

Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May Ilya Ozerov, Elena Kirshanova

Präsenzübungen zur Vorlesung Kryptanalyse SS 2014 Blatt 9 / 26 June 2014

Exercise 1:

In this exercise we consider two Diffie-Hellman-related schemes in the view of the Hidden Number Problem. In what follows we assume a group of prime order p and α being its generator. We set $l = \sqrt{\log p} + \log \log p$. In all cases you should modify the proof of **Satz 76**.

- 1. Key Sharing. Bob picks a random $r \leftarrow \mathbb{Z}_p$ and send α^r to Alice. Alice picks a random $s \leftarrow \mathbb{Z}_p$ and sends $(\alpha^r)^s$ to Bob. Bob computes $(\alpha^{rs})^{1/r} = \alpha^s$ which is the shared key. Now \mathcal{A} on input $(\alpha^{r(s+x)}, \alpha^r)$ outputs l MSB of α^{s+x} . Apply \mathcal{A} to compute α^s efficiently.
- 2. ElGamal Encryption. For $\mathsf{pk} = (p, \alpha, \beta = \alpha^a)$ and $\mathsf{sk} = a$: $\mathsf{Enc}_{\mathsf{pk}}(m) = (\alpha^r, m\beta^r)$ for some random $r \leftarrow \mathbb{Z}_p$. Let \mathcal{A} be an algorithm that on input $\alpha^{a+x}, \alpha^r, m\beta^r$ outputs lMSB of $m(\alpha^{-r})^x$. Show how to compute m in polynomial time using \mathcal{A} .

Exercise 2:

Let $N = p^k$ be a prime-power. Show how to find k and p efficiently.

Exercise 3:

Factor N = 52907 using $B = \{2, 3, 5\}$.