sums to a target
syndrome. We call this problem the submatrix matching problem.

Definition 1. The submatrix matching problem with parameters ℓ, k and p ≤

k+ℓ is defined as follows. Given a random matrix Q = [q1 . . .qk+ℓ] ∈R F
ℓ×(k+ℓ)
2

and a target vector s ∈ F
ℓ
2, find an index set I of size at most p such that the

corresponding columns of Q sum to s, i.e., find I ⊂ [k + ℓ], |I | ≤ p with

π(QI) =
∑

i∈I qi = s ∈ F
ℓ
2 .

The submatrix matching problem is a vectorial variant of the well-known
subset sum problem. In the following, we propose an algorithm ColumnMatch

for the problem, based on a recently introduced representation technique for the
subset sum problem by Howgrave-Graham and Joux [8].

When we use ColumnMatch in information set decoding, the input param-
eters p, ℓ are optimization parameters that guarantee that some solution I exists
with a certain probability P(p, ℓ), compare e.g. with Eq.(6).

4.1 The ColumnMatch Algorithm

Let us briefly explain our ColumnMatch algorithm. We recommend the reader
to follow our algorithm’s description via the illustration given in Fig. 3 and the
pseudocode description in Algorithm 1.

LetQ = [q1 . . .qk+ℓ] ∈R F
ℓ×(k+ℓ)
2 and s ∈ F

ℓ
2 be an instance of the submatrix

matching problem. Assume that I is a solution to the problem of size exactly p.
Similar to FS-ISD we construct I from two sets I1, I2 of size p

2 each.

11

As opposed to FS-ISD, we do not choose I1 and I2 from disjoint sets of
size k+ℓ

2 . Rather we choose both I1, I2 from the full set [k + ℓ]. This choice
of the index sets is similar to what we call the representation technique due
to Howgrave-Graham and Joux [8]. The effect of the choice is that we obtain(

p
p/2

)
≈ 2p different partitions I = I1∪̇I2 and therefore the same number of

identities

∑

i∈I1

qi =
∑

i∈I2

qi + s in F
ℓ
2 . (10)

Our goal is to find one of these identities with constant success probability,
where the probability is taken over the random choice of Q. Therefore we do
not construct all possible sums of elements in I1, I2 but only those that satisfy
additional constraints. To establish the constraints, we introduce shortening pa-
rameters ℓ1, ℓ2 with ℓ1 + ℓ2 = ℓ that correspond to disjoint subsets L1,L2 ⊂ [l]
of size ℓ1, ℓ2, respectively.

∪̇ ∪̇

∆

p

4
p

4

p

4
p

4

p

4
p

4

p

4
p

4

p

2
p

2

ℓ2 ℓ2

ℓ1ℓ2L

L1 L2

L1,1 L1,2 L2,1 L2,2

k+ℓ

2
k+ℓ

2
k+ℓ

2
k+ℓ

2

Fig. 3. Illustration of the ColumnMatch algorithm. The flat rectangles above, beside
or below the lists represent the structure of the index sets Ii,j contained in distinct
lists, e.g., the level-2 list L1,1 contains index sets I1,1 whose p

4
ones are spread over the

first half of [k + ℓ] (as illustrated by the gray region).

12

Our construction now proceeds in two steps. In the first step, we construct
partial solutions that already sum to the target value s on the ℓ2 positions of
L2. More precisely, we construct two lists

L1 :=
{
(I1, πL1(QI1)) : I1 ⊂ [k + ℓ], |I1| =

p

2 and πL2(QI1) = 0 ∈ F
ℓ2
2

}
and

L2 :=
{
(I2, πL1(QI2) + sL1) : I2 ⊂ [k + ℓ], |I2| =

p
2 and πL2(QI2) = sL2 ∈ F

ℓ2
2

}
.

Notice that out of the 2p possible identities that satisfy Eq. (10), we consider
only those identities where

∑
i∈I1

qi is equal to 0 ∈ F
l2
2 on the bits of L2. Thus

we expect that we already remove a 2−ℓ2-fraction of all solutions, which lets an
expected number of 2p−ℓ2 solutions survive.

Once we have constructed the lists L1, L2 in the first step, we sort L2 ac-
cording to the labels πL1(QI2) + sL1 and search for all elements πL1(QI1) in L1

for a matching element in L2. Notice that every matching (I1, I2) fulfills Eq. (10)
and hence is a solution to the submatrix matching problem.

Since we constructed I1, I2 in a non-disjoint way, their intersection J = I1∩I2
might be non-empty. In this case, all vectors in J appear on both sides of Eq. (10)
and thus cancel out when we compute

∑
i∈I1

qi +
∑

i∈I2
qi over F

ℓ
2. This means

that we have found a solution I ′ = I1∆I2 = (I1 ∪ I2) \ (I1 ∩ I2) to the submatrix
matching problem with size |I ′| = p − 2|I1 ∩ I2|.

How to construct L1 and L2. The initial lists L1 and L2 can be easily
constructed by a classical sort-and-match step. Let us show how to construct
L1, the construction of L2 is analogous. We partition I1 = I1,1∪̇I1,2 with |I1,1| =
|I1,2| =

p

4 where I1,1 ⊂ [1, k+ℓ
2] and I1,2 ⊂ [k+ℓ

2 + 1, k + ℓ]. More precisely, we
compute two lists

L1,1 :=
{(

I1,1, πL2(QI1,1)
)
: I1,1 ⊂ [1, k+ℓ

2], |I1,1| =
p

4

}
and

L1,2 :=
{(

I1,2, πL2(QI1,2)
)
: I1,2 ⊂ [k+ℓ

2 + 1, k + ℓ], |I1,2| =
p

4

}
.

We then sort L1,2 with respect to the second component and search for all second
components in L1,1 for matching elements in L1,2.

Remark 1. Notice that the construction of L1 and L2 via disjoint splittings I1 =
I1,1∪̇I1,2 and I2 = I2,1∪̇I2,2 lowers the number of representationsR(p). Instead of
considering every subset I1 ⊂ I of size p

2 we take every I1 with an equal number
of p

4 indices coming from [1, (k + ℓ)/2] and [(k + ℓ)/2 + 1, k + ℓ], respectively.

Hence, we only have
(
p/2
p/4

)2
instead of

(
p

p/2

)
many different representations per

solution in Eq. (10). Asymptotically, this can be neglected since both terms equal
2p(1−o(1)).

Time and space complexity. Throughout the analysis, we will again ignore
low-order terms that are polynomial in the parameters p, ℓ. The space complexity

13

Algorithm 1 ColumnMatch

Input: Q ∈ F
ℓ×(k+ℓ)
2 , s ∈ F

ℓ
2, p ≤ k + ℓ

Output: I with π(QI) = s or ⊥ if no solution is found
Parameters: L1,L2 with [l] = L1∪̇L2 and |Li | = ℓi for i = 1, 2.

01 Construct L1,1,L1,2,L2,1,L2,2.
02 Sort L1,2,L2,2 according to their labels πL2(QI1,2), πL2(QI2,2) + sL2 .
03 Join L1,1 and L1,2 to L1, i.e., for all (I1,1, πL2(QI1,1)) ∈ L1,1 do

04 for all (I1,2, πL2(QI1,2)) ∈ L1,2 with πL2(QI1,1) = πL2(QI1,2) do

05 I1 = I1,1 ∪ I1,2. Insert (I1, πL1(QI1)) into L1.
06 Join L2,1 and L2,2 to L2, i.e., for all (I2,1, πL2(QI2,1)) ∈ L2,1 do

07 for all (I2,2, πL2(QI2,2)+ sL2) ∈ L2,2 with πL2(QI2,1) = πL2(QI2,2)+ sL2 do

08 I2 = I2,1 ∪ I2,2. Insert (I2, πL1(QI2) + sL1) into L2.
09 Sort L2 according to the label πL1(QI2) + sL1 .
10 Join L1 and L2 to L, i.e., for all (I1, πL1(QI1)) ∈ L1 do

11 for all (I2, πL1(QI2) + sL1) ∈ L2 with πL1(QI1) = πL1(QI2) + sL1 do

12 Output I1∆I2 = (I1 ∪ I2) \ (I1 ∩ I2).
13 Output ⊥.

of constructing the four level-2 lists L1,1,L1,2,L2,1,L2,2 is bounded by the length((k+ℓ)/2
p/4

)
of these lists. The sort-and-match step of these lists can be done in time

max

{(
(k + ℓ)/2

p/4

)
,

(
(k + ℓ)/2

p/4

)2

· 2−ℓ2

}
.

Joining lists L1,1 and L1,2 to list L1 produces a list of expected size

E[| L1 |] =

(
(k + ℓ)/2

p/4

)2

· 2−ℓ2 = Õ(2(k+ℓ)H (p

2(k+ℓ)
)−ℓ2).

The final sort-and-match step of L1 and L2 on level 1 then takes expected time

max

{
E[| L1 |],

E[| L1 |] · E[| L2 |]

2ℓ1

}
= max

{(
(k + ℓ)/2

p/4

)2

· 2−ℓ2 ,

(
(k + ℓ)/2

p/4

)4

· 2−2ℓ2−ℓ1

}
.

The following table summarizes the exponents in the complexities for both levels
of our algorithm ColumnMatch. This means that e.g. on level 2, we have space
complexity Õ(2S2(k ,p,ℓ)). All binomial coefficients are estimated via Eq.(2).
The total time and space complexity for ColumnMatch is hence given by

S (k , p, ℓ, ℓ2) = max{S2(k , p, ℓ), S1(k , p, ℓ, ℓ2)} and

T (k , p, ℓ, ℓ1, ℓ2) = max{S2(k , p, ℓ), S1(k , p, ℓ, ℓ2), 2S1(k , p, ℓ, ℓ2)− ℓ1} .

Theorem 2. Let Q ∈R F
ℓ×(k+ℓ)
2 , s ∈ F

ℓ
2 and p ≤ k + ℓ. Let Î be a solution

of the submatrix matching problem for Q, s. For sufficiently large p Column-

Match finds Î with probability at least 1
2 in time Õ(2T(k ,p,ℓ,ℓ1,ℓ2)) and space

Õ(2S(k ,p,ℓ,ℓ2)) as long as ℓ2 ≤ p − 2.

14

level space time

2 S2(k , p, ℓ) :=
k+ℓ

2
H (p

2(k+ℓ)
) max{S2(k , p, ℓ), 2S2(k , p, ℓ)− ℓ2}

1 S1(k , p, ℓ, ℓ2) := 2S2(k , p, ℓ)− ℓ2 max{S1(k , p, ℓ, ℓ2), 2S1(k , p, ℓ, ℓ2)− ℓ1}

Table 2. Exponents of time and space complexities.

Proof. We already proved the claim about the time and space complexity. It
remains to show that ColumnMatch succeeds with probability at least 1

2 .
To analyze the success probability of ColumnMatch we introduce a random

variable X that counts the number of representations I = I1 ∪̇ I2 of the solution
Î in lists L1 and L2. Our goal is to show that at least one representation survives
in our algorithm with probability at least 1

2 .

Notice that we have a total number of R(p) :=
(
p/2
p/4

)2
representations on

level 1. To analyze X we introduce R(p) indicator variables XI where XI = 1
iff representation I = I1 ∪̇ I2 of Î is contained in L1, i.e.,

XI =

{
1 if πL2(QI1) = 0

0 otherwise
.

Note that X =
∑

XI . The Second Moment Method [1] now lower bounds the
success probability Pr [X ≥ 1] by upper bounding Pr [X = 0] = 1−Pr [X ≥ 1]
using Chebyshev’s inequality

Pr [X = 0] ≤
Var[X]

E[X]2
=

∑
I Var[XI] +

∑
I 6=J Cov[XI ,XJ]

E[X]2
. (11)

Here the covariance has to be computed over all different representations
I 6= J of the solution Î . Essentially, for every representation I there is exactly
one different representation J for which XI and XJ are dependent, otherwise
they are pairwise independent and hence Cov[XI ,XJ] = 0.

We write I = I1 ∪̇ I2 with |I1|, |I2| =
p

2 and analogously J = J1 ∪̇ J2. Notice
that for all choices J1 6= I \ I1, the random variables XI and XJ are pairwise
independent because Q contains randomly distributed columns.

Let J1 = I \ I1. Since π(QI) = s, we have

πL2(QI1) = πL2(QJ1) + sL2 .

If sL2 6= 0 then πL2(QI1) 6= πL2(QJ1) which implies that XIXJ = 0. Therefore
Cov[XI ,XJ] = E[XIXJ] − E[XI]E[XJ] = −E[XI]E[XJ] < 0. Hence we can

bound Eq.(11) as Pr [X = 0] ≤
∑

I
Var[XI]

E[X]2 .

If sL2 = 0 then πL2(QI1) = πL2(QJ1) which implies XI = XJ . This means
that for every I there is exactly one J 6= I such that Cov[XI ,XJ] = Cov[XI ,XI] =
Var[XI]. In this case, we can bound Eq.(11) as

Pr [X = 0] ≤
2
∑

I
Var[XI]

E[X]2 .

15

Example 1. Consider the case k = 8 and p = 4 with Q = (q1, . . . ,q8), s = 0

and Î = {1, 2, 5, 6}. The representations I = I1 ∪̇ I2 = {1, 5} ∪̇{2, 6} and J =
J1 ∪̇ J2 = {2, 6} ∪̇{1, 5} have identical indicator variables XI ,XJ . However I and
K = {2, 5} ∪̇{1, 6} have independent indicator variables sincePr [XK = 1|XI = 1] =
Pr [q2 + q5 = 0|q1 + q5 = 0] = Pr [q2 = q1] = 2−ℓ2 = Pr [XK = 1].

We further observe that

Var[XI] = E[X 2
I]− (E[XI])

2 = E[XI]− (E[XI])
2 ≤ E[XI].

Therefore, we obtain

Pr [X = 0] ≤
2
∑

I Var[XI]

E[X]2
≤

2
∑

I E[XI]

E[X]2
≤

2E[
∑

I XI]

E[X]2
=

2E[X]

E[X]2
=

2

E[X]
.

Since E[X] = R(p)2−ℓ2 ≥ 2p(1−o(1))−ℓ2 , putting the restriction ℓ2 ≤ p − 2 on
the choice of the parameter ℓ2 yields for large enough p

Pr [X = 0] ≤ 21−p(1−o(1))+ℓ2 → 2ℓ2−(p−1) ≤
1

2
.

This in turn implies that our algorithm ColumnMatch succeeds in con-
structing at least one representation of the solution with probability at least 1

2 .�

5 Our New Decoding Algorithm

Let us start by giving a high-level description of our new information set decoding

algorithm which we call Decode. Let H ∈ F
(n−k)×n
2 be a parity check matrix

of an [n, k , d]-code C. Assume that we want to decode x = c + e with c ∈ C,
ω := wt(e) = ⌊d−1

2 ⌋. That means we want to find ω columns in H that sum to
the syndrome s(x) = Hxt . As described in Sect. 3.3, we start with the initial
transformation on the parity check matrix H and obtain the modified systematic
form

H̃ = Init(H) = UGHUP =

(
Q

0

In−k−ℓ

)
.

This process also permutes e to ẽ = UPe. Let p ≤ ω be an optimization param-
eter. We need that the ω ones in ẽ are distributed as p

2 ,
p

2 , ω−p in the coordinate
intervals [1, (k + ℓ)/2], [(k + ℓ)/2 + 1, k + ℓ], [k + ℓ+ 1, n] of ẽ, respectively.

Recall from Section 3.3 that ẽ happens to have the correct form with prob-
ability

PColumnMatch(p, ℓ) :=

((k+ℓ)/2
p/2

)2(n−k−ℓ
ω−p

)
(
n

ω

) . (12)

We now look within the submatrix Q[ℓ] of Q for a weight-p sum of the
columns that exactly matches the projection of the syndrome to the first ℓ rows.

16

In the Decode algorithm, we now apply our ColumnMatch algorithm to

Q[ℓ] ∈ F
ℓ×(k+ℓ)
2 with the projected syndrome as target vector and a solution

weight of p.
In each iteration of Decode, our ColumnMatch algorithm yields with

probability at least 1
2 · PColumnMatch(p, ℓ) at least one index set I , |I | ≤ p such

that π[ℓ](QI) exactly matches the projected syndrome. Thus we already match
the syndrome on ℓ coordinates using a weight-|I | linear combination of columns
from Q. If the remaining coordinates of π(QI) differ from the syndrome only by
w−|I | 1-entries, then we can correct these entries by choosing w−|I | unit vectors
from In−k−ℓ. Let us summarize our decoding algorithm by giving a pseudo-code
description in Algorithm 2.

Algorithm 2 Decode

Input: Parity check matrix H ∈ F
(n−k)×n

2 , syndrome s(x) = Het with wt(e) = ω.
Output: Error e ∈ F

n
2

Parameters: p, ℓ, ℓ1, ℓ2 with ℓ = ℓ1 + ℓ2

00 Repeat

01 Compute H̃← Init(H) where H̃ = UGHUP .
02 For all (solutions I found by ColumnMatch(Q[ℓ], (UGst(x))[ℓ], p, ℓ1, ℓ2)) do
03 If wt(π(QI) +UGst(x)) = ω − |I | then
04 Compute ẽ ∈ F

n
2 by setting

05 ẽi = 1 ∀i ∈ I

06 ẽk+ℓ+j = 1 ∀j ∈ supp(π[n−k]\[ℓ](QI +UGst (x)))
07 Output e = ẽUt

P .

The correctness of Decode is implied by correctness of the ColumnMatch

algorithm as we show in the following lemma.

Lemma 2. Decode is correct, i.e., if Decode outputs error e then Het = s(x)
and wt (e) = ω.

Proof. Let I be an output of ColumnMatch, i.e., π[ℓ](QI) = (UGst(x))[ℓ] and
0 < |I | ≤ p. Furthermore, we have

UGHet = UGHUP ẽ
t = H̃ẽt =

(
Q

0

In−k−ℓ

)
ẽt = Qẽt[k+ℓ] +

(
0

I

)
ẽt[n]\[k+ℓ]

= π(QI) +

(
0

π[n−k]\[ℓ](QI +UGst (x))

)
=

(
UGst[ℓ](x)

UGst[n−k]\[ℓ](x)

)
= UGst(x) .

Since UG is invertible, it follows that Het = s(x). Moreover, from line 03 of
Decode we obtain that

wt (e) = wt(ẽ) = |I |+wt(π(QI) +UGst(x)) = |I |+ ω − |I | = ω. ⊓⊔

17

In the remaining part of this section we explain how to derive optimal param-
eter choices for the Decode algorithm. We parametrize our code by k = ckn,
ω = cωn. We also parametrize the algorithm’s optimization parameters as
ℓ1 = cℓ1n, ℓ2 = cℓ2n and p = cpn.

Optimal parameters for the Decode algorithm. Recall that a randomly
permuted error ẽ ∈ F

n
2 of weight wt (ẽ) = ω has the desired weight distribution of

1-entries with probability PColumnMatch(p, ℓ) from Eq. (12) as in the FS-ISD algo-
rithm. Thus the inverse success probability is asymptotically P−1

ColumnMatch(p, ℓ) =

Õ(2αn) with

α(cp , cℓ) = H (cω)−

(
(ck + cℓ)H

(
cp

ck + cℓ

)
+ (1 − ck − cℓ)H

(
cω − cp

1− ck − cℓ

))
.

For a fixed choice of the parameters ℓ1, ℓ2 and p, the asymptotic time and
space complexities of one iteration of Decode are given by 2T(k ,p,ℓ,ℓ1,ℓ2)n and
2S(k ,p,ℓ,ℓ2)n from Theorem 2. In order to apply Theorem 2 we need to further
ensure that ℓ2 ≤ p − 2, which asymptotically simplifies to cℓ2 ≤ cp + 2

n
→ cp .

In total, we have to solve the following optimization problem

min{T (ck , cp , cℓ, cℓ1 , cℓ2) + α(cp , cℓ1 + cℓ2)} (OPT)

s.t. 0 ≤ cp ≤ cω

0 ≤ cℓ1 + cℓ2 ≤ 1− ck − cω + cp

0 ≤ cℓ2 ≤ cp

0 ≤ cℓ1 .

We solve (OPT) numerically for various code rates 0 ≤ ck ≤ 1. Since random
linear codes attain the Gilbert-Varshamov bound [6], we related the value cw for
the maximal error-correction capability to ck by the identity ck = 1−H (2cω).

For every code rate 0 ≤ ck ≤ 1 on the x-axis we plotted the complexity of
Decode in comparison with the FS-ISD algorithm, see Fig. 4 and Fig. 5. This
shows that our Decode algorithm yields for all rates ck an exponential im-
provement over the best-known decoding algorithms FS-ISD and Ball-collision
decoding. If we additionally plot the lower bound curve from [5] in its asymptot-
ical form, then this curve lies strictly below the FS-ISD curve and strictly above
our new curve. This shows that the representation technique in our Decode

algorithm allows to bypass the lower bound framework from [5].
We obtained the worst-case complexity for ck ≈ 0.47n with the parameter

choice as stated in the following main result.

Theorem 3. Decode recovers e in time Õ(20.05363n) and space Õ(20.021n),
where the optimal parameter choice is cp = cℓ2 = 0.006 and cℓ1 = 0.028.

Our formulation as an optimization problem (OPT) easily allows to specify
additional space constraints. E.g. adding the restriction S (ck , cp , cℓ, cℓ2) ≤ 0.014

gives us a running time of Õ
(
20.05402n

)
using the same space Õ

(
20.014n

)
as in

FS-ISD/Ball-collision decoding.

18

0.2 0.4 0.6 0.8 1.0
ck

0.01

0.02

0.03

0.04

0.05

complexity

Fig. 4. Run time comparison with FS-ISD.

0.2 0.4 0.6 0.8 1.0
ck

0.0005

0.0010

0.0015

0.0020

improvement

Fig. 5. Improvement over FS-ISD.

6 Experiments

We implemented our Decode and ColumnMatch algorithms in C++ and
tested them on three small McEliece instances with underlying [n, k , ω]-Goppa
codes. For each instance we computed optimal parameters p, ℓ1, ℓ2 (see second
column of Table 3) using the exact formulas for the time and space complexities
from Sect. 4 as well as for the respective probabilities from Eq. (12). We then
carried out 10.000 experiments per McEliece instance with varying Q. We com-
puted the target syndrome s = Qet for an error vector e fulfilling the required
weight distribution, i.e., we fixed p/2 coordinates to 1 in both intervals [1, k+ℓ

2]

and [k+l
2 + 1, k + ℓ].

Recall that our sole heuristic assumption was that Q behaves as a uniformly
randommatrix, implying that the projected partial sums πLj

(QI) are distributed
uniformly at random as well. To verify this assumption experimentally, we deter-
mined the average list size of L1 on level 1 and compared it to the theoretically
expected size (see columns three and four of Table 3).

Furthermore, we counted the number of successful iterations where the error
vector e was found (see column five of table 3). The results approximately match
the theoretically predicted success probability of at least 1

2 for ColumnMatch.
The slight discrepancy is due to the small value of p.

For the sake of completeness, we also give the time per iteration as well as
the number of repetitions P−1 that would be needed for the complete Decode

algorithm (see columns six and seven).

[n, k , ω] [p, ℓ1, ℓ2] | L1 | theo. | L1 | exp. success prob. time (ms) P−1

[255, 135, 15] [4, 11, 2] 1369 1369.1 43.6% 11 28.12

[511, 259, 28] [4, 13, 2] 4692.25 4692.08 44.2% 44 217.96

[1024, 524, 50] [4, 16, 2] 18360 18360.4 43.3% 207 238.74

Table 3. Experimental results for the ColumnMatch algorithm.

19

We would like to stress that the main goal of our implementation was to test
the validity of the heuristic assumption, that Q behaves as a random matrix.
We did not put effort in optimizing our code for speed by e.g. using clever data
structures or hash tables as it was done in [3]. We leave it has an open problem
to implement an efficient version of our algorithm for determining the cut-off
point with other variants of information set decoding, such as Stern, FS-ISD or
Ball-collision decoding.

Acknowledgements: The authors would like to thank Antoine Joux for useful
discussions and Jannik Pewny for carrying out the experiments.

References

1. N. Alon and J. Spencer. The Probabilistic Method. Wiley, 2008.
2. E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of

certain coding problems (Corresp.). IEEE Transactions on Information Theory,
24(3):384–386, May 1978.

3. D. J. Bernstein, T. Lange, and C. Peters. Attacking and defending the McEliece
cryptosystem. In J. Buchmann and J. Ding, editors, PQCrypto, volume 5299 of
Lecture Notes in Computer Science, pages 31–46. Springer, 2008.

4. D. J. Bernstein, T. Lange, and C. Peters. Smaller decoding exponents: Ball-collision
decoding. In P. Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in

Computer Science, pages 743–760. Springer, 2011.
5. M. Finiasz and N. Sendrier. Security bounds for the design of code-based cryp-

tosystems. In M. Matsui, editor, ASIACRYPT, volume 5912 of Lecture Notes in

Computer Science, pages 88–105. Springer, 2009.
6. V. Guruswami. Introduction to Coding Theory. Lecture Notes, 2010.
7. N. J. Hopper and M. Blum. Secure human identification protocols. In C. Boyd,

editor, ASIACRYPT, volume 2248 of Lecture Notes in Computer Science, pages
52–66. Springer, 2001.

8. N. Howgrave-Graham and A. Joux. New generic algorithms for hard knapsacks.
In H. Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer

Science, pages 235–256. Springer, 2010.
9. P. J. Lee and E. F. Brickell. An observation on the security of McEliece’s public-key

cryptosystem. In EUROCRYPT, pages 275–280, 1988.
10. J. S. Leon. A probabilistic algorithm for computing minimum weights of large

error-correcting codes. IEEE Transactions on Information Theory, 34(5):1354–,
1988.

11. R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN

Progress Report 42-44, 1978.
12. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.

In H. N. Gabow and R. Fagin, editors, STOC, pages 84–93. ACM, 2005.
13. J. Stern. A method for finding codewords of small weight. In G. D. Cohen and

J. Wolfmann, editors, Coding Theory and Applications, volume 388 of Lecture Notes

in Computer Science, pages 106–113. Springer, 1988.

20

