

Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May Ilya Ozerov, Elena Kirshanova

Präsenzübungen zur Vorlesung Kryptanalyse SS 2014 Blatt 10 / 3 July 2014

Exercise 1:

Let α be a generator of \mathbb{Z}_q^* for prime q. Show that for $i \xleftarrow{\$} \{1, \ldots, q-1\}$

$$\operatorname{ord}_{\mathbb{Z}_q^*}(\alpha^i) = \frac{q-1}{\operatorname{GCD}(i,q-1)}.$$

Elliptic Curves

Exercise 2:

• Suppose that a cubic polynomial $X^3 + AX + B$ factors as

$$X^{3} + AX + B = (X - r_{1})(X - r_{2})(X - r_{3}).$$

Prove that $4A^3 + 27B^2 = 0$ is and only if two (or more) of r_1, r_2, r_3 are the same.

• Let P = (x, y) be a point on the elliptic curve E given by $y^2 = x^3 + Ax + b$. Show that if y = 0 then $3x^2 + A \neq 0$.

Exercise 3:

Show that the number of elliptic curves defined over \mathbb{F}_p for prime p is $p^2 - p$.

Exercise 4:

Show that three points on an elliptic curve add to \mathcal{O} if and only if they are collinear.